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Chapter 8: Risk Sharing and Finance

In our study of decision analysis, weinitially assumed (starting in Chapter 2) that the
basic criterion for defining optimal decisions under uncertainty is maximization of the decision-
maker's expected payoff. This assumption seemed questionable, however, when we observed
that individual decision-makers are often risk averse. Then utility theory (in Chapter 3) taught us
to use expected utility values, rather than expected monetary values, as our general criterion for
optimal decision-making. We have focused on the theory of utility functions with constant risk
tolerance, as a practical framework for analyzing the effect of risk aversion on peopl€e's decisions.
But utility theory was still about decision-making by individuals. In this chapter we make the
transition from individual decision-making to decision-making in partnerships and corporations.

A large business enterprise generally has a chief executive officer, but it typically has
many owners (partners or stockholders), each of whom may have a different risk tolerance. How
should such partnerships or corporations make decisions under uncertainty? Should they use the
utility function of the chief executive officer, or of the owners? If the owners, how do we resolve
their differences when they have different utility functions?

We begin this chapter with a general analysis of optimal risk sharing among individuals
who have constant risk tolerance. We find that, in an optimal allocation of risks, more risk
tolerant people should hold more risks, in proportion to their risk tolerance. We show that a
partnership with such optimal risk sharing should evaluate investment opportunities by applying
arisk tolerance that is the sum of the partners individual risk tolerances.

We then consider the effect of incentive constraints that may prevent managers from
achieving such optimal risk sharing with outside investors. The trade-off between risk sharing
and incentives is analyzed in simple principal-agent problems. This analysis teaches us that
senior managers of big businesses should be expected to bear a personally significant share of the
corporate risks. Such managers may then want corporate decision-making to be guided by their

own personal utility functions applied to their personal shares of the corporate risks. But avery



different approach is needed if we want to analyze corporate decision-making on behalf of the
stockholders.

When a publicly held corporation makes decisions on behalf of its stockholders, it should
generally assume that its stock is held by investors as a part of awell-diversified portfolio, and
that these stockholders want the corporation to maximize the value of its shares in the stock
market. So to understand optimal corporate decision-making for the stockholders, we need a
theory of how the prices of financial assets are determined in the stock market. We develop here
amodel of financial asset pricing, using the assumption that the stock market includes many
investors who have constant risk tolerance. This model is somewhat different from the well-
known capital asset pricing model (CAPM), but it yields similar and closely related results. Both
these asset-pricing model s teach us that the magnitude of a corporation's risks alone may be less
important than the rel ationship between these risks and the greater aggregate risks of the whole
stock market.

Any system of asset pricing that does not create arbitrage opportunities must be consistent
with a generalized expected-value criterion that applies some modified probabilities which may
be determined in the stock market. These general results of arbitrage pricing theory are
introduced at the end of this chapter, and are shown to be include our asset-pricing model asa

special case.

8.1. Optimal risk sharing in a partnership of individuals with constant risk tolerance

To introduce the basic ideas of optimal risk sharing, let us begin with an example of two
individuals (numbered 1 and 2) who are considering a real-estate development project. Suppose
that they have an option to buy atract of land for $125,000, after which they would then need to
spend an additional $40,000 on improvements (including an alocation for the cost of their own
time in supervising the project) before they could sell the land in subdivided lots. The total
revenue that they could then earn from selling these lots would be uncertain, but has an expected
value of $200,000 and a standard deviation of $25,000. For simplicity, let us assume here that
the time to complete thisreal estate project is small enough that we can ignore the interest costs

of borrowing money to cover the expenses before the revenues come in. So the net returns from



thisreal estate project next year will have expected value

1L = 200,000 - (125,000 + 40,000) = $35,000
and standard deviation

o = $25,000.
Suppose that each of these two individuals evaluates risky incomes using a utility function with
constant risk tolerance, where individual 1 hasrisk tolerance

r, = $20,000,
and individual 2 hasrisk tolerance

r, = $30,000.
They must decide whether to undertake this real estate project, and if so, how to divide the
returns among themselves. Let us assume that the uncertainty about profits from this project can
be described by a Normal distribution.

In Section 4.7 of Chapter 4 we saw that, when an individual with constant risk tolerancer
has a gambl e that will pay arandom amount of money drawn from aNormal probability
distribution with mean u and standard deviation o, his certainty equivalent for the gambleis

CE=p - (0.5/r)*0"2
So if individual 1 were to undertake this project himself, his certainty equivalent would be
W - (0.5/r)*(0"2) = 35000 - (0.5,/20000)* (25000"2)
= 35000 - 15625 = $19,375.
That is, the option to buy this land and undertake this project would be worth $19,375 to
individual 1, if he had to undertake all the risks of the project alone.
If individual 2 were to undertake this project by herself, then its value to her would be
1 - (0.5/15)*(0"2) = 25000 - (0.5,/30000)* (25000"2)
= 35000 - 10417 = $24,583
So if individual 1 had the option to buy thisland, then individual 2 would be willing to pay up to
$24,583 to buy the option from him, and individual 1 would be glad to sell the option for any
price above $19,375. Of courseit isnot surprising that this risky project should be more valuable
to the individual who has greater risk tolerance.

