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PROBABILITY MODELS FOR ECONOMIC DECISIONS

by Roger B. Myerson (Duxbury, 2005)

Chapter 8:  Risk Sharing and Finance

In our study of decision analysis, we initially assumed (starting in Chapter 2) that the

basic criterion for defining optimal decisions under uncertainty is maximization of the decision-

maker's expected payoff.  This assumption seemed questionable, however, when we observed

that individual decision-makers are often risk averse.  Then utility theory (in Chapter 3) taught us

to use expected utility values, rather than expected monetary values, as our general criterion for

optimal decision-making.  We have focused on the theory of utility functions with constant risk

tolerance, as a practical framework for analyzing the effect of risk aversion on people's decisions. 

But utility theory was still about decision-making by individuals.  In this chapter we make the

transition from individual decision-making to decision-making in partnerships and corporations.

A large business enterprise generally has a chief executive officer, but it typically has

many owners (partners or stockholders), each of whom may have a different risk tolerance.  How

should such partnerships or corporations make decisions under uncertainty?  Should they use the

utility function of the chief executive officer, or of the owners?  If the owners, how do we resolve

their differences when they have different utility functions? 

We begin this chapter with a general analysis of optimal risk sharing among individuals

who have constant risk tolerance.  We find that, in an optimal allocation of risks, more risk

tolerant people should hold more risks, in proportion to their risk tolerance.  We show that a

partnership with such optimal risk sharing should evaluate investment opportunities by applying

a risk tolerance that is the sum of the partners' individual risk tolerances.

We then consider the effect of incentive constraints that may prevent managers from

achieving such optimal risk sharing with outside investors.  The trade-off between risk sharing

and incentives is analyzed in simple principal-agent problems.  This analysis teaches us that

senior managers of big businesses should be expected to bear a personally significant share of the

corporate risks.  Such managers may then want corporate decision-making to be guided by their

own personal utility functions applied to their personal shares of the corporate risks.  But a very



2

different approach is needed if we want to analyze corporate decision-making on behalf of the

stockholders.

When a publicly held corporation makes decisions on behalf of its stockholders, it should

generally assume that its stock is held by investors as a part of a well-diversified portfolio, and

that these stockholders want the corporation to maximize the value of its shares in the stock

market.  So to understand optimal corporate decision-making for the stockholders, we need a

theory of how the prices of financial assets are determined in the stock market.  We develop here

a model of financial asset pricing, using the assumption that the stock market includes many

investors who have constant risk tolerance.  This model is somewhat different from the well-

known capital asset pricing model (CAPM), but it yields similar and closely related results.  Both

these asset-pricing models teach us that the magnitude of a corporation's risks alone may be less

important than the relationship between these risks and the greater aggregate risks of the whole

stock market.

Any system of asset pricing that does not create arbitrage opportunities must be consistent

with a generalized expected-value criterion that applies some modified probabilities which may

be determined in the stock market.  These general results of arbitrage pricing theory are

introduced at the end of this chapter, and are shown to be include our asset-pricing model as a

special case.

8.1.  Optimal risk sharing in a partnership of individuals with constant risk tolerance  

To introduce the basic ideas of optimal risk sharing, let us begin with an example of two

individuals (numbered 1 and 2) who are considering a real-estate development project.  Suppose

that they have an option to buy a tract of land for $125,000, after which they would then need to

spend an additional $40,000 on improvements (including an allocation for the cost of their own

time in supervising the project) before they could sell the land in subdivided lots.  The total

revenue that they could then earn from selling these lots would be uncertain, but has an expected

value of $200,000 and a standard deviation of $25,000.   For simplicity, let us assume here that

the time to complete this real estate project is small enough that we can ignore the interest costs

of borrowing money to cover the expenses before the revenues come in.  So the net returns from
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this real estate project next year will have expected value 

µ = 200,000 ! (125,000 + 40,000) = $35,000 

and standard deviation 

F = $25,000.

Suppose that each of these two individuals evaluates risky incomes using a utility function with

constant risk tolerance, where individual 1 has risk tolerance 

r  = $20,000, 1

and individual 2 has risk tolerance 

r  = $30,000.2

They must decide whether to undertake this real estate project, and if so, how to divide the

returns among themselves.  Let us assume that the uncertainty about profits from this project can

be described by a Normal distribution.

In Section 4.7 of Chapter 4 we saw that, when an individual with constant risk tolerance r

has a gamble that will pay a random amount of money drawn from a Normal probability

distribution with mean µ and standard deviation F, his certainty equivalent for the gamble is

CE = µ ! (0.5'r)*F^2

So if individual 1 were to undertake this project himself, his certainty equivalent would be 

µ ! (0.5'r )*(F^2) = 35000 ! (0.5'20000)*(25000^2) 1

= 35000 ! 15625 = $19,375.

That is, the option to buy this land and undertake this project would be worth $19,375 to

individual 1, if he had to undertake all the risks of the project alone.

If individual 2 were to undertake this project by herself, then its value to her would be

µ ! (0.5'r )*(F^2) = 25000 ! (0.5'30000)*(25000^2) 2

= 35000 ! 10417 = $24,583

So if individual 1 had the option to buy this land, then individual 2 would be willing to pay up to

$24,583 to buy the option from him, and individual 1 would be glad to sell the option for any

price above $19,375.  Of course it is not surprising that this risky project should be more valuable

to the individual who has greater risk tolerance.

But even though individual 2 is strictly more risk tolerant than individual 1, the project
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could be even more valuable to these individuals if they undertake the project as partners, with

individual 1 taking a positive share of the project's risks.  For example, if they each took 50% of

the net profits from the project, then each individual would anticipate a payment drawn from a

Normal distribution with mean 0.50*35000 = $17,500 and standard deviation

0.50*25000 = $12,500.  For his 50% share, individual 1 would have certainty equivalent

CE(1) = 17500 ! (0.5'20000)*(12500^2) = 17500 ! 3906 = $13,594,

For her 50% share, individual 2 would have certainty equivalent

CE(2) = 17500 ! (0.5'30000)*(12500^2) = 17500 ! 2604 = $14,896.

So the total certainty-equivalent value of the project to the two individuals when they share it

equally is 

CE(1) + CE(2) = 13594 + 14896 = $28,490

Thus, the project is worth more to them when it is shared equally than when the more risk

tolerant individual 2 owns it completely.  

Such risk sharing is beneficial because each individual j's risk premium (0.5'r )*F^2 isj

proportional to the square of the standard deviation (the variance) of his or her income.  So

halving individual 2's share from 100% to 50% would halve the standard deviation of her

monetary returns from $25,000 to $12,500, which in turn would reduce her risk premium to a

quarter of its former value from $10,417 to $2604.  This decrease in individual 2's risk premium

from giving up 50% of the project (10417!2604 = 7813) is much greater than the increase in

individual 1's risk premium when he takes on 50% of the project (3906!0).
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A B C D E F G H
Suppose profits will be drawn from a Normal distribution
Mean 35000
Stdev 25000

Profits can be shared by individuals 1 and 2
Individ RiskTol %Share Mean Stdev CE RiskPremium

1 20000 0.4 14000 10000 11500 2500
2 30000 0.6 21000 15000 17250 3750

Sum(RTs) CE(total,sumRTs) Sum(CEs) Sum(RPs)
50000 28750 28750 6250

SOLVER(1): Maximize F11 by changing C7.
FORMULAS
C8.  =1-C7 B33.  =NORMINV(RAND(),B2,B3)
D7.  =C7*$B$2 D27.  =1-C27 D28.  =-C28
E7.  =C7*$B$3 C34.  =C$28+C$27*$B34
F7.  =D7-(0.5/B7)*E7^2 D34.  =D$28+D$27*$B34
G7.  =D7-F7 C34:D34 copied to C34:D534
 D7:G7 copied to D8:G8 C31.  =CE(C34:C534,C30)
F11.  =SUM(F7:F8) D31.  =CE(D34:D534,D30)
G11.  =SUM(G7:G8) F31.  =SUM(C31:D31)
B11.  =SUM(B7:B8) F30.  =SUM(C30:D30)
C11.  =B2-(0.5/B11)*B3^2 F33.  =CE(B34:B534,F30)

F28.  =C28+D31
SOLVER(2): Maximize F31 by changing C27:C28.

Individual 1 2
Sharing rate 0.4 0.6 C28 value for CE2=0

Fixed payment 17000 -17000 17475

RiskTols 20000 30000 50000 Sum(RiskTols)
CE 28650 475 29125 Sum(CEs)

(sim'd) Total$  Net incomes
SimTable72184.7 Pay 1 Pay 2 29125 CE(total$,sumRTs)

0 59273 40709 18564
0.002 396 17158 -16763
0.004 34138 30655 3483
0.006 48928 36571 12357        
0.008 5586 19235 -13648        

5

Figure 8.1.  Sharing a Normal gamble.
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The spreadsheet in Figure 8.1 is set up to analyze the effect on the individuals' certainty

of other ways of sharing the risks of this project.  When we enter individual 1's share of the risks

into cell C7, then the expected value and standard deviation of 1's income are calclulated in cells

D7 and E7 by the formulas =C7*$B$2 and =C7*$B$3, where cells B2 and B3 contain the

mean 35000 and standard deviation 25000 of the project's total profits.  Then individual 1's

certainty equivalent is calculated in cell F7 by the formula =D7!(0.5/B7)*E7^2, where B7

contains individual 1's risk tolerance 20000.  Individual 2's share is calculated by =1-C7 in cell

C8, and copying D7:F7 to D8:F8 yields individual 2's certainty equivalent for her share in cell

F8.  Cell F11 computes the sum of the individuals' certainty equivalents by the formula

=SUM(F7:F8).

Now we can use Solver in this spreadsheet to maximize the sum of the computed

certainty equivalents in cell F11 by changing individual 1's percentage share of the project in cell

C7.  The result is that Solver returns the value 0.4 in cell C7, as shown in Figure 8.1.  When

individual 1 takes a 40% share, his expected monetary value is 0.40*35000 = $14,000 and his

standard deviation is 0.40*25000 = $10,000, and so his certainty equivalent is

CE(1) = 14000 ! (0.5'20000)*(10000^2) = 14000 ! 2500 = $11,500

When individual 2 takes a 60% share, her expected monetary value is 0.60*35000 = $21,000 and

her standard deviation is 0.60*25000 = $15,000, and so her certainty equivalent is

CE(2) = 21000 ! (0.5'30000)*(15000^2) = 21000 ! 3750 = $17,250

When they plan to share the risks in this way, their total certainty equivalent of the project is

CE(1) + CE(2) = 11500 + 17250  = $28,750

This total $28,750 is the maximal sum of certainty equivalents that the partners can achieve by

sharing the profits of this project.

In this optimal sharing rule, the ratio of 2's share to 1's share is 0.6'0.4 = 1.5.  Notice that

the ratio of 2's risk tolerance to 1's risk tolerance is exactly the same 30000'20000 = 1.5.  This

result is not a coincidence, as the following general fact asserts.

Fact 1.   Suppose that a group of individuals have formed a partnership to share the risky

profits from some joint venture or gamble, and each individual j in this group has a constant risk

tolerance that we may denote by r .  Let R denote the sum of all the partners' risk tolerancesj
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(R = 3  r ).  Then these individuals can maximize the sum of their certainty equivalents byj j

sharing the risky profits among themselves in proportion to their risk tolerances, with each

individual j taking the fractional share r 'R of the risky profits.j

For this example, Fact 1 yields the same optimal shares that Solver returned in Figure 8.1. 

The sum of the partners' risk tolerances here is 

R = r  + r  = 20000+30000 = $50,000.  1  2

So the optimal share for individual 1 is  20000'50000 = 0.4, the same share that Solver

generated in cell C7.

For any such partnership, we may define the total risk tolerance of a partnership to be the

sum of the risk tolerances of the individual partners.  For this example, we have seen that the

partnership's total risk tolerance is R = $50,000.  Now, if we considered the partnership as a

corporate person with constant risk tolerance equal to this total R, then a Normal lottery with

mean $35,000 and standard deviation $25,000 would have certainty equivalent 

µ ! (0.5'R)*F^2 = 35000 ! (0.5'50000)*(25000^2) = $28,750

for this partnership, as is calculated in cell C11 of Figure 8.1.  Notice that this corporate certainty

equivalent is exactly the same as maximized sum of the partners' individual certainty equivalents

in cell F11 under the optimal sharing rule.  The following general fact asserts that this result is

also not a coincidence.

Fact 2.   Consider a group of individuals who have formed a partnership to share the risky

profits from some joint venture or gamble, where each individual has constant risk tolerance, as

assumed in Fact 1.  Let R denote the sum of all the partners' individual risk tolerances (R = 3  r ). j j

Then the maximal sum of the partners' certainty equivalents that can be achieved by optimal risk

sharing (as described in Fact 1) is equal to the certainty equivalent of the whole gamble to an

individual who has a constant risk tolerance equal to the sum of these partners' risk tolerances. 

Thus, to maximize the sum of their certainty equivalents, the partnership should evaluate

gambles according to its total risk tolerance, whenever the partners have a choice about which

gambles to undertake.

Facts 1 and 2 here do not require the gamble to be Normal.  In illustrating these two facts,
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we have used the special formula for certainty equivalents of Normal gambles, but the same

results can also be obtained with simulation analysis, as shown in the lower portion of Figure 8.1

(row 25 and below).  A simulation table here holds a sample of 501 independent simulations of

the Normally distributed of profits for this project.  We consider sharing rules where each partner

gets a fractional share of the profits as listed in cell C27 or D27 plus a fixed payment listed in

cell C28 or D28 (for 1 or 2 respectively).  A negative payment in D27 represents a payment from

individual 2 to individual 1, as when she must buy into a project that was initially owned by

individual 1.  The fractional shares in C27:D27 must sum to 1, because the partners must share

100% of the profits, and the fixed payments in C28:D28 must sum to 0, because any fixed

payment to one partner must come from the other.  These constraints are represented in this

spreadsheet by the formulas =1-C27 in cell D27 and =-C28 in cell D28.  Under the sharing

rule in C27:D28, the net incomes from the project's simulated profits for individuals 1 and 2 are

listed below in cells C34:C534 and D34:D534, and the corresponding certainty equivalents are

computed in cells C31 and D31 with the formulas

=CE(C34:C534,C30)  and  =CE(D34:D534,D30)

(where C30 and D30 contain the individuals' risk tolerances).  The sum of the individuals'

certainty equivalents is computed in cell F31.

