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TIETZE EXTENSION THEOREM.If M is a closed subset of a normal space X ,  then any bounded 
continuous real-valued function on M may be extended to a continuous function on X with the same 
bound. 

Proof. Let T be the restriction map from the space of bounded continuous functions on X to 
the space of bounded continuous functions on M. When these function spaces are given the sup 
norms, T becomes a bounded operator. We will verify that T satisfies the hypothesis of the 
Approximation Lemma with m = 1/3 and r = 2/3 by repeating the first step of the standard 
proof of the Tietze Extension Theorem [I ,  Theorem 3.2, p. 2121. Suppose that g is a continuous 
function on M with sup norm 1. Let A = gp'[- 1, -1/31 and B = g-'[1/3,1]. By Urysohn's 
lemma, there is a continuous function f from X to [ - 1/3,1/3] with f identically equal to -1/3 
on A and to 1/3 on B. Then 1 1  f 1 1  = 1/3 and IITf - gll < 2/3. This completes the proof. 

Another form of the Approximation Lemma [2, Lemma 4.13(a), p. 94-95], which is useful in 
operator theory, states that if B, and B, are open balls about the origins in E and F, 
respectively, and if T(B,)  2 B,, then T(B,) 2 B,. This follows easily by applying the form of 
the Approximation Lemma proved above to a sequence { r,, ) with limit 0. 
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THE PROBABILITY OF HEADS* 

JOSEPHB. KELLER 
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1. Introduction. Why is the outcome of a coin toss considered to be random, even though it is 
uniquely determined by the laws of physics and the initial conditions? If it is random, why is there 
a definite probability associated with each outcome, regardless of how the coin is tossed? Finally, 
if there is a definite probability for each outcome, how can it be calculated? We shall try to answer 
these questions by analyzing the motion of a tossed coin. Then we shall extend our considerations 
to a wheel and other "chance" devices. 

2. Mechanics of a tossed coin. Let us consider a circular coin of radius a and negligible 
thickness, one side of whch is marked heads and the other side tails. We assume that the center of 
gravity of the coin is at its geometrical center, the height of which we denote y ( t )  at time t .  Then 
Newton's equation for the vertical motion of the center of gravity of the coin is 

Here the,positive constant g is the acceleration of gravity. To supplement (1) we suppose that 
initially, at time t = 0, the center of the coin is at height a and that it has an upward velocity u.  
Thus we have the initial conditions 

The differential equation (1) and the initial conditions (2) determine y ( t ) .  Instead of y(0) = a we 
could have prescribed any other initial value. This particular choice will simplify some of the 
subsequent calculations. 

*Research supported by the Office of Naval Research. the Air Force Office of Scientific Research, the Army 
Research Office, and the National Science Foundation. 
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In addition to its vertical motion, the coin is assumed to be rotating about a horizontal axis 
that lies along a diameter of the coin. We shall choose the z-axis to be parallel to this rotation 
axis. Then we can describe the angular position of the coin at time t by the angle B ( t )  between 
the positive y-axis and the normal to the side of the coin marked heads, both of which lie in the 
x , y  plane. (See Fig. 1.)Now the equation governing the rotational motion of the coin is simply 

with the positive y-axis. 6' heads ~nakes the angle 
FIG.1. The x, y plane intersects the coin along a diameter of length 2 a .  The normal to the side of the coin marked 

We assume that initially the coin is horizontal with side heads up, so that B(0) = 0, and that it has 
the positive angular velocity o.Thus we specify the initial conditions 

Here also we could have replaced B(0) = 0 by any other initial value, but this choice will simplify 
our calculations. 

The solutions of (1)and (2) for y ( t )  and of ( 3 )  and (4) for B( t )  are 

These equations hold from t = 0 until the first time to > 0 at which the coin lands on a surface, 
which we take to be the plane y = 0. We shall assume that whichever side of the coin is up at to 
remains up. This will be the case if the coin lands in sand or mud, but not if it lands on a hard 
surface where it will bounce, roll, etc. Thus the coin will end its motion with heads up if 

n n 
( 7 )  2 n n - - < B ( t , ) < 2 n ~ + ~ ,  n = 0 , 1 , 2  , . . . .2 

To find t o , we consider the lowest point of the coin at time t ,  which is at y ( t )  - ulsin O(t)l .  
Then to is the smallest positive root of the equation 

(8) y( t , )  - alsin @ ( t o )1 = 0 .  