But even though individual 2 is strictly more risk tolerant than individual 1, the project



could be even more valuable to these individuals if they undertake the project as partners, with
individual 1 taking a positive share of the project'srisks. For example, if they each took 50% of
the net profits from the project, then each individual would anticipate a payment drawn from a
Normal distribution with mean 0.50* 35000 = $17,500 and standard deviation
0.50* 25000 = $12,500. For his 50% share, individual 1 would have certainty equivalent
CE(1) = 17500 - (0.5,/20000)* (12500"2) = 17500 - 3906 = $13,594,
For her 50% share, individual 2 would have certainty equivalent
CE(2) = 17500 - (0.5,/30000)* (12500"2) = 17500 - 2604 = $14,896.
So the total certainty-equivalent value of the project to the two individuals when they share it
equally is
CE(1) + CE(2) = 13594 + 14896 = $28,490
Thus, the project is worth more to them when it is shared equally than when the more risk
tolerant individual 2 owns it completely.

Such risk sharing is beneficial because each individual j'srisk premium (0.5/ rj)* oN21s
proportional to the square of the standard deviation (the variance) of his or her income. So
halving individual 2's share from 100% to 50% would halve the standard deviation of her
monetary returns from $25,000 to $12,500, which in turn would reduce her risk premium to a
quarter of itsformer value from $10,417 to $2604. This decrease in individual 2'srisk premium
from giving up 50% of the project (10417-2604 = 7813) is much greater than the increasein
individual 1'srisk premium when he takes on 50% of the project (3906-0).



A | B | c | D | E | F | G | H
1 |Suppose profits will be drawn froma Nornmal distribution
2 [Mean 35000
3 [Stdev 25000
4
5 |Profits can be shared by individuals 1 and 2
6 |l ndivid RiskTol | %Share Mean St dev CE Ri skPrem um
7 1/ 20000 0.4| 14000, 10000 11500 2500
8 2| 30000 0.6/ 21000, 15000 17250 3750
9
10 Sum( RTs) |CE(t ot al , sunRTs) Sum( CEs) |Sun( RPs)
11 | 50000 28750] | 28750 6250
12 |SCLVER(1): Maxim ze F11 by changing C7.
13 [FORMULAS |
14|C8. =1-C7 B33. =NORM NV( RAND(), B2, B3)
15 |D7. =C7*$B$2 D27. =1-C27 D28. =-C28
16 [E7. =C7*$B$3 C34. =C$28+C$27*$B34
17 |F7. =Dr7-(0.5/B7)*E7"2 D34. =D$28+D$27*$B34
18 |Gr. =D7-F7 | C34: D34 copied to C34: D534
19| D7: G/ copied to D8: G3 C31. =CE(C34: C534, C30)
20 [F11. =SUM F7: F8) D31. =CE(D34: D534, D30)
21 [Gl1. =SUM G7: &B) F31. =SUM C31: D31)
22 (B11. =SUM B7: B8) F30. =SUM C30: D30)
23 (C11. =B2-(0.5/B11)*B3"2 F33. =CE(B34:B534, F30)
24 | | F28. =C28+D31
25 |SOLVER(2): Maxim ze F31 by changi ng C27: C28.
26 I ndi vi dual 1 2
27 Sharing rate 0.4 0.6 C28 val ue for CE2=0
28 Fi xed paynent 17000] -17000 17475
29
30 ILI skTol s| 20000, 30000 50000 |Sum Ri skTol s)
31 CE| 28650 475 29125|Sun{ CEs)
32| (simd) Total $| Net incones |
33 |Si nTabl ¢ 72184. 7| Pay 1 | Pay 2 29125|CE(t ot al $, sunRTs)
34 0| 59273, 40709, 18564
35 0. 002 396, 17158| -16763
36 0.004| 34138| 30655 3483
37 0. 006| 48928, 36571 12357
38 0. 008 5586| 19235 -13648

Figure8.1. SharingaNormal gamble.




The spreadsheet in Figure 8.1 is set up to analyze the effect on the individuals' certainty
of other ways of sharing the risks of this project. When we enter individual 1's share of the risks
into cell C7, then the expected value and standard deviation of 1'sincome are calclulated in cells
D7 and E7 by the formulas =C7* $B$2 and =C7* $B$3, where cells B2 and B3 contain the
mean 35000 and standard deviation 25000 of the project's total profits. Then individua 1's
certainty equivalent is calculated in cell F7 by theformula =D7-( 0. 5/ B7) * E7" 2, where B7
containsindividual 1'srisk tolerance 20000. Individual 2's shareiscalculated by =1- C7 in cell
C8, and copying D7:F7 to D8:F8 yields individual 2's certainty equivalent for her share in cell
F8. Cell F11 computes the sum of the individuals certainty equivalents by the formula
=SUM F7: F8).

Now we can use Solver in this spreadsheet to maximize the sum of the computed
certainty equivalentsin cell F11 by changing individual 1's percentage share of the project in cell
C7. Theresult isthat Solver returnsthe value 0.4 in cell C7, as shown in Figure 8.1. When
individual 1 takes a40% share, his expected monetary value is 0.40* 35000 = $14,000 and his
standard deviation is 0.40* 25000 = $10,000, and so his certainty equivalent is

CE(1) = 14000 - (0.5,/20000)* (10000"2) = 14000 - 2500 = $11,500
When individual 2 takes a 60% share, her expected monetary value is 0.60* 35000 = $21,000 and
her standard deviation is 0.60* 25000 = $15,000, and so her certainty equivalent is
CE(2) = 21000 - (0.5,/30000)* (15000"2) = 21000 - 3750 = $17,250
When they plan to share the risks in this way, their total certainty equivalent of the project is
CE(1) + CE(2) = 11500 + 17250 = $28,750
Thistotal $28,750 is the maximal sum of certainty equivalents that the partners can achieve by
sharing the profits of this project.

In this optimal sharing rule, theratio of 2's shareto 1's shareis0.6/0.4 = 1.5. Notice that

theratio of 2'srisk tolerance to 1'srisk tolerance is exactly the same 3000020000 = 1.5. This

result is not a coincidence, as the following general fact asserts.