If we ask Solver to maximize the sum of the individuals' certainty equivalents in cell F31

of Figure 8.1 by changing the sharing-rule parameters in cells C27:C28, then Solver will report

that individual 1 should keep a 40% share of the profits (as shown in cell C27) and individual 2

should take the remaining 60% (D27), as Fact 1 predicts.  Solver will leave 1's fixed payment in

C28 at any arbitrary value, because changing it would not affect the sum of the certainty

equivalents in G31.  (In making Figure 8.1, I arbitrarily entered 17000 into C28 before running

Solver, and Solver left it unchanged.)

Cell F33 in Figure 8.1 calculates the certainty equivalent of the total profits from this

project, based on the simulation data in B34:B534, by the formula

=CE(B34:B534,F30)

where F30 contains the sum of the partners' risk tolerances R = $50,000.  The value in cell F33

($29,125) is exactly the same as the maximized sum of the partners's individual certainty
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equivalents in cell F31, as Fact 2 predicts.  Cells F33 and F31, being estimates from simulation

data that only approximates the given Normal distribution, are slightly different from the values

in cells F11 and C11, which use the exact formula for certainty equivalents of Normal gambles. 

But these simulation estimates also confirm Facts 1 and 2, because these facts do not depend on

Normality.

Fact 2 can give us some sense of why businesses are typically more risk tolerant than

individuals, because the risks of a business may be shared among many investors.  When shares

of a company are owned by 50 people whose average risk tolerance is $20,000, then Fact 2

asserts that the company itself should evaluate risks with a risk tolerance of $1,000,000.  Fact 1

tells us that, among these 50 people, the ones with greater risk tolerance should have a greater

share of the company.

The above discussion assumes that partners should want to maximize the sum of their

certainty equivalents.  This is a good assumption, but it needs some defense.  After all, any single

partner may care only about his own certainty equivalent of what he gets from the partnership. 

Why should anyone care about maximizing this sum of all certainty equivalents?  The answer is

given by the following fact.

Fact 3.   Consider a risk-sharing partnership where all partners have constant risk

tolerance.  If the partners were planning to share risks according to a sharing rule that does not

maximize the sum of the partners' certainty equivalents, then any partner j could propose another

sharing rule rule that would increase j's own certainty equivalent and would not decrease the

certainty equivalents of any other partners. 

To understand Fact 3, notice first that adding any fixed payment from one partner to

another partner would not change the sum of the partners' certainty equivalents.  A net payment

of x dollars from partner 2 to partner 1 (when there is no uncertainty about this amount x) would

decrease 2's certainty equivalent by x and would increase 1's certainty equivalent by x, because

each partner is assumed to have constant risk tolerance.  Thus the net payment of x dollars would

leave the sum of their certainty equivalents unchanged. 

Now, suppose that the partners were originally planning to use some sharing rule does not
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maximize the sum of the partners' certainty equivalents.  Then consider any other sharing rule

that is optimal, in the sense of maximizing the sum of the partners' certainty equivalents. 

Changing to this "optimal" sharing rule would increase some partners' certainty equivalents, but

it might also decrease other partners' certainty equivalents.  But let us now modify this optimal

rule by adding some net payments that will cancel out these changes for all partners except one,

say partner j.  Any partner whose certainty equivalent would decrease should receive an

additional payment equal to the amount of his decrease, to be paid by this partner j.  Any other

partner whose certainty equivalent would increase should make an additional payment equal to

the amount of his increase, paying it to partner j.  So when these payments have been added into

the optimal sharing rule, everybody other than partner j is getting exactly the same overall

certainty equivalent as under the original plan.  But adding these fixed payments does not change

the sum of the partners' certainty equivalents.  So our modified optimal plan (with the additional

payments) still maximizes the sum of the partners' certainty equivalents, and so it must generate a

strictly greater sum of certainty equivalents than the original plan.  Thus, with everybody else's

certainty equivalent unchanged, partner j must be enjoying a strictly greater certainty equivalent

under this new plan.  This proves Fact 3.

Fact 3 tells us that it is always optimal for partners to maximize the sum of their certainty

equivalents.  To apply Fact 3, consider our sharing example from the perspective of individual 1,

in a situation where the option to buy and develop the land was originally his alone, and so he has

the option to undertake the project without any participation from individual 2.  Individual 2, of

course, has the alternative of not participating in the project, in which case she would get $0. 

Any sharing rule that gives 2 a certainty equivalent more than $0 would be better for her than

nonparticipation, and so could be accepted by her.  The best possible sharing rule for individual 1

would be one that maximizes 1's certainty equivalent subject to the constraint that 2's certainty

equivalent should not be less than $0.  Fact 3 tells us that this can be achieved by sharing in the

optimal proportions, to maximize the sum of the individuals' certainty equivalents, with an

additional payment from individual 2 to individual 1 that reduces 2's certainty equivalent to $0

(or to some value slightly greater than $0).  By Fact 1, the optimal share for individual 2 is 60%

of this project, because 30000'(20000+30000) = 0.6, and we have seen that a 60% share with no
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additional payment would have certainty equivalent $17,250 to individual 2 (see cell F8 in Figure

8.1).  So the best possible sharing rule for individual 1 would be to sell individual 2 a 60% share

of this project for an initial payment of $17,250 (or slightly less than this), which just exhausts

2's perceived gains from participating in the partnership.  After selling 60% of the investment to

individual 2 for this maximal price, individual 1 would have  $17,250 in cash plus a risky

investment that is worth $11,500 to him (his certainty equivalent for a 40% share).  Thus, selling

60% to individual 2 for $17,250 would make individual 1's overall certainty equivalent from the

project  17250 + 11500 = $28,750.  This is the most he could possibly hope for in any sharing

rule, because it allocates to him all the maximal sum of certainty equivalents that the two

partners can get from this project.

Of course, individual 2 would prefer to pay less than $17,250 for a 60% share, and she

might try to negotiate for a lower price in this situation.  Recall that $19,375 was 1's certainty

equivalent for undertaking the project himself, and so 1 would not accept any certainty equivalent

less than $19,375 when his alternative is owning 100% of the project himself.  Because 1's

certainty equivalent for 40% of the project is $11,500, he needs an additional payment of

19375!11500 = $7875 to raise his certainty equivalent to this level.  So the best possible sharing

rule for individual 2 here would be for her to buy 60% of the project (her optimal share) for just a

bit above $7875, which is the lowest price that individual 1 would be willing to accept. 

But regardless of who initially owns the project, the partners can can agree that they

should maximize the sum of their certainty equivalents by sharing the risky returns in proportion

to their risk tolerances.  How this maximal value is divided among them is a bargaining problem. 

If one of them initially owns more than his or her optimal share of the project, there will exist a

range of transfer prices at which the individuals could both gain by changing to their optimal

shares.  In this situation, the price that individual 2 may actually pay to buy 60% of the project

must be a question of bargaining between the two individuals, and without a theory of bargaining

we can only say here that it should be somewhere between $7875 and $17,250.

Facts 1, 2, and 3 here require the assumption that all partners have constant risk tolerance,

but they do not require any assumption about the probability distribution from which the

partnership's profits will be drawn.   Normality here was only used to compute exact certainty
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A B C D E F G H I J
Sharing profits drawn from a Gen-Lognormal distribution

with quartiles: 50 80 120 ($1000s)
Total $profits (sim'd)

53
 Partners 

1 2 3 Sums
Sharing rates 0.3 0.3 0.4 1 Sum(Rates)
Fixed payment 0 0 0 0 Sum(Payments)

RiskTols 30 30 40 100 Sum(RiskTols)
CE 24.959 24.959 33.279 83.198 Sum(CEs)

Total$
SimTabl 53.341   Partners' incomes 83.198 CE(total$s,sumRTs)

0 66.709 20.013 20.013 26.683
0.002 70.729 21.219 21.219 28.291
0.004 19.302 5.7906 5.7906 7.7208 FORMULAS
0.006 97.585 29.276 29.276 39.034 B4.  =GENLINV(RAND(),D2,E2,F2)
0.008 68.36 20.508 20.508 27.344 B13.  =B4
0.01 141.21 42.363 42.363 56.484 C7.  =1-SUM(D7:E7)
0.012 86.192 25.858 25.858 34.477 C8.  =-SUM(D8:E8)
0.014 84.812 25.444 25.444 33.925 C14.  =C$8+C$7*$B14
0.016 105.66 31.697 31.697 42.262  C14 copied to C14:E514.
0.018 137.95 41.385 41.385 55.18 C11.  =CE(C14:C514,C10)
0.02 136.17 40.851 40.851 54.468  C11 copied to C11:E11.
0.022 87.173 26.152 26.152 34.869 G7.  =SUM(C7:E7)
0.024 52.619 15.786 15.786 21.048  G7 copied to G8,G10:G11.
0.026 155.76 46.729 46.729 62.305 G13.  =CE(B14:B514,G10)
0.028 55.537 16.661 16.661 22.215 SOLVER: maximize G11
0.03 193.94 58.183 58.183 77.577  by changing D7:E8

12

Figure 8.2.  Optimal risk sharing among three partners with constant risk tolerance.

equivalents in the top 11 rows of Figure 8.1. 

Figure 8.2 shows an example of optimal linear sharing among three partners where the

partnership's profits are generated by a Generalized-Lognormal distribution that is not Normal. 

A linear sharing rule for partners 2 and 3 is parameterized in cells D7:E8 here, with 1's share

being determined in cells C7 and C8 so as to keep the sum of shares equal to 100% and the sum

of the fixed payments equal to $0.  When Solver is asked to adjust these sharing rules so as to

maximize the sum of the partners' certainty equivalents in cell G11, then Solvers' optimal
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solution should give the partners fractional shares in C7:E7 that are proportional to their

respective risk tolerances in cells C10:E10, as predicted by Fact 1.  Then as predicted by Fact 2,

the maximized sum of the three partners' certainty equivalents in cell G11 is equal to the

partnerships' certainty equivalent for the total risky profit which is computed in cell G13, using a

risk tolerance for the partnership that is the sum of the partners' individual risk tolerances.

8.2  Optimality of linear rules in the larger class of nonlinear sharing rules

In Figures 8.1 and 8.2, when we asked Solver to find an optimal sharing rule, we

implicitly assumed that the two partners would share the profits linearly.  Here a partner's share is

linear if each extra dollar of profit would increase the partner's income by the same amount.  But

this linearity assumption is not necessary.  Even when we allow that a partner's income may be a

nonlinear function of the total profit earned, the linear sharing rule that we described in Fact 1 is

still optimal for maximizing the sum of the certainty equivalents among partners who all have

constant risk tolerance.  (For an illustration of a nonlinear sharing rule, see the inset graph in

Figure 8.7 below.)

I want to show you that nonlinear sharing rules cannot do better for the partners in this

example, but it is more complicated to evaluate nonlinear sharing rules.  Even with profits

coming from a Normal random variable, the individuals' incomes will not be Normal with

nonlinear sharing rules, and so we cannot use the simple quadratic formula to compute exact

certainty equivalents.  So we must use a simulation model.  Furthermore, seaching among

nonlinear sharing rules is much harder, because there are so many nonlinear rules.  But Figure 8.3

shows a spreadsheet in which we can evaluate a large set of nonlinear sharing rules and show the

optimality of the (40%, 60%) linear sharing rule in this set.

Data from 501 simulations of the partnership's total profit are contained in cells

B22:B522 of Figure 8.3.  (Note: Rows 25 to 519 have been hidden in Figure 8.3, using the menu

command Data:Group.)  The smallest simulated profit (!40750) is shown in cell B5, and a value

slightly above the largest simulated profit (104222) is shown in cell B15.  Cells B6:B14 have

been filled with an increasing sequence of values that were chosen (somewhat arbitrarily)

between these smallest and largest profits (0, 10000,... , 80000). 
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A B C D E F G H I
Sharing profits drawn from a Normal distribution

with Mean 35000 and Stdev 25000

Total PayTo1 Slope1 Intercept1
-40750 700 0.4 17000

0 17000 0.4 17000
10000 21000 0.4 17000
20000 25000 0.4 17000
30000 29000 0.4 17000
40000 33000 0.4 17000
50000 37000 0.4 17000
60000 41000 0.4 17000
70000 45000 0.4 17000
80000 49000 0.4 17000

104222 58689
SOLVER: Max F19 by changing C5:C15

Partner1 Partner2
RiskTols 20000 30000 50000 Sum(RiskTols)

CE 28746 618.46 29364 Sum(CEs)
(sim'd) Total$
SimTable 24223 PayTo1 PayTo2 CE(total$s,sumRTs)

0 68354 44342 24012 29364
0.002 18508 24403 -5895
0.004 11732 21693 -9961
0.996 34555 30822 3733
0.998 24301 26720 -2420

1 46912 35765 11147

FORMULAS
B21.  =NORMINV(RAND(),C2,F2)
B5.  =MIN(B22:B522)
B15.  =MAX(B22:B522)+1
D5.  =(C6-C5)/(B6-B5) D5 copied to D5:D14
E5.  =C5-D5*B5 E5 copied to E5:E14
C22.  =VLOOKUP(B22,$B$5:$E$14,4)+B22*VLOOKUP(B22,$B$5:$E$14,3)
D22.  =B22-C22
C22:D22 copied to C22:C522

C19.  =CE(C22:C522,C18) D19.  =CE(D22:D522,D18)
F18.  =SUM(C18:D18) F19.  =SUM(C19:D19)
F22.  =CE(B22:B522,F18)
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Figure 8.3.  A spreadsheet to evaluate nonlinear sharing rules.
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We will consider continuous sharing rules such that 1's income depends linearly on profit

inside the interval between each pair of adjacent values in cells B5:B15 of Figure 8.3, but a

different linear function may be used in each of these intervals.  That is, 1's income could be

specified by one linear formula for profits in the interval from !40750 to 0, by another linear

formula for profits in the interval from 0 to 10000, and so on.  For continuity, we require that the

linear formulas on the intervals below and above 0 must specify the same income when profit is

$0, with a similar requirement at each of the other interval-separators in B6:B14.  Such rules are

called piecewise linear.  By using more small intervals, we could closely approximate any

nonlinear sharing rule by such piecewise linear rules.  (For a picture of a piecewise linear

function for a similar example, see the inset graph in Figure 8.7.)