3. The pre-image of heads. We shall now analyze (7) and (8) to find out if the coin ends up 
heads for given values of the initial velocity u and the initial angular velocity o.The set of all 
pairs u ,  w of nonnegative values for which it ends up heads, we shall call the pre-image of heads 
in the u ,  w plane, and we shall denote it H. First we consider the end points of the intervals in 
(7),whch  are given by @ ( t o )= (2n i i ) n .  At them (6) yields 
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Now since sin @(to) = 1 1 ,  (8) becomes y(t,) - a = 0. When (5) .is used in this equation it 
becomes 

(10) ut, - gt,2/2 = 0. 

The positive solution of (10) is to = 2u/g. Then we use t h s  result in (9) to obtain 

The relation (11) corresponds to the endpoints of the intervals in (7), and therefore it 
determines the boundaries of the region H in the u, o plane. This relation is graphed in Fig. 2 for 
many values of n .  Each curve is a hyperbola. On the axis o = 0 heads remains up throughout the 
toss, so this axis and the adjacent strip lie in H. The next strip lies in T, the pre-image of tails, and 
the successive strips alternate between H and T, as we can see by examining (7). 

FIG.2. The curves which separate the sets H and T, the preimages of heads and tails in the u ,  w plane of initial 
conditions, are shown for various values of n .  These are based upon (ll),with the abscissa being u/g .  The lowest 
strip, adjacent to the axes, belongs to H, the next to T, and so on alternately. 

From (11) we find that the vertical separation between any two adjacent boundary curves is 
ag/2u, except that the lowest one is only ag/4u above the axis. Thus the strips are of equal 
vertical width, and this width tends to zero as u increases. 

In order to find where actual tosses lie on this figure, we can consider the maximum height h 
to which a coin rises. From (5) we find that dy/dt = 0 at t, = u/g, and that 

Thus u ='[2g(h - Now g = 32 feet per second2, so if h - a = 1 foot we find u = 8 
ft/sec and t = u/g = 1/4 sec. 

To find w Professor Persi Diaconis observed a number of typical tosses of a coin under 
stroboscopic illumination, and found that w = 38 revolutions/sec = 3 8 ( 2 ~ )  radians/sec. The 
number of revolutions per toss is 

2 
n = a t ,  = 2uo/g = 4(38) revs/toss = 19 revs/toss. 

Thus the point (u/g, o )  = ((1/4) sec, 76 a/sec) is way above the region shown in Fig. 2. It lies 
near the lines corresponding to n = 19 in (9). 

4. The probability of heads. So far we have determined the sets H and T in the u, o plane, 
which are the pre-images of heads and tails respectively. Now we suppose that the initial condition 
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u ,  w is a random variable with a continuous probability density p ( u ,  w )  with support in the 
region u > 0, w > 0. Then the probability of heads PH is given by 

Thus the outcome is random because we have assumed that the initial conditions are random. This 
is the answer to the first question we asked in the introduction. 

For any value PH in the interval zero to one, there are densities p for which the integral in (12) 
has that value. Thus (12) does not seem to place any restriction on pH. However, we shall now 
show that when the support of p is shfted to sufficiently large values of u ,  and possibly to large 
values of w also, then PH tends to a fixed limit which is independent of the density p ( u ,  a ) .This 
is the content of the following theorem. 

THEOREM1. Let p ( u ,  w )  be a continuous probability density with support in the region u > 0,  
w > 0,  and let /3 be a fixed constant satisfying 0 < /3 < n / 2 .  Then 

Proof. The proof is given in the appendix, although the conclusion is evident from Fig. 2 

The significance of this theorem is that there is a unique probability of heads which is 
approximately achieved by any continuous probability density of the initial values u ,  w that is 
shifted to sufficiently large values of u and w. The approximation improves as the density 
p (u ,  w ) is translated to larger values of u and w. 

The limiting value of PH is 1 /2 ,  despite the fact that the initial condition is not symmetric in 
heads and tails, since the coin always starts out with heads up. Therefore the traditional method of 
calculating p H , based upon symmetry, is not applicable. 

The reason why PH has a limit as U increases is that the pre-images H and T both consist of 
many strips which become very narrow at infinity. Thus both H and T occupy fixed fractions of 
the area of any disk which is shifted to infinity. This answers the second question in the 
introduction. By calculating those fractions we get the limiting values of PH and P,, which 
answers the third question in the introduction. 

5. Wheels. Another common gambling device, which is often used in carnivals, is a rotating 
wheel with numbers marked along its outer edge, and a pointer. The wheel is spun and ultimately 
comes to rest, with the number indicated by the pointer being the winning number. Usually there 
are nails between adjacent numbers which are hit by the pointer, to aid in slowing down and 
stopping the wheel, and to make clear which number is indicated by the pointer when the wheel 
stops. We shall ignore the nails, and analyze the motion of the wheel. 