Fact 1. Suppose that a group of individuals have formed a partnership to share the risky
profits from some joint venture or gamble, and each individua j in this group has a constant risk

tolerance that we may denote by r. LetR denote the sum of all the partners' risk tolerances
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(R= Zj rj). Then these individuals can maximize the sum of their certainty equivalents by
sharing the risky profits among themselvesin proportion to their risk tolerances, with each

individua j taking the fractional share g /R of the risky profits.

For this example, Fact 1 yields the same optimal shares that Solver returned in Figure 8.1.
The sum of the partners risk tolerances hereis
R =r; + r, = 20000+30000 = $50,000.
So the optimal share for individual 1 is 2000050000 = 0.4, the same share that Solver
generated in cell C7.

For any such partnership, we may define the total risk tolerance of a partnership to be the
sum of the risk tolerances of theindividual partners. For this example, we have seen that the
partnership's total risk toleranceis R = $50,000. Now, if we considered the partnership asa
corporate person with constant risk tolerance equal to thistotal R, then aNormal lottery with
mean $35,000 and standard deviation $25,000 would have certainty equivalent

K - (0.5/R)* 0”2 = 35000 - (0.5,/50000)* (25000"2) = $28,750
for this partnership, asis calculated in cell C11 of Figure 8.1. Notice that this corporate certainty
equivalent is exactly the same as maximized sum of the partners individual certainty equivalents
in cell F11 under the optimal sharing rule. The following general fact asserts that thisresult is

also not a coincidence.

Fact 2. Consider agroup of individuals who have formed a partnership to share the risky
profits from some joint venture or gamble, where each individual has constant risk tolerance, as
assumed in Fact 1. Let R denote the sum of all the partners' individual risk tolerances (R = Zj rj).
Then the maximal sum of the partners certainty equivalents that can be achieved by optimal risk
sharing (as described in Fact 1) is equal to the certainty equivalent of the whole gamble to an
individual who has a constant risk tolerance equal to the sum of these partners risk tolerances.
Thus, to maximize the sum of their certainty equivalents, the partnership should evaluate
gambles according to its total risk tolerance, whenever the partners have a choice about which

gambles to undertake.

Facts 1 and 2 here do not require the gamble to be Normal. In illustrating these two facts,



we have used the special formulafor certainty equivalents of Normal gambles, but the same
results can also be obtained with simulation analysis, as shown in the lower portion of Figure 8.1
(row 25 and below). A simulation table here holds a sample of 501 independent simul ations of
the Normally distributed of profits for this project. We consider sharing rules where each partner
gets afractiona share of the profits aslisted in cell C27 or D27 plus afixed payment listed in
cell C28 or D28 (for 1 or 2 respectively). A negative payment in D27 represents a payment from
individual 2 to individual 1, as when she must buy into a project that was initially owned by
individual 1. The fractional sharesin C27:D27 must sum to 1, because the partners must share
100% of the profits, and the fixed paymentsin C28:D28 must sum to O, because any fixed
payment to one partner must come from the other. These constraints are represented in this
spreadsheet by the formulas =1- C27 incell D27 and =- C28 incell D28. Under the sharing
rulein C27:D28, the net incomes from the project's simulated profits for individuals 1 and 2 are
listed below in cells C34:C534 and D34:D534, and the corresponding certainty equivalents are
computed in cells C31 and D31 with the formulas

=CE( C34: C534, C30) and =CE(D34: D534, D30)
(where C30 and D30 contain the individuals' risk tolerances). The sum of the individuals
certainty equivalentsis computed in cell F31.

If we ask Solver to maximize the sum of theindividuals certainty equivalentsin cell F31
of Figure 8.1 by changing the sharing-rule parametersin cells C27:C28, then Solver will report
that individual 1 should keep a 40% share of the profits (as shown in cell C27) and individual 2
should take the remaining 60% (D27), as Fact 1 predicts. Solver will leave 1's fixed payment in
C28 at any arbitrary value, because changing it would not affect the sum of the certainty
equivaentsin G31. (In making Figure 8.1, | arbitrarily entered 17000 into C28 before running
Solver, and Solver left it unchanged.)

Cedll F33in Figure 8.1 calcul ates the certainty equivalent of the total profits from this
project, based on the ssmulation datain B34:B534, by the formula

=CE( B34: B534, F30)
where F30 contains the sum of the partners' risk tolerances R = $50,000. The valuein cell F33

(%$29,125) is exactly the same as the maximized sum of the partnerssindividual certainty



equivalentsin cell F31, as Fact 2 predicts. Cells F33 and F31, being estimates from simulation

data that only approximates the given Normal distribution, are slightly different from the values
in cells F11 and C11, which use the exact formulafor certainty equivalents of Normal gambles.

But these simulation estimates also confirm Facts 1 and 2, because these facts do not depend on
Normality.

Fact 2 can give us some sense of why businesses are typically more risk tolerant than
individuals, because the risks of a business may be shared among many investors. When shares
of acompany are owned by 50 people whose average risk tolerance is $20,000, then Fact 2
asserts that the company itself should evaluate risks with arisk tolerance of $1,000,000. Fact 1
tells us that, among these 50 people, the ones with greater risk tolerance should have a greater
share of the company.

The above discussion assumes that partners should want to maximize the sum of their
certainty equivalents. Thisisagood assumption, but it needs some defense. After all, any single
partner may care only about his own certainty equivalent of what he gets from the partnership.
Why should anyone care about maximizing this sum of all certainty equivalents? The answer is

given by the following fact.