Such a piecewise-linear sharing rule can be specified in Figure 8.3 by listing the income

that individual 1 would get for each of the profit value listed in cells B5:B15.  In this spreadsheet,

these incomes for 1 are listed in cells C5:C15.  That is, each cell in C5:C15 specifies the income

that individual 1 would get, under this profit-sharing rule, if the profit were equal to the

corresponding value in B5:B15.  For profits in the interval between any adjacent pair of values in

B5:B15, we will determine 1's income is by linear interpolation, that is, by applying the linear

function that matches the specified income for 1 at each of the two endpoints of the interval.  So

for any profit x in the interval between B5 and B6, 1's income is supposed to be a linear function

of x that has the form A*x+B, where the slope A is computed in cell D5 by the formula

=(C6-C5)/(B6-B5)

and the intercept B is computed in cell E5 by the formula

=C5-D5*B5

Cells D5:E5 have been copied down the range D5:E14, to show the corresponding slope and

intercepts for the linear sharing rule that is applied in the interval between each value in B5:B14

and the next value below it.

Now to apply this piecewise-linear sharing rule to the simulated profits in cell B22 of

Figure 8.3, cell C22 contains the formula

  =VLOOKUP(B22,$B$5:$E$14,4)+B22*VLOOKUP(B22,$B$5:$E$14,3)

The first VLOOKUP in this formula finds the lowest row in the range B5:E15 where the B-cell's
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value is not greater than B22, and then returns the intercept listed in the E-column (the 4th

column of B5:E14) in that row.  The second VLOOKUP in this formula returns the

corresponding slope in the 3rd column of the B5:E14 table, which is then multiplied by B22 and

added to the intercept. Cell D22 computes the corresponding income for individual 2 from the

B22 profit value, by the formula

=B22-C22

Then copying C22:D22 down to C22:D522, we get the incomes for the two partners when the

piecewise-linear sharing rule from B5:E14 is applied to the simulated profits in B22:B522.  The

corresponding certainty equivalents for individuals 1 and 2 are computed in cells C19 and D19,

using the CE function, and the sum of these certainty equivalents is computed in cell F19.

Now we can ask Solver to maximize cell F19 by changing cells C5:C15 in Figure 8.3,

which specify 1's income values in this piecewise-linear function.  Having so many cells to adjust

makes this a hard problem for Solver, and it may need to work through forty trial solutions which

could take an hour of computing time on an older computer from the 1990s, but which can be

done in less than a minute on newer machines in 2002.  The result that Solver returns, as shown

in Figure 8.3, has the same linear sharing rule applied in all intervals, and the slope of this rule in

cells D5:D14 always gives individual 1 his optimal share of risky profits as specified by Fact 1. 

(If you happen to specify values in C5:C15 that depend on the B5:B15 profits according to a

linear formula that has the optimal slope 0.4, then Solver will quickly report that these initial

values constitute an optimal solution and will leave them unchanged.  The intercept that Solver

returns in cells E5:E15 may be any number, and will depend on the initial values that you

specified in cells C5:C15 before applying Solver.)

Cell F22 in Figure 8.3 applies the CE function to estimate the value of the total profits of

the project (as sampled in B22:B522) to the partnership, when the partnership is treated as a

corporate person with a contant risk tolerance equal to the sum of the partners' individual risk

tolerances ($50,000, computed in cell F18).  Fact 2 tells us that the optimal sum of certainty

equivalents in cell F19, after it has been maximized by Solver, must be equal to this value in cell

F22, and this equality can be seen in Figure 8.3.

Finally, let us consider in Figure 8.4 a discrete example where two partners with constant
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risk tolerances of $20,000 and $30,000 have to share a gamble that will pay an amount of money

drawn from the following discrete distribution:

Partnership's total profit Probability

            $0    0.2

   $25,000    0.3

   $50,000    0.4

   $75,000    0.1

These profit values and probabilities are shown in cells A6:A9 and B6:B9 of Figure 8.4.  Cells

C6:C9 are used to specify how much income individual 1 should get from the partnership for

each possible amount of profit.  The corresponding net incomes for individual 2 are computed in

cells D6:D9, by entering the formula =A6-C6 in cell D6, and then copying D6 to D6:D9.  The

resulting certainty equivalent for individual 1 is computed in cell C12 by the formula

=CEPR(C6:C9,$B$6:$B$9,C2)

where cell C2 contains 1's risk tolerance $20,000.  (Recall from Section 3.1 in Chapter 3 that

CEPR(values, probabilities, risktolerance) returns the certainty equivalent of a discrete gamble

where the given values have the given probabilities, for an individual with the given constant risk

tolerance.)  Copying C12 to D12 yields individual 2's certainty equivalent of her income from

this discrete gamble.  The CEPR function is also applied in cell A14 to compute the certainty-

equivalent value of the whole gamble to an individual whose risk tolerance is the sum of these

partners' risk tolerances.

In Figure 8.4, Solver has been asked to maximize 1's certainty equivalent in cell C12 by

changing the sharing-rule parameters in cells C6:C9, subject to the constraint that 2's certainty

equivalent in cell D12 must satisfy D12>=0.  So cells C6:D9 here show the best possible sharing

rule for individual 1, subject to the constraint that individual 2 should be willing to stay in the

partnership, when 2's alternative is to leave the partnership and get nothing ($0) from this

gamble.  In this optimal sharing rule, individual 1 gets a fixed payment of $17,857 from

individual 2 (1's income in C6 when the gamble pays $0), and then individual 1 gets $0.40 of

each dollar that is earned from the gamble (computed in cells E6:E8).  Individual 2 gets the

remaining $0.60 of each dollar earned from the gamble, and this 60% share is just worth the

fixed payment of $17,857 to her.  Thus, the partners' optimal shares are linear in profits and are



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

A B C D E F G
Partner 1 Partner 2

Risk Tolerance 20000 30000

POSSIBLE OUTCOMES
Total $ Proby PayTo1 PayTo2 Rate1

0 0.2 17857 -17857 0.4
25000 0.3 27858 -2858 0.4
50000 0.4 37857 12143 0.4
75000 0.1 47859 27141

Sum(RTs) CE(1) CE(2)
50000 29763 0

CE(total$,sumRTs) Sum of CEs
29763 29763

SOLVER 1 (no moral hazard):
 Max C12 by changing C6:C9 subject to D12>=0.

FORMULAS
D6.  =A6-C6 D6 copied to D6:D9
E6.  =(C7-C6)/(A7-A6) E6 copied to E6:E8
C12.  =CEPR(C6:C9,$B$6:$B$9,C2)
D12.  =CEPR(D6:D9,$B$6:$B$9,D2)
D14.  =SUM(C12:D12)
A12.  =SUM(C2:D2) A14.  =CEPR(A6:A9,B6:B9,A12)
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Figure 8.4.  Optimal risk sharing in a discrete example.

proportional to their risk tolerances, as predicted by Fact 1.  Also, as predicted by Fact 2, the

optimal sum of the partners' certainty equivalents (in cell D14) is equal to the certainty equivalent

of the whole gamble to an individual with the total risk tolerance of the partners (in cell A14).

8.3.  Risk sharing subject to moral-hazard incentive constraints

In real life, people do not always share every risk in proportion to their individual risk

tolerances.  One basic reason is that people who are well insured against risks sometimes do not

work hard enough to avoid them.  This problem is called moral hazard in the insurance industry. 

To avoid such moral hazard problems, workers and managers in an enterprise are often forced to
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bear more of the enterprise's risks than they would bear under an ideal risk-sharing system.  

To introduce the ideas of moral hazard, let us reconsider in Figure 8.5 an extension of the

discrete example from Figure 8.4 in the previous section.  In this example, individuals 1 and 2,

who have constant risk tolerances $20,000 and $30,000 respectively, are sharing a gamble that

will pay a total dollar amount to be drawn from the probability distribution shown in cells A5:B9. 

Cells C5:D9 in Figure 8.4 show the sharing rule that maximizes 1's certainty equivalent, subject

to the constraint that 2's certainty equivalent should be at least $0.  This sharing rule is equivalent

to 1 selling a 60% share of the gamble to 2 for $17,857.

But suppose now that the distribution of returns listed in cells A5:B9 can be achieved

only if individual 1 attends to some managerial duties which individual 2 cannot directly observe. 

Suppose that, if individual 1 neglected these duties, then there would be no chance of the

partnership earning $75,000, and the profit would instead be either $0 or $25,000 or $50,000,

each with probability 1/3, as shown in cells G5:H9 of Figure 8.5.  So 1's neglect of his duties

would reduce the partnership's expected profit from $35,000 to $25,000 (computable here by

SUMPRODUCT(A6:A9,B6:B9) and SUMPRODUCT(G6:G9,H6:H9) respectively).  But

suppose that this neglect of his duties would enable individual 1 to take up another private

project that would be worth $6000 to him.

Under the sharing rule that was shown in Figure 8.4, if individual 1 neglected his duties,

then his income would be either $17,857 or $27,857 or $37,857, each with probability 1/3, and

this gamble would have a certainty equivalent of $26,224 to him (given his constant risk

tolerance of $20,000).  So when the additional $6000 that he could earn privately is taken into

account, neglecting his duties to the partnership would enable individual 1 to get an overall

certainty-equivalent value of $32,224, which is better than the certainty-equivalent value of

$29,763 that he would get by properly fulfilling his duties to the partnership (shown in cell C12

of Figure 8.4).  Thus, under the sharing rule that is shown in Figure 8.4, individual 1 would

prefer to neglect his duties.  But if 1 neglects his duties then individual 2 should not be willing to

pay $17,857 for a 60% share of the profits!



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I
Partner 1 Partner 2 MORAL-HAZARD INCENTIVES

Risk Tolerance 20000 30000 1's private$ if negligent
6000

POSSIBLE OUTCOMES Probys if 1 is negligent
Total $ Proby PayTo1 PayTo2 Rate1 Total $ Proby

0 0.2 6823 -6823 0.95 0 0.33333
25000 0.3 30449 -5449 0.54 25000 0.33333
50000 0.4 43956 6044 0.67 50000 0.33333
75000 0.1 60739 14261 75000 0

Sum(RTs) CE(1) CE(2) If 1 neglects his duties
50000 27184 0 his share has CE

CE(total$,sumRTs) Sum of CEs 21184
29763 27184 CE(1) including private $

27184
SOLVER 1 (no moral hazard):
 Max C12 by changing C6:C9 subject to D12>=0.
SOLVER 2 (moral hazard):
 Max C12 by changing C6:C9 subject to D12>=0, C12>=G15.
FORMULAS
D6.  =A6-C6 D6 copied to D6:D9
E6.  =(C7-C6)/(A7-A6) E6 copied to E6:E8
C12.  =CEPR(C6:C9,$B$6:$B$9,C2)
D12.  =CEPR(D6:D9,$B$6:$B$9,D2)
D14.  =SUM(C12:D12)
A12.  =SUM(C2:D2) A14.  =CEPR(A6:A9,B6:B9,A12)
G13.  =CEPR(C6:C9,H6:H9,C2)
G15.  =G13+G3
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Figure 8.5.  Optimal risk sharing with moral hazard, in a discrete example.

To find a sharing rule that avoids this difficulty, we must add a constraint that individual

1 should not prefer to neglect his duties.  Such a constraint may be called a moral-hazard

incentive constraint, because it says that the risk sharing should not insure 1 so well that he does

not want to exert appropriate efforts to avoid bad outcomes.  This moral-hazard incentive

constraint can be expressed in Figure 8.5 by the inequality C12>=G15, where C12 is 1's certainty

equivalent for his share of the partnership when he fulfills his duties (applying the probabilities in

B6:B9), and G15 is 1's certainty equivalent for his private income (in G3) plus his share of the

partnership when he neglects his duties (applying the probabilities in H6:H9).  
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Figure 8.5 shows the results when Solver is asked to maximize 1's certainty equivalent in

cell C12 by changing the sharing-rule parameters in cells C6:C9, subject to the constraints

D12>=0 and C12>=G15.  The first constraints here says that individual 2 should not prefer to

quit the partnership, and the second constraint says that individual 1 should not prefer to neglect

his duties.  Under the optimal sharing rule in cells C6:D9 of Figure 8.5, if profit is $0 then

individual 1 gets a payment of $6823 from individual 2, as shown in cell C6 of Figure 8.5.  This

payment is smaller than the corresponding payment in cell C6 of  Figure 8.4, but now individual

1 keeps more than half of the partnership's risky profits.  As shown in cells E6:E8 of Figure 8.5,

individual 1 gets $0.95 from each dollar of the partnership's profit between $0 and $25,000,

$0.54 from each dollar of profit between $25,000 and $50,000, and $0.67 from each dollar of

profit between $50,000 and $75,000.  So individual 1 here holds a larger share of the risks than

the ideal share (40%) that Fact 1 would predict, because the Facts in the preceding section

assumed that there were no moral-hazard incentive constraints.