The angular position of the wheel can be described by specifying the angular distance B from 
the pointer to some mark on the wheel. Let B ( t )  be this angle at time t .  To determine B( t ) ,  we 
assume that there is a constant frictional torque retarding the motion, and that this frictional 
torque vanishes when the wheel comes to rest. Then while the wheel is turning in the counterclock- 
wise direction, so that B( t )  is increasing with t ,  its equation of motion is 

Here a is a positive constant equal to the retarding torque divided by the moment of inertia of the 
wheel, and to is the first time at which the wheel comes to rest. Thus 
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We assume that initially the mark is under the pointer, so that B(0) = 0, and that the wheel has 
an initial angular velocity o > 0. Thus 

(16) ~ ( 0 )= 0 ,  -dt -- 0 .  

The solution of (14) and (16) is 

(17)  B ( t )  = a t  - a t 2 / 2 ,  O < t < t o .  

To find to we use (17)in (15) to get w - at ,  = 0. Thus to = o / a  and (17)yields 

Now (18) gives the final position of the mark, since the wheel stops moving at to.  
Let us now solve (18) for o to find which points on the positive o-axis correspond to a given 

final position 8. To do so we set B(to)= B + 2na  in (18) with n = 0 , 1 , 2 . . . , since all such 
coordinates represent the same position of the wheel. Then the solution of (18)yields 

(19)  on= [ 2 a ( B+ 2 n ~ ) ] l ' ~ ,n = 0 ,1 ,2 , .  . . . 
This set is the pre-image of B on the positive o-axis, which is the set of initial conditions. From 
(19)we find that for large n the spacing between successive values of a,, is 

Thus the on become ever more closely spaced as n increases. 
Now we suppose that o is random with a continuous probability density p ( o )  which vanishes 

for o < 0. Then the corresponding probability density P ( B )  of B is 

When p ( w )  is shifted to larger values of o by the amount a,(21)yields 
30 

(22)  P,(Q) = a C P [ % ( Q )- a1 / ~ , , ( 6 ) .  
n=O 

In the appendix we obtain from (22) the following result: 

THEOREM2. I f p ( o )  is a  continuous probability density which vanishes for o < 0, then 


1  

(23)  lim P,(B)

n - ~  = 2-a 

Thus in this case also there is a unique probability distribution of the outcome that results 
approximately from any initial density p ( o )  which has its support shifted to sufficiently large 
values of lo. Again the limit distribution is what would be given by a symmetry argument, 
although the initial condition is not symmetric because B(0) = 0. 

6. Other chance devices. We shall now consider any mechanical device used in a game of 
chance. We assume that its motion is determined by the laws of mechanics and its initial 
condition, which we denote u. We also assume that its possible final states can be partitioned into 
a finite collection of subsets S,, S 2 ,. . . Sn, each of which we identify with one outcome or event 
also denoted S, ,S2,. . . S,. The laws of mechanics determine a unique final state corresponding to 
each initial condition u. All those initial conditions which lead to a final state in the set S, we call 
the pre-image of the outcome S,.We denote the pre-image of S, by H,. 

Now we suppose that there is a probability density p ( u )  defined on the space of initial 
conditions. Then the probability P, of outcome S, is given by 
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(24) P,= 6p ( u )  du. 

The question we consider is "When is PI independent of the particular probability density p (u ) :  
and if it is independent, what is the value of PI?" 

The preceding examples of coin tossing and wheel spinning suggest an answer. It is to consider 
the behavior of the H, at infinity in the space of initial conditions. Suppose that a fixed fraction f, 
of the volume of any small region at infinity is contained in HI.  Then it follows from (24) that PI 
will have the limit f, as p ( u )  is shifted to infinity. 

The meaning of this conclusion is that when the H, have the required property, "any" 
probability density of initial conditions concentrated at very large initial conditions will yield 
nearly the same probabilities P, = f, of the various outcomes. Whether or not the H, do have the 
requisite property, and what the fractions f, are, can be decided in principle by analyzing the 
mechanical behavior of the device. 

7. Some related work. Poincark [I] treated a model of the roulette wheel which led to results 
like those in Section 5, although it does not involve any mechanics. His results and some related 
ones are mentioned in Feller [2]. Smoluchowski [3] presented similar ideas. Then Hopf [4], [5] 
introduced concepts from mechanics into the calculation of probabilities, and a point of view just 
like the one we have described. Recently Thorp [6] has used mechanical considerations in 
analyzing roulette. 