Fact 3. Consider arisk-sharing partnership where all partners have constant risk
tolerance. If the partners were planning to share risks according to a sharing rule that does not
maximize the sum of the partners certainty equivalents, then any partner j could propose another
sharing rule rule that would increase j's own certainty equivalent and would not decrease the

certainty equivalents of any other partners.

To understand Fact 3, notice first that adding any fixed payment from one partner to
another partner would not change the sum of the partners' certainty equivalents. A net payment
of x dollars from partner 2 to partner 1 (when there is no uncertainty about this amount x) would
decrease 2's certainty equivalent by x and would increase 1's certainty equivaent by x, because
each partner is assumed to have constant risk tolerance. Thus the net payment of x dollars would
leave the sum of their certainty equivalents unchanged.

Now, suppose that the partners were originally planning to use some sharing rule does not



maximize the sum of the partners certainty equivalents. Then consider any other sharing rule
that is optimal, in the sense of maximizing the sum of the partners certainty equivalents.
Changing to this "optimal" sharing rule would increase some partners' certainty equivalents, but
it might also decrease other partners certainty equivalents. But let us now modify this optimal
rule by adding some net payments that will cancel out these changes for all partners except one,
say partner j. Any partner whose certainty equivalent would decrease should receive an
additional payment equal to the amount of his decrease, to be paid by this partner j. Any other
partner whose certainty equivalent would increase should make an additional payment equal to
the amount of hisincrease, paying it to partner j. So when these payments have been added into
the optimal sharing rule, everybody other than partner j is getting exactly the same overall
certainty equivalent as under the original plan. But adding these fixed payments does not change
the sum of the partners certainty equivalents. So our modified optimal plan (with the additional
payments) still maximizes the sum of the partners' certainty equivalents, and so it must generate a
strictly greater sum of certainty equivalents than the original plan. Thus, with everybody else's
certainty equivalent unchanged, partner | must be enjoying a strictly greater certainty equivalent
under this new plan. This proves Fact 3.

Fact 3 tellsusthat it is always optimal for partners to maximize the sum of their certainty
equivalents. To apply Fact 3, consider our sharing example from the perspective of individual 1,
in a situation where the option to buy and develop the land was originally his alone, and so he has
the option to undertake the project without any participation from individual 2. Individual 2, of
course, has the alternative of not participating in the project, in which case she would get $0.

Any sharing rule that gives 2 a certainty equivalent more than $0 would be better for her than
nonparticipation, and so could be accepted by her. The best possible sharing rule for individua 1
would be one that maximizes 1's certainty equivalent subject to the constraint that 2's certainty
equivalent should not be lessthan $0. Fact 3 tells us that this can be achieved by sharing in the
optimal proportions, to maximize the sum of the individuals' certainty equivalents, with an
additional payment from individual 2 to individual 1 that reduces 2's certainty equivalent to $0
(or to some value dlightly greater than $0). By Fact 1, the optimal share for individual 2 is 60%
of this project, because 30000,/(20000+30000) = 0.6, and we have seen that a 60% share with no
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additional payment would have certainty equivalent $17,250 to individual 2 (see cell F8 in Figure
8.1). So the best possible sharing rule for individual 1 would be to sell individual 2 a 60% share
of this project for an initial payment of $17,250 (or dlightly less than this), which just exhausts
2's perceived gains from participating in the partnership. After selling 60% of the investment to
individual 2 for thismaximal price, individual 1 would have $17,250 in cash plus arisky
investment that is worth $11,500 to him (his certainty equivalent for a 40% share). Thus, selling
60% to individual 2 for $17,250 would make individual 1's overall certainty equivalent from the
project 17250 + 11500 = $28,750. Thisisthe most he could possibly hope for in any sharing
rule, because it allocates to him all the maximal sum of certainty equivalents that the two
partners can get from this project.

Of course, individual 2 would prefer to pay less than $17,250 for a 60% share, and she
might try to negotiate for alower pricein this situation. Recall that $19,375 was 1's certainty
equivalent for undertaking the project himself, and so 1 would not accept any certainty equivalent
less than $19,375 when his aternative is owning 100% of the project himself. Because 1's
certainty equivalent for 40% of the project is $11,500, he needs an additional payment of
19375-11500 = $7875 to raise his certainty equivalent to thislevel. So the best possible sharing
rule for individua 2 here would be for her to buy 60% of the project (her optimal share) for just a
bit above $7875, which is the lowest price that individual 1 would be willing to accept.

But regardless of who initially owns the project, the partners can can agree that they
should maximize the sum of their certainty equivalents by sharing the risky returns in proportion
to their risk tolerances. How this maximal value is divided among them is a bargaining problem.
If one of them initially owns more than his or her optimal share of the project, there will exist a
range of transfer prices at which the individuals could both gain by changing to their optimal
shares. In this situation, the price that individual 2 may actually pay to buy 60% of the project
must be a question of bargaining between the two individuals, and without a theory of bargaining
we can only say here that it should be somewhere between $7875 and $17,250.

Facts 1, 2, and 3 here require the assumption that all partners have constant risk tolerance,
but they do not require any assumption about the probability distribution from which the

partnership's profits will be drawn. Normality here was only used to compute exact certainty
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equivalentsin the top 11 rows of Figure 8.1.