Now let us consider a moral-hazard incentive problem in a more realistic example where

the profit that an investment may earn is a continuous random variable that has infinitely many

possible values.  Suppose that a large group of investors are hiring an agent to manage some

investment for them.  The investors will not be able to directly monitor the manager to see

whether he is working or shirking, but they will observe the profit that the investment earns

under his management.  If the manager works diligently, then this profit will be a Generalized

Lognormal random variable with quartile points $230,000, $280,000, and $340,000.  But if the

manager shirks his responsibilities, then the profit will instead be a Generalized Lognormal

random variable with quartile points $190,000, $230,000, and $280,000.  Shirking his

responsibilities would allow the manager to attend to some personal affairs which would generate

private rewards worth $10,000 to him.  The manager has constant risk tolerance $20,000.  The

investors who are hiring this manager have total risk tolerance $480,000.  (You may think of

these investors as group of 24 partners, each of whom also has constant risk tolerance $20,000.) 

The manager's alternative employment opportunities would pay him $50,000 during the period

when he is being asked to manage this investment, so his certainty equivalent when he agrees to

manage this investment cannot be lower than $50,000.  Furthermore, no matter how badly the
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investment turns out, the investors cannot subject the manager to a penalty worse than a $0 wage.

(This last minimum-wage condition may deserve some explanation.  It says that the

investors cannot ask their agent to put money in an escrow account that would he would forfeit in

the event of a particularly bad investment performance.  Such punitive conditions may

unacceptable because the agent might simply not have the money to put in such an account.  Or

they may be unacceptable because, if the investors requested such punitive conditions in bad

events, then the agent would become suspicious that the investors might actually know

something bad about this investment project which would increase the probability of the events

where they would profit at his expense.)

Among the feasible compensation plans that would give the manager an incentive to work

diligently on managing this investment, let us try to find the plan that would yield the highest

sum of certainty equivalents for these investors.  This is a difficult optimization problem.  So we

begin by considering by considering a simpler class of compensation plans in Figure 8.6, and

then we can go on to consider a more general class of compensation plans later in Figure 8.7.

The given parameters of the optimal compensation problem are listed in the range

A1:C15 of Figure 8.6.  The profit quartiles if the manager works diligently are in B3:B5, the

profit quartiles if the manager shirks are in C3:C5, the risk tolerances of the manager and the

investors are in B9 and C9, the manager's certainty equivalent under his best alternative

employment option is in B11, the manager's private gain from shirking is in B13, and the

required minimum wage is in B15.  (All monetary values in Figure 8.6 are in $1000s.) 

Cells B20:B520 contain 501 simulated values of the profit returned by this investment

when the manager works diligently, and cells C20:C520 contain the corresponding simulated

profit values when the manager shirks.  This simulation data was generated by recalculations of

the random variables in cells B19 and C19, where we have assumed that the working and

shirking profits are maximally correlated by having the same RAND (in cell A18) drive both of

these random variables.  (Because working and shirking are alternatives that cannot both happen

at once, it would not have been wrong to simulate the working and shirking profits by

independent random variables.  But using correlated random variables here improves the

expected accuracy of our estimates from any limited number of simulations, because it reduces
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the probability that the no-shirking constraint may be distorted by a false contrast between

unusually high simulated profits from one alternative and unusually low simulated profits from

the other alternative.)

In Figure 8.6, we consider compensation plans where the manager is paid a linear

function of the total profit that is returned by the investment, except that the manager can never

be paid less than the required minimum base.  The slope and intercept of this linear function are

entered into cells E12 and E13, and the required minimum base ($0) has been specified in cell

B15.  (We will ask Solver to choose E12 and E13 optimally, so we may start by putting any

arbitrary values in E12 and E13.)  Then for our simulated profit data, the manager's

corresponding wages when he works diligently can be computed in cells E20:E520 by entering

the formula

=MAX($E$13+$E$12*B20, $B$15)

into cell E20, and copying E20 to E20:E520.  The manager's simulated wages from shirking are

similarly calculated in by entering the formula

=MAX($E$13+$E$12*C20, $B$15)

into cell F20, and copying F20 to F20:F520.  The remaining profits that will be paid to the

investors, in the case where the manager works diligently, are computed by entering the formula

=B20-E20

into cell G20, and copying G20 to G20:G520.  Then the manager's certainty equivalent from

working can be estimated in cell E17 by the formula

=CE(E20:E520,$B$15)

Then the manager's certainty equivalent from shirking (including the private rewards worth listed

in cell B13), can be estimated in cell F17 by the formula

=CE(F20:F520,$B$15)+B13

By Fact 2 (which can be applied to the investors because they have no moral-hazard incentive

constraints among themselves), the sum of the investors' certainty equivalents can be computed

in cell G17 by the formula

=CE(G20:G520,C9)
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5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

A B C D E F G H I J K
Profit quartiles

Work Shirk
Q1 230 190
Q2 280 230
Q3 340 280

(in $1000s)
Risk tolerances   

Manager Investors SOLVER: Max G17 by changing E12:E13
20 480 subject to E17>=B11, E17>=F17.

Mgr's alternative CE
50 Mgr's compensation plan

Mgr's extra $ if shirks 0.2658 Slope
10 -16.71 Intercept

Mgr's required minimum (Minimum is paid when profit < 62.843 )
0  Mgr's CE Investors' CE

Work Shirk  with work
(rand)  Sim'd profit 50 50 226.05
0.5636 Work Shirk Mgr's income Investors' income
SimTabl 293.28 240.89 Work Shirk  with work

0 423.17 352.41 95.79 76.981 327.38
0.002 324.7 267.06 69.615 54.291 255.09
0.004 312.85 257.13 66.464 51.649 246.39
0.996 282.43 231.99 58.377 44.966 224.06
0.998 227.04 187.68 43.65 33.188 183.39

1 363.59 300.19 79.951 63.098 283.64

FORMULAS
J14.  =(B15-E13)/E12
A18.  =RAND()
B19.  =GENLINV($A$18,B3,B4,B5)
C19.  =GENLINV($A$18,C3,C4,C5)
E20.  =MAX($E$13+$E$12*B20,$B$15)
F20.  =MAX($E$13+$E$12*C20,$B$15)
G20.  =B20-E20
 E20:G20 copied to E20:G520
E17.  =CE(E20:E520,$B$9)
F17.  =CE(F20:F520,$B$9)+B13
G17.  =CE(G20:G520,C9)
SOLVER: Max G17 by changing E12:E13
 subject to E17>=B11, E17>=F17.
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Figure 8.6.  Optimal linear incentive plan for an agent with moral hazard.

In Figure 8.6, the investors' optimal linear compensation plan has been found by asking

Solver to maximize the investors' total certainty equivalent in cell G17 by changing the

compensation parameters in cells E12:E13, subject to the constraints E17>=B11 and E17>=F17. 
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The first constraint here says that the manager should not prefer his alternative employment

opportunities to working for these investors.  The second constraint says that the manager should

not prefer shirking to working.  The results in E12:E13 tell us that the manager should be paid

26.58% of the profits, minus a constant deduction of $16,710, except that he would get the $0

minimum wage if this linear formula yielded an amount less than $0.  Cell J14 computes that this

minimum wage would apply if profit were less than $62,843, and so in effect the manager is

getting a 26.58% share of all profits above $62,843.  When the manager works under this optimal

linear compensation plan, the investors' total certainty equivalent is $226,050.

Fact 1 does not apply here because of the moral hazard problem.  To see why, notice first

that Fact 1 would suggest that the manager's share of profits be 20000'(20000+480000) = 0.04,

because the manager's risk tolerance is $20,000 and the investors' total risk tolerance is $480,000. 

With this simulation data, the manager's certainty equivalent from working here could be made

equal to the competitive $50,000 certainty equivalent by offering the manager 4% of the profits

plus a fixed payment of $38,662, and the resulting total certainty equivalent for the investors

would then be increased to $233,450.  That is, if we entered 0.04 and 38.662 into cells E12 and

E13 of Figure 8.6, then we would get the values 50 in cell E17 and 233.45 in cell G17.  But we

would also get the value 58.101 in cell F17, which would mean that the manager could increase

his own certainty equivalent from $50,000 to $58,101 by shirking.  If the manager shirked, then

the investors would get only the shirking profits (simulated in C20:C520) minus the

corresponding payments to the manager (in F20:F520), which would actually yield a certaintly

equivalent of less than $190,000 for the investors.  Thus, because of the moral-hazard problem,

Solver has recommended instead that the manager should be paid 26.58% of all profits above

$62,843, to make sure that he has an incentive to work diligently.

This optimal linear incentive plan is relatively insensitive to different assumptions about

the investors' total risk tolerance.  If the investors were risk neutral, then the investors' total

certainty-equivalent formula in cell G17 in Figure 8.6 would be changed to 

=AVERAGE(G20:G520)

If Solver were asked change E12:E13 so as to maximize this new formula in cell G17, with the

same constraints as before, the optimal linear incentive plan would actually remain the same. 
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Note on Solver:  Numerical difficulties may cause Solver to stall at a false solution when

different changing cells take values that have very different magnitudes.  Such difficulties could

occur in an example like Figure 8.6 when the optimal intercept in cell E13 is many times larger

than the slope in cell E12.  If you find that Solver seems unable to change such cells in a sensible

way, then you should try Solver's automatic-scaling option, which is accessed by clicking the

Options button in the Solver Parameters dialogue box, and then selecting the "Use Automatic

Scaling" option.

8.4  Piecewise-linear sharing rules with moral hazard

Figure 8.7 reconsiders the same problem as Figure 8.6, but it allows nonlinear

compensation plans that are piecewise linear on the intervals between adjacent profits in cells

E3:E13.  The basic parameters of the problem, as listed in the range A1:C15, are the same in

Figure 8.7 as in Figure 8.6.  But in the range E1:H13 in Figure 8.7, we can construct a nonlinear

sharing rule similarly to Figure 8.3. 

Cell E3 in Figure 8.7 contains the lowest profit level that is observed under working or

shirking in our simulation data in B20:C520, and cell E13 contains a value above the highest

profit level in this simulation data.  Cells E4:E12 contain a sequence of selected profit values that

break the interval between E3 and E13 into ten similar-sized subintervals.  A compensation plan

can be specified in cells F3:F13 by listing here the manager's wage for each of the corresponding

profit values in E3:E13.  (We will ask Solver to choose F3:F13 optimally, so we could start by

entering any arbitrary initial values in F3:F13.)  For profits between any adjacent pair in E3:E13,

the manager's wage is computed by a linear interpolation between the corresponding pair of

wages in F3:F13.  So for profits between E3 and E4, the manager's wage is to be determined by a

linear function with the slope and intercept computed in cells G3 and H3 respectively by the

formulas

=(F4-F3)/(E4-E3)  and  =F3-G3*E3

Then copying G3 and H3 to G3:G12 and H3:H12 yields the slopes and intercepts that are applied

in each of the ten subintervals.  Thus, cells E3:H12 form a table which lists the low ends of our

ten subintervals in the first column (E), and which lists the slope and intercepts of the piecewise-
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linear wage function for each subinterval in the third and fourth columns (G and H).

So the manager's wage for the simulated profit in cell B20 can be computed in cell E20 of

Figure 8.7 by the formula

    =VLOOKUP(B20,$E$3:$H$12,4)+B20*VLOOKUP(B20,$E$3:$H$12,3)

Copying cell E20 to E20:F520, we get the manager's simulated wages from working in cells

E20:E250, and we get his simulated wages from shirking in cells F20:F520.  Entering the

formula

=B20-E20

in cell G20, and copying G20 to G20:G520, we get in cells G20:G520 the profits that are paid to

the investors when the manager works diligently.  Then the certainty equivalents that the

manager would get from working and from shirking are computed in cells E17 and F17

respectively by the formulas

=CE(E20:E520,$B$9)  and  =CE(F20:F520,$B$9)+$B$13

The investors' total certainty equivalent is computed in cell G17 by the formula

=CE(G20:G520,C9)

In Figure 8.7, the investors' optimal piecewise-linear compensation plan has been found

by asking Solver to maximize the investors' total certainty equivalent in cell G17 by changing the

compensation parameters in cells F3:F13, subject to the constraints F3>=B15, G3:G12>=0,

G3:G12<=1, E17>=F17, and E17>=B11.  The constraint G3:G12>=0 asserts that, in each

subinterval, the slope of the wage function must not be negative.  That is, the manager's wage

must never be decreased by an increase in the investment's total profits, because otherwise the

manager could have an incentive to incur unnecessary costs simply to reduce profits where this

reduction would increase his wage.  The constraint G3:G12<=1 says that the manager must never

gain more than $1 for an additional $1 of profit, because otherwise the manager could have an

incentive to artificially inflate profits by covertly adding some of his own money.  The constraint

F3>=B15 guarantees that the manager's wage is never below the required minimum wage of $0

in cell B15, because F3 is the manager's wage at the lowest profit, and the nonnegative slopes in

G3:G12 imply that the wages cannot be lower at higher profits.  The constraint E17>=B11 says

that the manager must not prefer his alternative employment opportunities (which pay the
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amount $50,000 shown in B11) over working to manage this investment.  The constraint

E17>=F17 says that the manager must not prefer shirking to working here.

With so many variables to adjust and so many constraints to satisfy, this Solver problem

can take a long time on older computers, but newer computers in 2002 can do all this in a few

minutes.  The optimal plan, as shown in Figure 8.7, pays the minimum wage at the lowest

possible profit level in our simulation data, but then increases the manager's wage with a share of

profits that starts above 50% and declines gradually as profit increases.  For profits above

$300,000, this Solver solution gives the manager a share of incremental profits that varies

somewhat erratically but that averages around 4% over the interval from $300,000 to $685,000. 