Acknowledgement. It is a pleasure to thank Professor Persi Diaconis for raising a question 
about the face probabilities of noncubical dice which led me to think about this subject, and for 
permitting me to quote his measurements of the rotation rates of tossed coins. 

Appendix. We shall now indicate the proofs of the two theorems. 

Proof of Theorem 1. We first write the integral in (13) as an iterated integral, and use (11) to 
determine the range of o' = o - U ' U  sin p :  

1%-f/ ( ~ ~ I + I / ~ > T ~ / ~ U - C J - ~ L I ~ ~ ~ Pp ( u  - a') do'dti .  U C O S ~ ,
('41) pH = 

Ucoap,,=o ( 2 r 1 - 1 / 2 ) ? i ~ / 2 u r i ' U s i n ~  

The lower limit of u is Ucos P because p = 0 for u - Ucos P < 0. As U tends to infinity, so 
does u provided that P < n/2. Then the range of each integral over o' is of length O ( W 1 ) .  
Therefore we can approximate each of these integrals by the length of the interval multiplied by 
the value of the integrand at the midpoint. The error in this approximation is O ( W 1 ) .  Thus we 
can rewrite (Al) as 

As U becomes infinite, the sum in (A2) converges to one half the Riemann integral of p with 
respect to a ' .  This is clear if p has compact support, and if not it follows by approximating p by 
a sequence of functions with compact support. Thus we have 

Upon setting u' = u - U cos P in (A3), and remembering that the integral of p is one, we get 

When U tends to infinity, o(1) tends to zero, and (A4) yields the result in (13). For j3 = n/2 we 
introduce u' = u - Ucos p instead of o' and then the proof is similar to that above. 
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Proof of Theorem 2. By using (20) for a,;' we can write (22) as 

Then we write ~ , , ( 0 )  = w,,(0) - 3 ,  and note that p(w,, - 3 )  = 0 for a,, < 3 .  Thus we can write 
(AS) as 

Now w,,, , - w,,= a,,+,- w, = O(w,yl), and w,, > 3 whenever p(w,, - 3 )  > 0. Therefore w,,,, 
- w,, = 0 ( Q p 1 ) ,  and the sum in (A6) converges to the Riemann integral of p as 3 becomes 
infinite. Since this integral is one, (A6) yields (23). 
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ANCESTORS, CARDINALS, AND REPRESENTATIVES 
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1. Introduction. Occasionally we come across a proof so charming that it is as memorable or 
more so than the theorem it proves. One such is the "parent-ancestor-descendant" proof of the 
Schroeder-Bernstein Theorem which appeared in Birkhoff and Mac Lane [2] and has ever since 
been a favorite of college mathematics audiences. This proof is a clever restatement of an 
argument of S. Banach [I], and it demonstrates the value of picturesque terminology in good 
mathematical exposition. In our expository note here, we apply the same proof to obtain a more 
general theorem (Theorem 1 below) and show how to derive as its corollaries not only Banach's 
mapping theorem and the Schroeder-Bernstein Theorem, but also some results of Mendelsohn and 
Dulmage [6], R.  Rado [7, Theorem 4.31, and Hoffman and Kuhn [5] about systems of distinct 
representatives for families of sets. 

Theorem 1is due to Ore [8] and independently to Perfect and Pym [9],whose version we state 
first. 

THEOREM 1. Let X' X, Y' c Y, und E X x Y be sets. Suppose thut there exist injective 
muppfngs f : X' + Y und g : Y' -+ X such that (x ,  f (x)) E E und (g(y),  y )  E E for ull x E X' 
and y E Y'. Then there exist sets X,, Yo with X' C X, C X and Y' c Yo c Y und a bijection 
h : X, + Y,  such thut (x ,  h(x)) E E for ull x E Xo. 

Ore's version, which is more convenient for certain applications, is stated (Theorem 1') in the 
language of bipartite graphs. Here we consider X, Y to be disjoint sets of vertices forming the 
bipartition for the bipartite graph B with edge-set E-that is, vertex x is adjacent to vertex y if 
( x ,  y )  E E. A subset S c E of edges is said to be incident to a subset X' of X (respectively. Y' 
of Y) if every element of X' (Y') is an end-point of some edge (x ,  y )  of S. A set M c E is 
independent if no two edges of M share a common endpoint (i.e., M is a "matching" in B). 

THEOREM 1'. Let B = [X, Y] be a bipartite gruph with edge-set E c X X Y. Suppose that 