A [ B | ¢ | Db [ E | F | G [ H I J
1 |Sharing profits drawn froma Gen-Lognormal distribution
2 with quartiles: 50 80 120|($1000s)
3 |Total $profits (simd)
4 53 |
5 Part ners
6 1 2 3 Suns
7 | Sharing rates 0.3 0.3 0.4 1|Sunm Rat es)
8 | Fi xed paynent 0 0 0 0|Sun{ Paynent s)
9
10 Ri skTol s 30 30 40 100|Sum( Ri skTol s)
11 CE| 24.959| 24. 959 33. 279 83. 198 |Sum( CEs)
12 Total $
13 |Si nTabl| 53. 341| Partners' incones 83. 198 |CE( t ot al $s, sunRTs)
14 0| 66. 709 20. 013| 20. 013| 26. 683
15| 0.002|70.729|21.219| 21. 219| 28. 291
16| 0.004|19.302|5.7906| 5. 7906/ 7. 7208 |FORMJULAS
17| 0.006|97.585| 29.276| 29. 276| 39. 034|B4. =GENLI NV( RAND(), D2, E2, F2)
18| 0.008| 68.36| 20.508| 20.508| 27. 344|B13. =B4
19 0.01| 141. 21| 42. 363| 42. 363| 56. 484 |C7. =1-SUM D7: E7)
20| 0.012|86.192| 25. 858| 25. 858| 34.477|C8. =- SUM D8: E8)
21| 0.014|84.812| 25. 444 25. 444| 33. 925|C1l4. =C$8+C$7*$B14
22| 0.016|105.66| 31. 697 31.697| 42.262| Cl4 copied to Cl4: E514.
23| 0.018|137.95|41.385| 41.385| 55.18|Cl1l. =CE(Cl4:C514, Cl10)
24 0. 02| 136.17| 40. 851 | 40. 851| 54. 468| Cl1 copied to Cl1: E1l1l.
25| 0.022|87.173| 26. 152| 26. 152| 34.869|G/. =SUM C7: E7) |
26 | 0.024|52.619| 15.786| 15.786| 21.048| G/ copied to G3, GLO: G11.
27| 0.026|155.76| 46.729| 46. 729| 62. 305|G1L3. =CE(B14: B514, G10)
28 | 0.028|55.537|16.661| 16. 661| 22. 215|SOLVER maxi m ze Gl1
29 0. 03| 193.94| 58.183| 58. 183| 77.577| by changi ng D7: E8

Figure 8.2. Optimal risk sharing among three partnerswith constant risk tolerance.

partnership's profits are generated by a Generalized-Lognormal distribution that is not Normal.

Figure 8.2 shows an example of optimal linear sharing among three partners where the

A linear sharing rule for partners 2 and 3 is parameterized in cells D7:E8 here, with 1's share

being determined in cells C7 and C8 so as to keep the sum of shares equal to 100% and the sum

of the fixed payments equal to $0. When Solver is asked to adjust these sharing rules so asto

maximize the sum of the partners certainty equivalentsin cell G11, then Solvers optimal
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solution should give the partners fractional sharesin C7:E7 that are proportional to their
respective risk tolerancesin cells C10:E10, as predicted by Fact 1. Then as predicted by Fact 2,
the maximized sum of the three partners' certainty equivalentsin cell G11 is equa to the
partnerships certainty equivalent for the total risky profit which is computed in cell G13, using a

risk tolerance for the partnership that is the sum of the partners individual risk tolerances.

8.2 Optimality of linear rulesin the larger class of nonlinear sharing rules

In Figures 8.1 and 8.2, when we asked Solver to find an optimal sharing rule, we
implicitly assumed that the two partners would share the profits linearly. Here apartner's shareis
linear if each extra dollar of profit would increase the partner's income by the same amount. But
this linearity assumption is not necessary. Even when we allow that a partner'sincome may be a
nonlinear function of the total profit earned, the linear sharing rule that we described in Fact 1 is
still optimal for maximizing the sum of the certainty equivalents among partners who all have
constant risk tolerance. (For anillustration of anonlinear sharing rule, see the inset graph in
Figure 8.7 below.)

| want to show you that nonlinear sharing rules cannot do better for the partnersin this
example, but it is more complicated to evaluate nonlinear sharing rules. Even with profits
coming from a Normal random variable, the individuals incomes will not be Normal with
nonlinear sharing rules, and so we cannot use the simple quadratic formulato compute exact
certainty equivalents. So we must use asimulation model. Furthermore, seaching among
nonlinear sharing rules is much harder, because there are so many nonlinear rules. But Figure 8.3
shows a spreadsheet in which we can evaluate alarge set of nonlinear sharing rules and show the
optimality of the (40%, 60%) linear sharing rule in this set.

Data from 501 simulations of the partnership's total profit are contained in cells
B22:B522 of Figure 8.3. (Note: Rows 25 to 519 have been hidden in Figure 8.3, using the menu
command Data:Group.) The smallest simulated profit (-40750) is shown in cell B5, and avalue
dightly above the largest simulated profit (104222) isshownin cell B15. Cells B6:B14 have
been filled with an increasing sequence of values that were chosen (somewhat arbitrarily)
between these smallest and largest profits (0, 10000,... , 80000).
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A | B | C | D | E | F [ G H I
1 |Sharing profits drawn froma Normal distribution
2 with Mean| 35000 and Stdev| 25000
3
4 Tot al PayTol|Sl opel|lnterceptl
5 -40750 700 0.4, 17000
6 0|l 17000 0.4, 17000
7 10000| 21000 0.4, 17000
8 20000( 25000 0.4, 17000
9 30000 29000 0.4, 17000
10 40000 33000 0.4, 17000
11 50000( 37000 0.4, 17000
12 60000( 41000 0.4, 17000
13 70000( 45000 0.4, 17000
14 80000( 49000 0.4, 17000
15 104222| 58689
16 SOLVER Max F19 by changi ng C5: Cl15
17 Part ner1|{Part ner2
18 Ri skTol s| 20000| 30000 50000 |Sunm( Ri skTol s)
19 | CE| 28746|618. 46 29364 |Sum( CEs)
20 [(sim d) Total $ |
21 |Si mTabl { 24223|PayTol|PayTo2 CE(t ot al $s, sunRTs)
22 0| 68354| 44342| 24012 29364
23 0.002| 18508| 24403| -5895
24 0.004| 11732| 21693| -9961
520| 0.996| 34555| 30822 3733
521| 0.998| 24301| 26720| -2420
522 1| 46912| 35765| 11147
523
524|FORMULAS
525|B21. =NORM NV(RANDX(), C2, F2)
526|B5. =M N(B22: B522) |
527|B15. =MAX(B22: B522) +1
528|D5. =(C6-C5)/ (B6-B5) D5 copied to D5: D14
529|E5. =C5- D5* BS| E5 copied to E5: El4
530|C22. =VLOOKUP( B22, $B$5: $E$14, 4) +B22* VLOOKUP( B22, $B$5: $E$14, 3)
531|D22. =B22- 022| |
532 C22: D22 copied to C22: C522
533|C19. =CE(C22: C522, C18) D19. =CE(D22: D522, D18)
534|F18. =SUM C18: D18) | F19. =SUM C19: D19)
535|F22. =CE(B22: B522, F18) | |