(The wrinkles in the compensation curve for profits above $300,000 could be caused by small

random clusters in our simulated profit data, which the Solver may exploit by wrinkling the

compensation curve to pay less at the shirking-profit clusters and more at the working-profit

clusters.  Such effects would tend to disappear if we used a larger simulation sample or wider

subintervals.)  The investors' total certainty equivalent with this optimal piecewise-linear

incentive plan is $229,990, shown in cell G17, which is about $4000 more than the certainty

equivalent that they got from their best linear incentive plan in Figure 8.6.  (Note: Figure 8.7

actually uses the same simulation data in B20:C520 as Figure 8.6, so this increase is really due to

the change of allowing some nonlinearity in the manager's compensation plan.)
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A B C D E F G H I J
Profit quartiles Mgr's compensation plan

Work Shirk Profit PayMgr Slope Intercept
Q1 230 190 114.58 0 0.5675 -65.02
Q2 280 230 150 20.102 0.5384 -60.66
Q3 340 280 200 47.021 0.1138 24.253

(in $1000s) 250 52.714 0.1763 8.6494
Risk tolerances   300 61.526 0.0153 56.931

Manager Investors 350 62.292 0.0437 47
20 480 400 64.477 0.1045 22.662

Mgr's alternative CE 450 69.704 0 69.704
50 500 69.704 0.0678 35.787

Mgr's extra $ if shirks 550 73.095 0.0345 54.131
10 685.35 77.762

Mgr's required minimum 
0  Mgr's CE Investors' CE

Work Shirk  with work
(rand)  Sim'd profit 50 50 229.99
0.7439 Work Shirk Mgr's income Investors' income
SimTabl 338.15 278.43 Work Shirk  with work

0 423.17 352.41 66.898 62.398 356.27
0.002 324.7 267.06 61.905 55.721 262.8
0.004 312.85 257.13 61.723 53.969 251.13
0.996 282.43 231.99 58.43 50.663 224
0.998 227.04 187.68 50.099 40.39 176.94

1 363.59 300.19 62.886 61.529 300.7

FORMULAS
A18.  =RAND()
B19.  =GENLINV($A$18,B3,B4,B5)
C19.  =GENLINV($A$18,C3,C4,C5)
E3.  =MIN(B20:C520)
E13.  =MAX(B20:C520)+1
G3.  =(F4-F3)/(E4-E3)
H3.  =F3-G3*E3
 G3:H3 copied to G3:H12
E20.  =VLOOKUP(B20,$E$3:$H$12,4)+B20*VLOOKUP(B20,$E$3:$H$12,3)
F20.  =VLOOKUP(C20,$E$3:$H$12,4)+C20*VLOOKUP(C20,$E$3:$H$12,3)
G20.  =B20-E20 E20:G20 copied to E20:G520
E17.  =CE(E20:E520,$B$9) F17.  =CE(F20:F520,$B$9)+B13
G17.  =CE(G20:G520,C9)
SOLVER: Max G17 by changing F3:F13 subject to
 F3>=B15, G3:G12>=0, G3:G12<=1, E17>=F17, E17>=B11.
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Figure 8.7.  Optimal piece-wise linear incentive plan for an agent with moral hazard.
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If the investors were risk neutral, or if there were so many investors that the sum of their

risk tolerances was too large to measure, then the investors' total certainty equivalent would be

their expected share of profits, which could be estimated in cell G17 by the formula

=AVERAGE(G20:G520)

If we ask Solver to maximize this measure of the investors' expected profit by changing the same

variables with the same constraints as we used in Figure 8.7 (using the same simulation data as

used in Figures 8.6 and 8.7), then the optimal compensation plan (in $1000s) would become:

Profit Pay Manager Slope Intercept

114.58   0 0.474 -54.323

150 16.795 0.711 -89.821

200 52.334 0.04 44.396

250 54.319 0.133 20.963

300 60.990 0 60.990

350 60.990 0 60.990

400 60.990 0.046 42.446

450 63.308 0 63.308

500 63.308 0 63.308

550 63.308 0.003 61.931

685.35 63.646

The main difference between this compensation plan and the one in Figure 8.7 is that the

manager here gets almost no wage increases for profit increases above $300,000.  So the positive

wage increases for profit increases above $300,000 that we see in cells G7:G12 of Figure 8.7 are

due mainly to the advantages of adding the manager as another partner in risk sharing.  Most of

the required incentives for working instead of shirking are generated in Figure 8.7 by the big pay

increases that the manager can get from increasing profits up to $300,000.

The optimality of the nonlinear incentive plan in Figure 8.7 may depend, however, on our

implicit assumption that the manager must decide once whether to work or shirk, and only

thereafter can he learn how much profit will be earned.  But in a real world that is more complex

than our simple model, the profits from such an investment project might actually be earned over

a period of weeks or months, and the manager might be able to decide about working or shirking
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every day, knowing how much profit has already been earned so far.  If our optimal incentive

plan from Figure 8.7 were applied in such a world, then the manager might work diligently only

until the accumulated profits reach $300,000, and thereafter he might start shirking, which would

significantly reduce the investors' chances of earning any higher profits above $300,000.  To

avoid this dynamic moral-hazard problem, we may recommend that the investors should restrict

their attention to linear compensation plans, as assumed in Figure 8.6, because the incentives to

continue working under linear compensation plans would be less affected by good news in the

early weeks of the project.  

8.5.  Corporate decision-making and asset pricing in the stock market

The preceding two sections provide the basis for understanding optimal decision-making

under uncertainty in big publicly held corporations.  Actually, we should have two theories of

decision analysis in corporations, depending on whether the decision analysis is supposed to be

for the benefit of senior managers who control the corporation, or for the benefit of the

stockholders who legally own the corporation.  The latter assumption is the main focus of this

section, but let us first devote one paragraph to the former assumption.

Under a well-designed compensation plan, as we saw in Sections 8.3 and 8.4, senior

managers may anticipate that their personal rewards will depend substantially on the profits that

they generate for the corporation, because they should have strong incentives to increase these

profits.  But then corporate risks will generate substantial personal risks for senior managers.  So

a senior manager may want to evaluate corporate risks using a risk-averse corporate utility

function similar to those we have studied for individual decision-making.  If F(X) denotes the

senior manager's income when X is the corporation's total profit (under the manager's

compensation plan), and if U denotes the manager's personal utility function for income, then the 

manager should personally prefer that corporate decisions under uncertainty should maximize

E(U(F(X))).  In effect, the manager would want the corporation to evaluate risky profits by the

expected value of a utility function V such that V(x) = U(F(x)) for any amount of corporate

profits x.  But as agents of the corporation, senior managers are not supposed to define the

corporation's interests so blatantly in terms of their own, and so decision analysts rarely use such
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an approach to assessing a corporate utility function.  Nevetheless, the sensitivity of a corporation

to risks cannot be well understood unless we recognize that corporate risks typically generate

substantial personal risks for the risk-averse senior managers who are responsible for making

corporate decisions.  In this context, decision analysts have found that senior managers may be

comfortable with an expected-utility analysis of corporate risks, using risk tolerances for

corporate profits that are sometimes about 1/6 of the total value of the corporation.

The perspective of the stockholders on corporation decision-making is often very

different.  Individual stockholders may be very risk averse, but a single corporation's risks may

have only a very small impact on the overall net worth of a typical well-diversified individual

stockholder.  From the perspective of such well-diversified stockholders, the goal of corporate

decision-making should be to adopt strategies that, when generally understood by investors, will

increase the market value of the corporations's stock.  To apply this criterion, we need some

theory to predict how prices in the stock market are determined.  So we will discuss here the

elements of such a theory, which is based on a simplified idealized version of the stock market,

but which can offer real practical insights into the pricing of capital assets.

The most important fact about the stock market is that the future prices of stocks and

other financial assets are unknown quantities.  So any individuals' beliefs about a collection of

asset prices at some future date should be described by a joint probability distribution.  In our

financial theory, we assume that all investors' beliefs about future prices at some future date (say,

a year from now) can be described by some joint probability distribution.  That is, we assume that

everybody shares the same beliefs which can be measured by a joint probability distribution for

these unknown quantities.  The end result of our asset-pricing theory will be to show how to

compute what an asset should be worth now in the stock market, given such a joint probability

distribution of future asset prices.

Let us assume here that investors in the stock market have constant risk tolerance, so that

we can apply what we have already learned about optimal risk-sharing among such individuals. 

The market portfolio is the collection of all the risky assets that are available to be bought and

sold in the stock market (or in other financial markets).  All the risks in this market portfolio

must be shared in some way among the investors, and we may think of the entire stock market as
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a risk-sharing partnership that includes all investors.  So Fact 1 tells us that, when the stock

market achieves an optimal allocation of risks, each investor should have a share in the whole

market portfolio of risky assets that is proportional to his or her risk tolerance.  If any investor

owned more or less of some asset than his proportional share then, by Fact 3, investors could

make mutually beneficial trades of money and risky assets until an optimal allocation of risks is

achieved.  So in a market equilibrium, the prices of all financial assets should be such that an

investor with constant risk tolerance is willing to hold the same share of every risky asset in the

market portfolio, and the only difference among investors should be that their shares differ in

proportion to their risk tolerances.  Thus, all investors could simply buy shares in well-diversified

mutual funds that hold all the stocks in the market portfolio.  But every corporation's stock is a

part of this overall market portfolio.  So the price of a stock today must be such that, when an

investor has bought his optimal share of the market portfolio, then he does not want to buy or sell

any additional amounts of this stock now.

To understand all these complex ideas of asset pricing, let us apply them to a specific

example, as illustrated in Figures 8.8 and 8.9.
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A B C D E F G H I J
M = $Returns next year to $1 now in the Market Portfolio
X,Y = $Values (per share) of Assets 1 and 2 next year

M X Y SOLVER: max F13 by changing F11.
LogMean 0.09 20 20 Q1

LogStdev 0.25 25 25 Q2
32 32 Q3 What if prices now are: 

Correl(M,X) for X for Y
0.8 25 25

1+interest RiskTol Invest now ...invest more?
1.06 10000 $ in M $ in X or $ in Y

Y is independent of M and X 9703 1 1
corands 0.9703 0.9772 CE  CE change     

M X Y 332.713 -0.0377 0.04125
SimTable 1.753 54.96 23.66 Income

0 1.024 17.74 23.53 -348.09 -348.45 -348.21
0.002 1.091 30.98 41.16 299.817 299.996 300.403
0.004 1.097 20.80 48.35 362.924 362.696 363.798
0.006 1.189 23.84 18.74 1252 1251.9 1251.69
0.008 1.419 32.84 24.72 3483.57 3483.82 3483.5
0.992 1.508 49.79 19.99 4348.74 4349.67 4348.48
0.994 0.689 19.60 36.04 -3597.1 -3597.4 -3596.7
0.996 1.005 29.54 25.08 -537.17 -537.05 -537.22
0.998 0.912 18.92 19.57 -1434.4 -1434.7 -1434.7

1 1.110 32.08 22.38 486.686 486.909 486.521

FORMULAS
B12:C12.  {=CORAND(B8)}
B14.  =EXP(NORMINV(B12,B4,B5))
C14.  =GENLINV(C12,C4,C5,C6)
D14.  =GENLINV(RAND(),D4,D5,D6)
F15.  =$F$11*(B15-$A$10)
F15 copied to F15:F515

F13.  =CE(F15:F515,C10)
H15.  =F15+$H$11*(C15/$H$8-$A$10)
J15.  =F15+$J$11*(D15/$J$8-$A$10)
H15:J15 copied to H15:J515

H13.  =CE(H15:H515,$C$10)-$F$13
J13.  =CE(J15:J515,$C$10)-$F$13
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Figure 8.8.  Comparing investments that differ in correlation with the market portfolio.
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In this example, we consider probability information about values next year of the market

portfolio and a couple of selected assets in it.  We assume that a dollar invested today in the

market portfolio (that is, in a well-diversified mutual fund that holds this market portfolio on

behalf of its investors) will be worth an amount next year that has a Lognormal probability

distribution with log-mean 0.09 and log-standard-deviation 0.25.  That is, the logarithmic growth

rate of an investment in the market portfolio has expected value 0.09 and standard deviation 0.25. 

We also assume that investors can borrow or lend at a risk-free interest rate such that $1 today

returns $1.06 next year, as indicated in cell A10 of Figure 8.8.

Cells B15:B515 of Figure 8.8 contain 501 simulated values of the returns next year per

dollar now in the market portfolio, generated by a random variable in cell B14 that has this

Lognormal distribution.  (Notice that rows 20 to 510 are hidden in Figure 8.8.)  Now consider an

individual who has constant risk tolerance $10,000, as indicated in cell C10, suppose that cell

F11 denotes the amount of money that this individual chooses to invest now in the market

portfolio.  Let us account the results of this individual's investments in the stock market in terms

of gains or losses next year relative to the wealth that he would have next year if he depositing all

his wealth now into a risk-free bank account that pays $1.06 next year for each $1 invested now. 

Relative to this safe strategy, each dollar invested in the market portfolio costs him $1.06 next

year (regardless of whether he takes the dollar from his bank account or he borrows the money,

given our simplifying assumption that he can both borrow and lend at the same risk-free rate). 

So if B15 were the market portfolio's growth ratio over the next year, then his net gain next year

from investing F11 dollars now in the market portfolio can be computed in cell F15 by the

formula

=$F$11*(B15-$A$10)

Copying cell F15 to F15:F515 yields the investor's net gains next year from investing F11 dollars

now in the market portfolio, for all of our simulated market outcomes.  The certainty equivalent

of these gains is computed in cell F13 by the formula

=CE(F15:F515,C10)

Now we can ask Solver to maximize the investor's certainty equivalent in cell F13 by

changing his investment in cell F11, and the resulting optimal solution is as shown in Figure 8.8. 
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That is, his optimal strategy (with this simulation data) is to invest $9703 in the market portfolio

now, which will yield a net gamble that is as good as the certainty equivalent gain of $332.71

(relative to what he could get next year by putting all his wealth now in the bank).  If changed the

risk tolerance and ran Solver again, then the optimal investment in cell F11 would change in

proportion to the risk tolerance.  For example, if we doubled the risk tolerance to $20,000 into

cell C10 and ran Solver again, then Solver would maximize the certainty equivalent F13 by

doubling the investment amount to $19,406 in cell F11.

The optimal investment quantity for each investor in these calculations depends on the

risk-free interest rate that banks are assumed to pay (in cell A10).  If this interest rate were lower,

then the net gains from putting money in the stock market would be greater, and the optimal

investment in the risky market portfolio would increase for any individual investor.  In a market

equilibrium, the risk-free interest rate has been determined by the condition that the sum of all

individuals' investments in shares of the market portfolio must equal the whole portfolio of

stocks and other financial assets available in the market.  

So in a market equilibrium, all financial assets must be priced now in such a way that,

when individual investors solve the optimal investment problem that we have just described, they

buy different shares of the general market portfolio, and no one wants to buy or sell any further

shares of any financial asset.  This no-further-trade condition can be used to characterize the

prices must be for financial assets in a market equilibrium.

Two other financial assets are considered in Figure 8.8.  You should think of these as

being just two among the very large number of stocks in the stock market that make up the

market portfolio.  Let X denote the price per share of the first stock next year, and let Y denote

the price per share of the second stock next year.  To be specific, we suppose here that these two

stock prices next year have the same marginal probability distribution which is a Generalized

Lognormal distribution with quartile points $20, $25, and $32.  But suppose that the first stock's

future price X has a correlation 0.8 with the growth ratio of the market portfolio, while the

second stock's price Y is independent of the market portfolio.  These two random variables are

simulated in cells C14 and D14 of Figure 8.8, where the array formula {=CORAND(0.8)} in

cells B12:C12 provides the specified correlation between the simulated X in cell C14 and the
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simulated growth of the market portfolio (M) in cell B14.  The simulated Y in cell D14 here

depends independently on its own RAND.

Column H analyzes the effects of making another small investment now in the first stock,

in addition to the individual's F11 optimal investment in the market portfolio.  The effect of such

an additional investment would depend, of course, on the price that the investor has to pay now

for a share of this stock.  Our goal in this exercise is to compute what this price should be (based

on the probability information about X), but let us begin here by entering in cell H8 some

arbitrary guess about what this current stock price might be.  Next, let us specify in cell H11 any

small amount of money that the investor might consider adding now to his investment in this

stock.  Figure 8.8 considers the possibility of investing an additional $1 (H11) to this stock when

its price per share now is $25 (H8).  For the first outcome of our simulation model, stored in row

15 of the simulation table, this additional investment would change the investor's net gains next

year from the amount in cell F15 to

=F15+$H$11*(C15/$H$8-$A$10)

which has been entered into cell H15.  To understand this formula, notice that each of the H11

(1) additional dollars that he invests now buys 1/H8 (1/25) shares of this stock at the current

price, which will yield next year C15/H8 dollars in this simulated market outcome, but investing

the dollar now also reduces the individual's bank account by A10 (1.06) dollars next year.  Then

copying the formula from H15 to cells H15:H515, we get the net gains next year with this

additional investment for all the outcomes in our simulation table.  So the change of the

investor's certainty equivalent next year that would be generated by this additional investment in

the first stock is computed in cell H15 by the formula

=CE(H15:H515,$C$10)-$F$13

A similar calculation is done for the second stock in column J of Figure 8.8.  Here cell J8

contains our guess about the current price per share of this stock, and cell J11 contains an amount

of money that we are thinking of investing in this stock now, as an addition to the optimal

investment in the market portfolio.  Then, by copying cells H13:H515 to J13:J515, we similarly

compute in cell J13 the change of the investor's certainty equivalent next year that would be

generated by this additional investment in the second stock.  (These additional investments are
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being considered here as alternative possibilities, and so the simulated gains in J15:J515 include

the J11 additional investment in the second stock but do not include the H11 additional

investment in the first stock.)

In Figure 8.8, the computed changes of certainty equivalent in cells H13 and J13 are

!0.0377 and 0.04125 respectively.  This means that, if the prices of these stocks were both $25

now (as assumed in cells H8 and J8), then investing an additional dollar in the first stock would

decrease the investor's certainty equivalent next year by almost 4 cents, but investing an

additional dollar in the second stock would increase the investor's certainty equivalant next year

by a bit more than 4 cents.  But remember, in a market equilibrium, every investor should hold an

optimal share in the whole market portfolio that is proportional to his risk tolerance, and should

not want to add any other disproportionate investment in particular stocks.  So if the positive

value of cell J13 indicates that this investor could do strictly better by adding another $1 (J11) in

the second stock here when its current price is as specified in cell J8 ($25) , then the assumed

price in cell J8 must be too low.  So in an equilibrium of the stock market now, the price per

share of the second stock must be strictly more than $25, because investors like this one would

want to buy more of this stock for $25 now.

The negative value of cell H13 in Figure 8.8 indicates that this investor could not improve

his portfolio by adding another $1 (H11) in the first stock.  But what about selling some of the

first stock?  Remember, every stock is a small part of the market portfolio, and so his optimal

investment in the market portfolio must implicitly include some small amount of money in this

stock, which (in principle) he could sell separately now.  Selling the first stock can be represented

in this spreadsheet by entering a negative number in cell H11.  For example, if we entered the

value !1 into cell H11, to represent the investor selling $1's worth of the first stock now, then the

calculations in cell H13 would show him increasing his certainty equivalent next year by

$0.0377.  (His increase of CE from selling $1's worth would be almost the same size as his

decrease of CE from buying $1's worth.)  This result indicates that, in an equilibrium of the stock

market now, the price per share of the first stock must be strictly less than $25, because investors

like this one would want to sell their shares of this stock for $25 now.

So the current price per share of the first stock should be less than $25 and the current
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price per share of the second stock should be more than $25, even though investors anticipate

that the prices per share of these stocks next year have the same marginal probability

distribribution.  The only difference between these stocks is that the first (X) has a positive

correlation with the market portfolio, while the second (Y) is independent and so has zero

correlation with the market portfolio.  This observation illustrates an important general fact:  A

higher correlation with the market portfolio tends to decrease the current value of the asset (when

the marginal probability distribution of its value at some future date is held fixed).

Intuitively, the second stock is worth more than the first stock now because the second

stock can offer better insurance against the risks in the market portfolio that the investors are

holding.  The investors, being risk averse, would get more extra utility from an extra dollar of

income next year in an event where their overall portfolio has done badly than in an event when

their overall portfolio has done well.  But the first stock, being highly correlated with the market

portfolio, tends to pay its highest returns in the same events where the market portfolio does well. 

Both of these stocks have the same probability of selling for more than $32 next year (0.25), but

there is a much smaller probability of the first stock being so profitable when the overall market

portfolio does badly, because of its positive correlation with the market portfolio.

Now let me tell you how you could use the spreadsheet in Figure 8.8 to compute the

current price of the first stock.  Remember, cell F11 contains the optimal investment in the

market portfolio that Solver generated to maximize the certainty equivalent in cell F13.  Keeping

this value in cell F11, you could now ask Solver to change the additional investment in cell H11

to maximize the additional certainty equivalent that it generates in cell H13.  If Solver returns a

positive investment in cell H11, then the price for the first stock that you assumed in cell H8 is

too low.  If Solver returns a negative investment in cell H11 (indicating that investors would

want to sell this stock at this price), then the price for the first stock that you assumed in cell H8

is too high.  When the right current price for the first stock is entered into cell H8, Solver should

report that the additional certainty equivalent in H13 is maximized by setting the additional

investment in H11 equal to $0.  For the simulation data in this spreadsheet, the correct current

price of the first stock turns out to be $24.11.  (Results may differ slightly with other simulation

data.)
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Similarly, you can find the current equilibrium price for the second stock in Figure 8.8 by

adjusting the price in cell J8 so that, when Solver is asked to maximize J13 by changing J11,

Solver will reports an optimal additional investment of $0 in cell J11.  For the simulation data in

this spreadsheet, the correct current price of the second stock turns out to be $25.97.  The

difference between this $25.97 for the second stock and the price $24.11 for the first stock is

caused by the difference between these stocks' correlations with the market portfolio.

Running Solver so many times may be awkward, so Figure 8.9 shows a way to directly

calculate the current price of a stock from its distribution of future returns.  To simplify the

spreadsheet, we only consider the first stock (the one that will be worth X next year), but the

simulation model and data in columns B and C of Figure 8.9 are the same as in Figure 8.8.  The

interest rate in A10 and the investor's risk tolerance in C10 are also the same in both Figures. 

Column E of Figure 8.9 repeats the analysis of the individual's optimal investment in the market

portfolio that we already saw in column F of Figure 8.8.  That is, cell E11 contains the

individual's monetary investment now in the market portfolio, cells E15:E515 contain his

resulting monetary gains next year from this investment (compared to the alternative of putting

all his wealth in bank accounts) with the simulated market outcomes, and cell E13 computes his

certainty equivalent for this gamble with the formula

=CE(E15:E515,C10)

The investment amount shown in E11 ($9703) is the result of asking Solver to maximize E13 by

changing E11.

In Column F in Figure 8.9, you can find a review of the calculations by which the CE

function computes the certainty equivalent in cell E13.  First, the utility values of the monetary

incomes in cells E15:E515 are computed, by entering the formula

=UTIL(E15,$C$10)

into cell F15, and then copying F15 to F15:F515.  Then these utility values are averaged, and the

average utility is converted back to the equivalent monetary value by UINV by the formula

=UINV(AVERAGE(F15:F515),C10)

in cell F13.  The result in cell F13 is the same as the certainty equivalent value that is computed

by the CE function in cell E13.
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3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

A B C D E F G H I J K
M = $Returns next year to $1 now in the Market Portfolio
X = $Value (per share) of Asset next year

M X SOLVER(1): max E13 by changing E11.
LogMean 0.09 20 Q1 SOLVER(2): max I13 by changing I11.

LogStdev 0.25 25 Q2 (Should find I11=0 optimal!)
32 Q3

Correl(M,X) Value of Asset now = E'(X)/(1+i)
0.8 24.11

1+interest RiskTol Invest now Invest more?
1.06 10000 $ in M $ in X

9703 0
corands 0.5563 0.4176 CE UINV(EU) CE change

M X 332.71 332.71 0
SimTable 1.134 23.27 Income Util Weights Income

0 1.024 17.74 -348.1 -1.035 0.0021 -348.1
0.002 1.091 30.98 299.82 -0.97 0.0020 299.82
0.004 1.097 20.80 362.92 -0.964 0.0020 362.92       
0.006 1.189 23.84 1252 -0.882 0.0018 1252
0.008 1.419 32.84 3483.6 -0.706 0.0015 3483.6
0.992 1.508 49.79 4348.7 -0.647 0.0013 4348.7
0.994 0.689 19.60 -3597 -1.433 0.0030 -3597
0.996 1.005 29.54 -537.2 -1.055 0.0022 -537.2
0.998 0.912 18.92 -1434 -1.154 0.0024 -1434

1 1.110 32.08 486.69 -0.952 0.0020 486.69

FORMULAS
B12:C12.  {=CORAND(B8)} E'(X)
B14.  =EXP(NORMINV(B12,B4,B5)) 25.56
C14.  =GENLINV(C12,C4,C5,C6)
E15.  =$E$11*(B15-$A$10) E(X)
 E15 copied down 27.66
E13.  =CE(E15:E515,C10)
F15.  =UTIL(E15,$C$10)
 F15 copied down
F13.  =UINV(AVERAGE(F15:F515),C10)
G15.  =F15/SUM($F$15:$F$515)
 G15 copied down
I8.  =SUMPRODUCT(C15:C515,G15:G515)/A10
I15.  =E15+$I$11*(C15/$I$8-$A$10)
 I15 copied down
I13.  =CE(I15:I515,C10)-E13
I519.  =SUMPRODUCT(C15:C515,G15:G515)
I522.  =AVERAGE(C15:C515)
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Figure 8.9.  Computing an asset's value in a market with constant risk-tolerant investors.
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But now let us do something else with these utility values in F15:F515.  Recall from

Chapter 4 that the constant risk-tolerance utility functions are defined by the following

mathematical formula

UTIL(x, r) = !EXP(!x'r),

for any monetary amount x and any positive risk tolerance r.  This exponential formula has the

special property that, as the amount of money x is varied with a fixed risk tolerance, the slope of

the utility function is proportional to the absolute value of the utility function itself.  If you look

back at the graph in Figure 3.1 in Chapter 3, you can see that the slope of a constant risk-

tolerance utility curve is proportionally steeper in regions where the utility value is farther below

zero.  Thus, with these special exponential utility functions, the investor's utility benefit from a

small increase in income should be greater in the bad outcomes where his utility is farther below

zero, in direct proportion to the distance of his utility below zero.  So investor's relative

sensitivity to income changes in the various simulated outcomes here may be measured by the

weights shown in G15:G515 of Figure 8.9, which are computed entering by the formula

=F15/SUM($F$15:$F$515)

into cell G15 and then copying G15 to G15:G515.  The utility values in F15:F515 are all negative

numbers, but then their sum is also negative, and so these weights in G15:G515 are all positive

numbers.  (A negative number divided by a negative number yields a positive number.) 

Furthermore, the sum of these weights in G15:G515 is equal to 1.  In effect, these weights look

like a probability distribution over the various outcomes in our simulation table, where bad

outcomes are given more probability than the good outcomes, in proportion to the slopes of his

utility curve at these different outcomes.  For example, row 511 in Figure 8.9 gets a small weight

0.0013 in cell G11, because this row represents a good outcome where the market portfolio goes

up and the investor gains $4349 (E11).  But row 512 gets a relatively large weight 0.0030 in cell

G12, because this row represents a bad outcome where the market portfolio goes down and the

investor loses $3597, which would make him much more sensitive to additional income than he

would be in the good outcome.