Figure 8.3. A spreadsheet to evaluate nonlinear sharing rules.
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We will consider continuous sharing rules such that 1's income depends linearly on profit
inside the interval between each pair of adjacent valuesin cells B5:B15 of Figure 8.3, but a
different linear function may be used in each of theseintervals. That is, 1'sincome could be
specified by one linear formulafor profitsin the interval from -40750 to 0, by another linear
formulafor profitsin the interval from 0 to 10000, and so on. For continuity, we require that the
linear formulas on the intervals below and above 0 must specify the same income when profit is
$0, with a similar requirement at each of the other interval-separatorsin B6:B14. Such rules are

called piecewise linear. By using more small intervals, we could closely approximate any

nonlinear sharing rule by such piecewise linear rules. (For a picture of a piecewise linear
function for asimilar example, see theinset graph in Figure 8.7.)

Such a piecewise-linear sharing rule can be specified in Figure 8.3 by listing the income
that individual 1 would get for each of the profit value listed in cells B5:B15. In this spreadsheet,
theseincomesfor 1 arelisted in cells C5:C15. That is, each cell in C5:C15 specifies the income
that individual 1 would get, under this profit-sharing rule, if the profit were equal to the
corresponding value in B5:B15. For profitsin the interval between any adjacent pair of valuesin
B5:B15, we will determine 1'sincome is by linear interpolation, that is, by applying the linear
function that matches the specified income for 1 at each of the two endpoints of the interval. So
for any profit x in the interval between B5 and B6, 1'sincome is supposed to be alinear function
of x that has the form A*x+B, where the slope A is computed in cell D5 by the formula

=( C6- C5) / ( B6- B5)
and the intercept B is computed in cell E5 by the formula

=C5- D5* B5
Cells D5:E5 have been copied down the range D5:E14, to show the corresponding slope and
intercepts for the linear sharing rule that is applied in the interval between each value in B5:B14
and the next value below it.

Now to apply this piecewise-linear sharing rule to the simulated profitsin cell B22 of
Figure 8.3, cell C22 contains the formula

=VLOOKUP( B22, $B%$5: $E$14, 4) +B22* VLOOKUP( B22, $B%$5: $E$14, 3)
Thefirst VLOOKUP in this formula finds the lowest row in the range B5:E15 where the B-cell's
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valueis not greater than B22, and then returns the intercept listed in the E-column (the 4th
column of B5:E14) in that row. The second VLOOKUP in thisformulareturns the
corresponding slope in the 3rd column of the B5:E14 table, which is then multiplied by B22 and
added to the intercept. Cell D22 computes the corresponding income for individual 2 from the
B22 profit value, by the formula

=B22- C22
Then copying C22:D22 down to C22:D522, we get the incomes for the two partners when the
piecewise-linear sharing rule from B5:E14 is applied to the simulated profitsin B22:B522. The
corresponding certainty equivalents for individuals 1 and 2 are computed in cells C19 and D19,
using the CE function, and the sum of these certainty equivaentsis computed in cell F19.

Now we can ask Solver to maximize cell F19 by changing cells C5:C15 in Figure 8.3,
which specify 1'sincome valuesin this piecewise-linear function. Having so many cells to adjust
makes this a hard problem for Solver, and it may need to work through forty trial solutions which
could take an hour of computing time on an older computer from the 1990s, but which can be
donein less than a minute on newer machinesin 2002. The result that Solver returns, as shown
in Figure 8.3, has the same linear sharing rule applied in al intervals, and the slope of thisrulein
cells D5:D14 adways givesindividual 1 his optimal share of risky profits as specified by Fact 1.
(If you happen to specify valuesin C5:C15 that depend on the B5:B15 profits according to a
linear formulathat has the optimal slope 0.4, then Solver will quickly report that these initial
values constitute an optimal solution and will leave them unchanged. The intercept that Solver
returnsin cells E5:E15 may be any number, and will depend on theinitial values that you
specified in cells C5:C15 before applying Solver.)

Cell F22 in Figure 8.3 applies the CE function to estimate the value of the total profits of
the project (as sampled in B22:B522) to the partnership, when the partnership istreated as a
corporate person with a contant risk tolerance equal to the sum of the partners individual risk
tolerances ($50,000, computed in cell F18). Fact 2 tells us that the optimal sum of certainty
equivalentsin cell F19, after it has been maximized by Solver, must be equal to thisvaluein cell
F22, and this equality can be seenin Figure 8.3.