Until now, we have always analyzed simulation data as if every outcome in every row of

our simulation table represented an equally likely outcome from our probability model.  But now
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let us instead pretend that the outcomes in the various rows have instead the probabilities shown

in G15:G515, which we may call the market-adjusted probabilities.  Let us use E' to denote the

expected value of a random variable when we apply these mysterious market-adjusted

probabilities.  With these market-adjusted probabilities, the expected price-per-share of our

selected stock next year would be computed by the formula

E'(X) = SUMPRODUCT(C15:C515, G15:G515),

because cells C15:C515 contain the simulation data for this stock's future value X.  With the

simulation data, this market-adjusted expected value is E'(X) = $25.56.  For comparison, if we

treated all rows as equally likely and conventionally estimated the expected value E(X) by

AVERAGE(C15:C515), then we would get E(X) = $27.66 with this simulation data.  The

market-adjusted expected value E'(X) is smaller than E(X) here because X is positively

correlated with the market portfolio M, and so the high values of X tend to come in rows where

the market portfolio does well and thus where the market-adjusted probability is relatively small.

The price X is a future value of this stock, and so it is denominated in future dollars, a

year from today.  But such future dollars can be exchanged for dollars today by borrowing or

lending at a bank, at the ratio defined by the bank's interest rate, here 1+i = 1.06 as shown in cell

A10 in Figure 8.9.  So to convert future monetary values into current monetary values here, we

should divide by A10.  In particular, the current monetary equivalent of the market-adjusted

expected value of the price per share of this stock next year is

E'(X)'(1+i) = SUMPRODUCT(C15:C515, G15:G515)'A10

This important formula

=SUMPRODUCT(C15:C515,G15:G515)'A10

has been entered into cell I8, and it is the answer to our question of what should be the

equilibrium price of this stock today.  

When today's price per share of this stock is as computed in cell I9 of Figure 8.9, the

investor will not want to buy or sell any additional amounts of this stock now, once he has made

his optimal (E11) investment in the market portfolio.  To demonstrate this result, cell I13 in

Figure 8.9 computes the net change in this investor's certainty equivalent next year if he were to

invest in this stock today the additional amount of money that is entered in cell I11, given the
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current price per share in cell I9.  If we asked Solver to maximize this certainty equivalent in I13

by changing the investment amount in I11 (holding fixed the previously optimized market-

portfolio investment in E11), then Solver cannot do better than by letting the investment amount

in I11 be $0.  So the formula in cell I9 gives us the correct equilibrium price today for this stock

that will have the price X next year, because individual investors will not want to change their

optimal investment in the market portfolio by buying or selling this stock at this price today.

The price that we have computed in cell I9 of Figure 8.9 does not depend on the particular

risk tolerance of $10,000 that we assumed in cell C10.   For example, suppose we doubled the

risk tolerance by entering $20,000 into cell C10, and we then asked Solver again to maximize the

new certainty equivalent in cell E13 by changing cell E11.  Then the new optimal market-

portfolio investment in cell E11 would double, and all the net incomes in cells E15:E515 would

double, relative to the amounts shown in Figure 8.9.  But then the utility values in cells F15:F515

would remain the same as shown in Figure 8.9, because UTIL(x,t) = !EXP(!x'r) depends only

on the ratio of the income x to the risk tolerance r, and so doubling them both would leave the

utility unchanged.  So the market-adjusted probabilities in cells G15:G515 (which depend only

on F15:F515) and the computed stock price in cell I9 (which depends only on G15:G515 and the

simulation data and the interest rate) would also be unchanged.  Thus, the market-adjusted

probabilities and the computed stock price in Figure 8.9 would not be affected by a change of the

risk tolerance in cell C10, once Solver has changed the optimal investment in E11 to maximize

the new certainty equivalent in E13.  Our results here depend only on the assumption that

investors are risk averse and have some constant risk tolerance.  

This financial asset-pricing model has important applications to corporate decision-

making.  To develop these applications, we just need to extend our interpretation of the random

variable X in cell C14.

Suppose that a big publicly-held corporation is considering a major new investment

project which would cost 25 $million now.  For simplicity, suppose that all the monetary returns

from this project would be realized one year from now, and that these returns next year would

have a Generalized Lognormal probability distribution with quartile points 20, 25, and 32

$million.  Suppose also that these returns would have a correlation 0.8 with the growth ratio of
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the market portfolio next year.  Thus, the returns from this project next year would have the same

marginal probability distribution and the same relationship with the market portfolio as the

random variable X that we considered in Figures 8.8 and 8.9.  So let us now reinterpret X as this

unknown quantity that the project will earn next year.

Should this project be recommended now as being to the benefit of the corporation's

stockholders?  This is a decision under uncertainty, because the payoff X next year is an

unknown quantity that could be much greater or much less than the cost of the project.   But any

current stockholder in this corporation could sell his shares tomorrow, and so all stockholders

can benefit from decisions that will increase the current market value of the corporations's stock. 

So we should ask whether a decision to undertake this project would tend to increase or decrease

the value of this corporation in the stock market now (once the decision becomes widely known

to investors).

According to our analysis in Figure 8.9, a stock coupon (or a lottery ticket) that will be

worth X dollars next year should have a value of $24.11 in the stock market today.  When this

corporation invests in this project that will pay X million dollars next year, it is essentially

buying a million such coupons.  So the corporations investment in this project should be worth

24.11 $million in the stock market today.  That is, the prospect of earning X $million next year

from this project should add 24.11 $million to the total value of the corporation's stock.  But

undertaking this project requires an expense of 25 $million today.  This expense would make the

corporation increase its debt (or decrease its liquid assets) by 25 $million, which should have the

effect of subtracting 25 $million now from the total market value of the corporation.  So

according to our analysis, a decision to undertake this project should change the current total

value of this corporation by 24.11!25 = !0.89 $million, as soon as the decision becomes

understood by investors in the stock market.  Thus, the project should not be recommended on

behalf of the stockholders, because it would tend now to decrease the value of their shares in the

corporation.

This conclusion depends critically on our assumption that the project's future earnings

have correlation 0.8 with the future performance of the market portfolio.  If the project's future

earning were considered instead to be independent of the future performance of the market
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portfolio, then the project's future earnings would have a current value that is greater than 25

$million, because it would be like the gamble that pays Y in Figure 8.8.  In general, the value of a

project or risky investment to investors in the stock market cannot be determined without

analyzing how the project's risks are related to the broader macroeconomic risks that investors

bear in the market portfolio.  To do such analysis, we must use a model of the joint probability

distribution of the investment's returns X and the market portfolio M, as in cells B14:C14 of

Figure 8.9.

(Financial analysts often estimate asset values using the capital asset pricing model, or

CAPM, which is similar to the constant risk-tolerance model that we have developed here. 

CAPM is based on an assumption that investors care only about the mean and standard deviation

of their portfolio's value, and so it yields an asset-pricing formula which depends only on the

asset's expected value and covariance of returns with the market portfolio.  When future asset

returns are drawn from a Multivariate Normal distribution, the CAPM model is equivalent to the

model that we have developed here.  Even for the nonNormal data in Figure 8.9, a CAPM

analysis would yield a stock price differing by only $0.05 from the value that we computed in

cell I9.  But CAPM can yield nonsensical results for some extremely skewed nonNormal

distributions that are avoided by the method that we have developed here.)

*8.6.  Fundamental ideas of arbitrage pricing theory

In arbitrage pricing theory, we assume that there is some list of possible states of the

world such that exactly one of these states will occur and the future values of financial assets will

be determined by the state that occurs.  We would say that an arbitrage opportunity existed if

there were some portfolio of loans and assets that an individual could acquire with zero initial

investment of his own but which would guarantee him a positive future return in all states.  That

is, an arbitrage opportunity would be an opportunity to get something for nothing without any

risks.  Arbitrage pricing theory characterizes financial asset prices when such arbitrage

opportunities do not exist.

Let us begin by considering a simple two-state example in which State 1 is a state of the

world with high oil prices and State 2 is a state of the world with low oil prices.  Suppose that the
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value of some automotive company's stock will be $80 per share next year if State 1 occurs, but it

will be $140 if State 2 occurs.  Similarly, suppose that the future value of some oil company's

stock will be $140 per share next year if State 1 occurs, but it will be $80 if State 2 occurs. 

Suppose also that investors can borrow and lend at a 10% annual interest rate, so that 1.1 is the

annual return ratio for risk-free bonds.  If these two stocks are currently selling for $90 per share,

then an arbitrage opportunity exists.  For each $180 that we borrow, we could buy one share of

each of these two stocks now, and then next year (after selling the shares and repaying the debt)

we would could take a sure profit of  (80+140)!180*1.10 = $22 in all possible states.  By

borrowing more money we could make as much money as we like, with no risk to ourselves.

If the current prices for these two stocks are each $100 per share, however, then such

arbitrage opportunities would not exist.  At this price, if we assessed a probability 0.5 for each of

the two states, then the expected returns next year per dollar invested now would be

(.5*80+.5*140)'100 = $1.10, which exactly equals the cost next year of borrowing a dollar now. 

If every financial asset that we can buy or sell has an expected return of 10% then, no matter how

we mix investments and debts, the expected value of our portfolio next year will be 10% more

than its value this year.  In particular, if we start with no initial investment of our own funds, then

the expected total value of our portfolio must be $0 (=0*1.10) next year, and so there cannot

exist any arbitrage strategy that offers positive returns in all states with zero net initial

investment.

In general, if there exists some way of assigning probabilities to the various possible

states such that every financial asset offers the same expected return ratio as risk-free bonds, then

arbitrage opportunities cannot exist.  With each investment offering the same expected return

ratio as the risk-free bonds, no portfolio can offer a higher (or lower) expected return ratio than

this risk-free return ratio on the net initial investment.  But an arbitrage strategy which guarantees

a positive return with $0 initial investment would be offering an infinite expected return ratio. 

So there cannot exist any arbitrage strategy for generating positive returns in all states with zero

net initial investment.  

Conversely, if arbitrage opportunities do not exist in a financial market then, there must

exist some way of assigning probabilities to the possible states such that, when we compute
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expected returns using this probability distribution, the expected return ratio of every financial

asset is equal to the risk-free return ratio.  This important fact is the main result of arbitrage

pricing theory.

To illustrate this result, consider the example shown in Figure 8.10, which describes a

simple imaginary financial market in which three stocks are traded, and the return ratios for these

stocks over the next year will depend on which of four possible states of the world occurs.  The

table in cells B5:E7 lists the return ratio for each stock in each possible state of the world.  The

return ratio for risk-free bonds is 1.10, which is listed in cell A1.

Given this financial data, Figure 8.10 shows how to use Solver to find an arbitrage

opportunity if one exists.  Cells G5:G7 represent the money to be invested in each of the three

stocks now, in our investment strategy.  If any of these cells becomes negative, it can be

interpreted as the amount of money to be raised now by selling the corresponding stock short. 

The net investment in these stocks is assumed to come out of bonds that pay the risk-free interest

rate of 10% per year, and so the formula

=SUMPRODUCT(B5:B7,$G$5:$G$7)!SUM($G$5:$G$7)*$A$1

in cell B9 represents the net returns from our investments if State 1 occurs.  Copying cell B9 to

B9:E9 gives us cells representing the net returns from our investments in each of the four

possible states.  In cell G10, we enter a "goal" of returns that our investment strategy will try to

achieve in all states.  The shortfall from this goal in each state is computed in cells B11:E11, by

entering the formula

=$G$10!B9

in cell B11, and then copying B11 to B11:E11.  Thus, a positive shortfall in cells B11:E11

denotes a failure to achieve the goal in some state.  With this spreadsheet formulation, we can

now ask Solver to find the highest goal that can be achieved in all states by an investment

strategy.
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A B C D E F G H
1.1 Risk-free return ratio ($ next year per $1 invested now)

$Returns next year per $1 invested now
State 1 State 2 State 3 State 4 Invest now

Stock A 0.95 0.90 1.30 1.20 0
Stock B 0.95 1.35 0.85 1.00 0
Stock C 1.30 1.10 1.15 1.00 0

Net $return 0 0 0 0 Goal
0

Shortfall 0 0 0 0 (+ is bad!)

SOLVER (with Options:AssumeLinearModel):
Maximize G10 by changing G5:G7,G10 subject to B11:E11<=0.
Select SensitivityReport when Solver finishes.

State 1 State 2 State 3 State 4
ShadowProby 0.01504 0.43609 0.34586 0.20301

ShadowE($Returns)
Stock A 1.1
Stock B 1.1
Stock C 1.1

FORMULAS FROM RANGE A1:G22
B9.  =SUMPRODUCT(B5:B7,$G$5:$G$7)-SUM($G$5:$G$7)*$A$1
 B9 copied to B9:E9
B11.  =$G$10-B9
 Bll copied to B11:E11
B20.  =SUMPRODUCT($B$18:$E$18,B5:E5)
 B20 copied to B20:B22
Shadow probabilities (or Lagrange Multipliers) in B18:E18 are copied
(with paste-special,transpose) from Solver's SensitivityReport.

Fact:  If arbitrage opportunities do not exist, then Solver must
terminate with 0 optimal value in cell G10, and the Shadow Prices
(or Lagrange Multipliers) in the Sensitivity Report will give us a
shadow probability distribution over the states such that all assets
have the same shadow-expected return ratio as risk-free bonds.
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Figure 8.10.  A simple example of arbitrage pricing theory.

In the Solver dialogue box, let us tell Solver to maximize the target cell G10 by changing

cells G5:G7,G10 subject to the constraints B11:E11<= 0. (It is important to include G10 among

the changing cells as shown.  Solver will accept multiple ranges separated by commas in the

changing-cells box.)  To take advantage of the special linear structure of this problem, which will
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enable Solver to analyze this problem more accurately, let us also go to the Solver "Options"

dialogue box and check the "Assume Linear Model" option (then "OK").  Then we can go back

to the basic Solver dialogue box and click the "Solve" button.  When Solver finishes and

announces that it has found a solution, we should also select the "Sensitivity" option in the

"Reports" box, which causes Solver to add a Sensitivity-Report page in our workbook.  