Finally, let us consider in Figure 8.4 a discrete example where two partners with constant
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risk tolerances of $20,000 and $30,000 have to share a gamble that will pay an amount of money

drawn from the following discrete distribution:

Partnership's total profit Probability
$0 0.2
$25,000 0.3
$50,000 04
$75,000 0.1

These profit values and probabilities are shown in cells A6:A9 and B6:B9 of Figure 8.4. Cells
C6:C9 are used to specify how much income individual 1 should get from the partnership for
each possible amount of profit. The corresponding net incomes for individual 2 are computed in
cells D6:D9, by entering the formula =A6- C6 in cell D6, and then copying D6 to D6:D9. The
resulting certainty equivalent for individual 1 is computed in cell C12 by the formula

=CEPR( C6: C9, $B%$6: $B%$9, C2)
where cell C2 contains 1'srisk tolerance $20,000. (Recall from Section 3.1 in Chapter 3 that
CEPR(values, probabilities, risktolerance) returns the certainty equivalent of a discrete gamble
where the given values have the given probabilities, for an individual with the given constant risk
tolerance.) Copying C12 to D12 yieldsindividual 2's certainty equivaent of her income from
this discrete gamble. The CEPR function is also applied in cell A14 to compute the certainty-
equivalent value of the whole gamble to an individual whose risk tolerance is the sum of these
partners' risk tolerances.

In Figure 8.4, Solver has been asked to maximize 1's certainty equivalent in cell C12 by
changing the sharing-rule parameters in cells C6:C9, subject to the constraint that 2's certainty
equivalent in cell D12 must satisfy D12>=0. So cells C6:D9 here show the best possible sharing
rule for individual 1, subject to the constraint that individual 2 should be willing to stay in the
partnership, when 2's alternative is to leave the partnership and get nothing ($0) from this
gamble. Inthisoptimal sharing rule, individual 1 gets a fixed payment of $17,857 from
individual 2 (1'sincome in C6 when the gamble pays $0), and then individual 1 gets $0.40 of
each dollar that is earned from the gamble (computed in cells E6:E8). Individual 2 getsthe
remaining $0.60 of each dollar earned from the gamble, and this 60% shareis just worth the

fixed payment of $17,857 to her. Thus, the partners optimal shares are linear in profits and are

17



proportional to their risk tolerances, as predicted by Fact 1. Also, as predicted by Fact 2, the
optimal sum of the partners' certainty equivalents (in cell D14) isequal to the certainty equivalent

of the whole gamble to an individual with the total risk tolerance of the partners (in cell A14).
A B | C D | E F G

1 Partner 1|Partner 2

2 | Risk Tol erance 20000| 30000

3

4 |PCSSI BLE OUTCOMES

5 [Total $| Proby | PayTol | PayTo2 |Ratel
6 0 0.2 17857 -17857 0.4
7 25000 0.3|] 27858] -2858| 0.4
8 50000 0.4| 37857 12143| 0.4
9 75000 0.1 47859| 27141

10

11 |Sum( RTs) CE(1) CE(2)

12 50000\ 29763 0

13 [CE(t ot al $, sunRTs) Sum of CEs

14 29763 29763

15

16 [SOLVER 1 (no noral hazard):

17 | Max Cl2 by changing C6: C9 subject to D12>=0.
18

19

20 |FORMULAS

21 |D6. =A6-C6 D6 copied to D6: D9

22 |E6. =(C7-Cb)/ (A7-A6) |E6 copied to E6: E8
23 |[C12. =CEPR(C6: C9, $B$6: $B$9, C2)
24 |D12. =CEPR(D6: D9, $B$6: $B$9, D2)
25 |D14. =SUM C12: D12)
26 |AL2. =SUM C2: D2) Al4. =CEPR(A6: A9, B6: B9, Al2)

Figure 8.4. Optimal risk sharing in a discrete example.

8.3. Risk sharing subject to moral-hazard incentive constraints

Inreal life, people do not always share every risk in proportion to their individual risk
tolerances. One basic reason is that people who are well insured against risks sometimes do not
work hard enough to avoid them. This problem is called moral hazard in the insurance industry.

To avoid such moral hazard problems, workers and managers in an enterprise are often forced to
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bear more of the enterprise's risks than they would bear under an ideal risk-sharing system.

To introduce the ideas of moral hazard, let us reconsider in Figure 8.5 an extension of the
discrete example from Figure 8.4 in the previous section. In this example, individuals 1 and 2,
who have constant risk tolerances $20,000 and $30,000 respectively, are sharing a gamble that
will pay atotal dollar amount to be drawn from the probability distribution shown in cells A5:B9.
Cells C5:D9 in Figure 8.4 show the sharing rule that maximizes 1's certainty equivalent, subject
to the constraint that 2's certainty equivalent should be at least $0. This sharing rule is equivalent
to 1 selling a 60% share of the gamble to 2 for $17,857.

But suppose now that the distribution of returns listed in cells A5:B9 can be achieved
only if individual 1 attends to some managerial duties which individual 2 cannot directly observe.
Suppose that, if individual 1 neglected these duties, then there would be no chance of the
partnership earning $75,000, and the profit would instead be either $0 or $25,000 or $50,000,
each with probability 1/3, as shown in cells G5:H9 of Figure 8.5. So 1's neglect of his duties
would reduce the partnership's expected profit from $35,000 to $25,000 (computable here by
SUMPRODUCT(A6:A9,B6:B9) and SUMPRODUCT (G6:G9,H6:H9) respectively). But
suppose that this neglect of his duties would enable individual 1 to take up another private
project that would be worth $6000 to him.