For this example, Solver will report the value 0 in cell G10 as the maximum return that

can be guaranteed with no net investment.  (Solver may report a value of G10 slightly different

form 0, such as 1.1E!06, which denotes 1.1*10^(!6) = 0.0000011, but this tiny deviation from 0

is just due to roundoff error.)  Getting this Solver output tells us that an arbitrage strategy for

guaranteeing a positive return in all states with no net investment does not exist.  Thus, the main

result of arbitrage pricing theory tells us that there must exist some probability distribution that

makes each stock have an expected return ratio equal to the return ratio of risk-free bonds.  But

where can we find this probability distribution?  

The answer is in the Sensitivity Report that Solver added to the workbook, when we

selected the Sensitivity option when Solver finished the optimization.  Solver's Sensitivity

Report, as shown in Figure 8.11, includes a lot of numbers, but the only important numbers for

our purposes are those listed for the constraints under the heading Shadow Price or Lagrange

Multiplier.  (Solver uses the term "Shadow Price" when the "Assume Linear Model" option has

been selected, and it uses the equivalent term "Lagrange Multiplier" otherwise.)  In general, the

shadow price of a constraint is a measure of the rate at which the optimal value of the target cell

would increase if we started increasing the value on the right-hand side of the constraint.  But

Solver's shadow prices have a special interpretation here in this problem of searching for

arbitrage opportunities.  This problem includes one constraint for each of the possible states, and

the shadow prices of these constraints are nonnegative numbers that sum to 1.  So the shadow

prices generated by Solver for this problem can be interpreted as a shadow probability

distribution over the set of possible states.  

This shadow probability distribution from the sensitivity report has been copied (and

pasted-special transposed) to the range B18:E18 in Figure 8.10.  Then the formula

=SUMPRODUCT($B$18:$E$18,B5:E5)



Microsoft Excel Sensitivity Report

Changing Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$G$5 Stock A Invest now 0 0 0 0.05227 0.00370
$G$6 Stock B Invest now 0 0 0 0.08846 0.00455
$G$7 Stock C Invest now 0 0 0 0.05610 0.02500
$G$10 Goal 0 0 1 1E+30 1

Constraints

Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease

$B$11 Shortfall State 1 0 0.01504 0 1E+30 1E+30
$C$11 Shortfall State 2 0 0.43609 0 1E+30 1E+30
$D$11 Shortfall State 3 0 0.34586 0 1E+30 1E+30
$E$11 Shortfall State 4 0 0.20301 0 1E+30 1E+30

51

Figure 8.11.  Solver Sensitivity Report for the problem in Figure 8.10.

in cell B20 computes the expected return ratio for Stock A under this shadow probability

distribution.  Copying this formula to cells B20:B22, we find that all three stocks have

shadow-expected return ratios equal to the return ratio on risk-free bonds in this market.

This result is completely general.  If you change the returns listed in cells B5:E7 of

Figure 8.10, or the risk-free return ratio listed in cell A1, then one of two cases will hold. 

Case 1 is that the Solver will find an optimal solution with 0 as the best goal that can be

guaranteed in cell G10, in which case the shadow prices in the Sensitivity Report will form a

shadow probability distribution with which all stocks offer the same expected return ratio as

risk-free bonds.  Case 2 is that Solver may report "the set cell values do not converge," which

means that arbitrage opportunities are possible and returns that exceed any positive goal can be

guaranteed.  (If you want to see what these arbitrage strategies look like, you can add the

constraint G10<=1000, which tells Solver to try to stop when it finds a way to guarantee returns

higher than $1000 with no initial investment.  To get an example where such arbitrage

opportunities exist, you can change the value of cell B5 in Figure 8.10 from 0.95 to 1.19 or
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higher, leaving all other parameters the same.)

Now look back at our asset-pricing model in Figure 8.9.  The current value of the asset, as

computed in cell I9, is an expected value of the asset next year divided by the return ratio for

risk-free bonds, but where the expected value is computed using the market-adjusted

probabilities in cells G15:G515.  So when these market-adjusted probabilities are used to

compute the asset's expected return ratio (its future values in C15:C515 divided by its current

value in I9), the resulting market-adjusted expected return ratio is exactly the risk-free return

ratio in cell A10.  Thus, the market-adjusted probabilities in cells G15:G515 of Figure 8.9 are the

shadow probabilities that make this asset-pricing model a special case of arbitrage pricing theory.

   But Figure 8.9 also teaches us more about how such market-adjusted shadow

probabilities may differ from traditional probabilities (which are defined by relative frequency,

and so would be all be equal to 1'501 in the analysis of 501 simulation outcomes).  The

difference is that higher market-adjusted probabilities are assigned to the bad outcomes where the

market portfolio does poorly, and lower market-adjusted probabilities are assigned to the good

outcomes where the market portfolio does well.  This over-weighting of bad outcomes occurs

because risk-averse investors should be more sensitive to income changes in the states where

their overall portfolio has done badly.

8.7.  Summary

Individuals with constant risk tolerance can maximize the sum of their certainty

equivalents by sharing risks linearly in proportion to their individual risk tolerances.  If the

members of an investment partnership were not using such an optimal sharing rule, then one

partner could propose such an optimal sharing rule, together with some fixed payments among

the partners, with the result that he does better and no one else does worse (in terms of their

certainty equivalents).  When partners share a risky gamble in this optimal way, the sum of their

certainty equivalents of their separate shares is the same as what the certainty equivalent of the

whole gamble would be to a single individual whose risk tolerance was the sum of the partners'

risk tolerances.  In this sense, a partnership should evaluate gambles and choose among them just

as if it were a single person with a risk tolerance equal to the sum of the partners' individual risk
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tolerances. 

This simple theory of sharing risks in proportion to risk tolerances is based on an

assumption that the way that profits are divided among the partners does not affect the

probability distribution of total profits earned.  But this assumption may fail, and so this simple

theory of optimal risk sharing may not apply, when the partnership's profits depend on the efforts

of an individual whose work cannot be perfectly monitored by the other partners.   His

temptation to shirk instead of work is an example of moral hazard problems that can be caused

by systems of risk sharing and insurance.  In such cases, this individual may have to bear a larger

share of the risks, to give him more motivation for diligent efforts on behalf of the partnership. 

We learned how to compute optimal linear and nonlinear sharing rules that satisfy the

moral-hazard incentive constraints for such an agent.

We then moved from the study of partnerships to publicly held corporations with a stock

market that includes many investors with constant risk tolerance.  Among two financial assets

that have the same marginal probability distribution of values next year, the one that has lower

correlation with the overall market portfolio should have a higher value now, because it offers

better insurance against the risks of the diversified market portfolio that investors hold.  We

developed a spreadsheet model for computing an asset's current value in the stock market from

the joint distribution of the future values of this asset and the market portfolio.  This model yields

asset values such that, when expected values are computed using some market-adjusted

probabilities for the possible outcomes, the expected growth ratio of the every asset's value is

equal to the return ratio on risk-free bonds or bank accounts.  This market-adjusted probability

distribution puts relatively more weight on bad outcomes where the market portfolio does poorly,

because risk-averse investors are relatively more sensitive to income changes in such bad

outcomes.  The property of all assets having equal expected return ratios in terms of some

shadow probability distribution is a general characteristic of any asset-pricing system that does

not create arbitrage opportunities.
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EXERCISES

1.  G. Washington owns a real-estate development which will pay returns drawn from a Normal

distribution, with expected value $50,000, and standard deviation $12,000.  Washington has

constant risk tolerance, and his risk-tolerance index is $8000.  J. Madison's risk-tolerance index

is $5000.  (The development does not require any significant unobservable effort from

Washington himself.)

(a)  What is Washington's certainty equivalent for the real-estate development, if he keeps

the development for himself?

(b)  Washington is planning to sell Madison a share in the development.  To maximize

their total certainty-equivalent values of their shares, what share should Washington sell to

Madison?  What is the minimum price that Washington should accept for selling this share? 

What is the maximum price that Madison would be willing to pay for this share?

(c)  B. Arnold owns a real-estate development up river that will pay returns drawn from a

Normal distribution with expected value $64,000 and standard deviation $20,000.  Arnold has

offered to exchange his up-river development for Washington's development.  Washington

expects to take Madison on as a partner in his real-estate deals in any case.  Should Washington

accept Arnold's offer to exchange developments?  Explain your answer.

2.  Case: The Wilson Estate

Daniel Wilson and Rebecca Wilson Tisler have just inherited their mother's real estate

holdings, which consist of scattered commercial properties, some of which have substantial

mortgages.  Without their mother to manage the properties, they plan to sell the properties and

split the returns equally.

A sudden offer by P. J. Cooney to buy all of their mother's properties for $140,000 over

the cost of repaying all mortages has caused disagreement among the brother and sister, however. 

Daniel is eager to accept the offer, but Rebecca feels strongly that they should try to do better by

selling the various properties separately over the coming year.  You have been asked to help

resolve their conflict.

After lengthy discussions with the Daniel and Rebecca, you have found that they

essentially agree about their prospective risks if they turn down Cooney's offer.  Appraisals of the

properties by independent real-estate agents have suggest that the expected returns from selling

the properties separately is $200,000 over the cost of repaying all mortages, although their actual

realized returns could be substantially above or below that amount.  So both Daniel and Rebecca

agree that a Normal distribution with this mean of $200,000 and a standard deviation of $75,000

can accurately describe their beliefs about their combined returns from selling the properties

separately after rejecting Cooney's offer.
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Where the siblings differ is in their risk tolerance, however.  Daniel, with children about

to enter college, is substantially less risk-tolerant than Rebecca.  By asking them about their

willingness to take hypothetical risks, you have assessed Daniel's risk-tolerance index to be

$20,000, and you have assessed Rebecca's risk-tolerance index to be $45,000.  It seems

reasonable to assume that they each have constant risk tolerance.

(a)  What is Daniel's certainty equivalent for a 50% share of the returns from selling the

properties after rejecting Cooney's offer?  What is Rebecca's certainty equivalent for a 50% share

of the returns from selling the properties after rejecting Cooney's offer?

(b)  Consider an alternative plan in which Rebecca pays her brother some amount of

money now to buy a larger share of the returns from the properties.  To increase the sum of their

certainty equivalents as much as possible, what share should Rebecca take?  How much money

would she have to pay Daniel now to buy this increased share, so that his certainty equivalent for

his remaining share plus her payment to him should be equal to $70,000 (the amount that he

would get if they sold to Cooney now and divided the money equally)?

(c)  If Rebecca paid her brother and increased her share of the returns from selling the

properties as you described in part (b), then what would be her certainty equivalent for her share

of the returns minus her payment to her brother?

(d)  Make a chart showing the (inverse) cumulative distribution of the net returns

(including the payment to or from the other sibling) that Daniel and Rebecca will each get under

your plan from part (b).

3.  If the manager is diligent, then the gross profits that our company will earn from a new project

will be a random variable drawn from a Normal distribution with mean $900,000 and standard

deviation $200,000.  But if the manager shirks then these profits will be reduced by 20%. We

cannot observe whether the manager is diligent or shirking, but we will be able to observe the

gross profits that are generated.  The manager has constant risk tolerance $50,000.  Shirking

would be worth an additional $40,000 in compensation to the manager.  The manager's pay may

depend on the gross profit earned, but this pay cannot be less than $80,000  in any case, and the

manager would quit now if the certainty equivalent of his compensation plan was less than

$200,000.  We want to maximize our company's expected net profit, after subtracting the amount

that we pay the manager. 

(a)  Let us consider linear compensation plans, adjusted to the minimum wage $80,000 where

necessary.  That is, suppose that the wage that we pay the manager will be some fixed constant

plus a fixed fraction of the gross profits, or $80,000, whichever is larger.  Find the compensation

plan of this linear form that maximizes our expected net profit.  Under this plan, what is the

highest gross profit for which the manager gets only $80,000?  What fraction of profits over this
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amount do we pay to the manager?

(b)  If we consider nonlinear compensation plans, how much can you increase our expected net

profit?

(c)  Suppose instead that we compensate the manager in such a way that he does not quit but he

shirks.  What is the highest expected net profit that our company can earn from this project with a

shirking manager?

(d)  How would your optimal linear compensation plan in part (a) change if shirking reduced

gross profits by 25%, but everything else is the same?

4.  Consider again the Part C of the Superior Semiconductor case, as described at the beginning

of Chapter 4 and analyzed in Section 4.6.  Let us assume, for simplicity, that all costs and

revenues of this T-regulator product will accrue 2 years from now, but the interest rate on risk-

free bonds is essentially zero.  The value in 2 years of $1 that is invested now in the well-

diversified market portfolio will be a Generalized Lognormal random variable with quartile

boundary points $0.80, $1.10, and $1.50.  Suppose that, in the T-regulator project, the

development costs, the event of successful development, and the number of entering competitors

are believed to be independent of the returns to the market portfolio.  But the total value of the

market for the T-regulator product in this case will be dependent on the same macroeconomic

forces that will determine the returns to the market portfolio in the stock market.  To be specific,

suppose that Superior Semiconductor's business-marketing manager says that, if she were told

that the stock market portfolio would decrease to $0.80 in 2 years per dollar invested now, then

she would revise her median value of the whole T-regulator market to $85 million.

(a)  Assuming that investors in the stock market understood all the facts described above and in

Part C of the Superior Semiconductor case, would you recommend that Superior Semiconductor

develop the new T-regulator product?  How would the total value of Superior Semiconductor's

stock change if the company announced that it was developing the T-regulator device?

(b)  How would your answer change if the business-marketing manager instead assessed a

conditional median of $90 million for value of the T-regulator market given the stock market

portfolio decreasing to $0.80 in 2 years?