Under the sharing rule that was shown in Figure 8.4, if individual 1 neglected his duties,
then his income would be either $17,857 or $27,857 or $37,857, each with probability 1/3, and
this gamble would have a certainty equivalent of $26,224 to him (given his constant risk
tolerance of $20,000). So when the additional $6000 that he could earn privately is taken into
account, neglecting his duties to the partnership would enable individual 1 to get an overall
certainty-equivalent value of $32,224, which is better than the certainty-equivalent val ue of
$29,763 that he would get by properly fulfilling his duties to the partnership (shownin cell C12
of Figure 8.4). Thus, under the sharing rule that is shown in Figure 8.4, individual 1 would
prefer to neglect his duties. But if 1 neglects his duties then individual 2 should not be willing to
pay $17,857 for a 60% share of the profits!
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A B | C D | E F G | H | [
1 Partner 1|Partner 2 MORAL- HAZARD | NCENTI VES
2 | Risk Tol erance| 20000/ 30000 1's private$ if negligent
3 6000 | |
4 |PCSSI BLE OQUTCOMVES Probys if 1 is negligent
5 [Total $| Proby | PayTol | PayTo2 |Ratel Total $| Proby
6 0 0.2 6823 -6823| 0.95 0/0. 33333
7 25000 0.3| 30449 -5449| 0.54 25000/ 0. 33333
8 50000 0.4 43956 6044| 0.67 50000/ 0. 33333
9 75000 0.1| 60739 14261 75000 0
10
11 |Sun( RTSs) CE(1) CE(2) If 1 neglects his duties
12 50000] 27184 0 his share has CE
13 |CE(t ot al $, sunRTs) Sum of CEs 21184] |
14 29763 27184 CE(1) including private $
15 27184
16 |SCLVER 1 (no noral hazard):

17| Max Cl2 by changi ng C6: C9 subject to D12>=0.
18 [SOLVER 2 (noral hazard): | |

19| Max Cl2 by changi ng C6: C9 subject to D12>=0, Cl2>=Gl5.
20 |FORMULAS | |
21 |D6. =A6-C6 D6 copied to D6: D9
22 |[E6. =(C7-CB)/ (A7- AB) E6 copied to E6: ES8
23 |Cl2. =CEPR(C6: C9, $B%$6: $B%$9, C2)
24 |D12. =CEPR(D6: D9, $B%$6: $B$9, D2)
25 D14. =SUM Cl12: D12)
26 [A12. =SuM C2: D2) Al4. =CEPR(A6: A9, B6: B9, A12)
27 |[G13. =CEPR(C6: C9, H6: H9, C2)
28 |Gl5. =Gl3+&3 |

Figure 8.5. Optimal risk sharing with moral hazard, in a discrete example.

To find asharing rule that avoids this difficulty, we must add a constraint that individual
1 should not prefer to neglect hisduties. Such a constraint may be called a moral-hazard

incentive constraint, because it says that the risk sharing should not insure 1 so well that he does

not want to exert appropriate efforts to avoid bad outcomes. This moral-hazard incentive
constraint can be expressed in Figure 8.5 by the inequality C12>=G15, where C12 is 1's certainty
equivaent for his share of the partnership when he fulfills his duties (applying the probabilitiesin
B6:B9), and G15 is 1's certainty equivalent for his private income (in G3) plus his share of the
partnership when he neglects his duties (applying the probabilitiesin H6:H9).
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Figure 8.5 shows the results when Solver is asked to maximize 1's certainty equivalent in
cell C12 by changing the sharing-rule parametersin cells C6:C9, subject to the constraints
D12>=0 and C12>=G15. Thefirst constraints here says that individual 2 should not prefer to
quit the partnership, and the second constraint says that individual 1 should not prefer to neglect
hisduties. Under the optimal sharing rulein cells C6:D9 of Figure 8.5, if profit is $0 then
individual 1 gets a payment of $6823 from individual 2, as shown in cell C6 of Figure 8.5. This
payment is smaller than the corresponding payment in cell C6 of Figure 8.4, but now individual
1 keeps more than half of the partnership's risky profits. Asshown in cells E6:E8 of Figure 8.5,
individual 1 gets $0.95 from each dollar of the partnership's profit between $0 and $25,000,
$0.54 from each dollar of profit between $25,000 and $50,000, and $0.67 from each dollar of
profit between $50,000 and $75,000. So individua 1 here holds alarger share of the risks than
the ideal share (40%) that Fact 1 would predict, because the Facts in the preceding section
assumed that there were no moral-hazard incentive constraints.

Now let us consider a moral-hazard incentive problem in amore realistic example where
the profit that an investment may earn is a continuous random variable that has infinitely many
possible values. Suppose that alarge group of investors are hiring an agent to manage some
investment for them. Theinvestors will not be able to directly monitor the manager to see
whether he isworking or shirking, but they will observe the profit that the investment earns
under his management. If the manager works diligently, then this profit will be a Generalized
Lognormal random variable with quartile points $230,000, $280,000, and $340,000. But if the
manager shirks his responsibilities, then the profit will instead be a Generalized Lognormal
random variable with quartile points $190,000, $230,000, and $280,000. Shirking his
responsibilities would allow the manager to attend to some personal affairs which would generate
private rewards worth $10,000 to him. The manager has constant risk tolerance $20,000. The
investors who are hiring this manager have total risk tolerance $480,000. (Y ou may think of
these investors as group of 24 partners, each of whom also has constant risk tolerance $20,000.)
The manager's alternative employment opportunities would pay him $50,000 during the period
when he is being asked to manage this investment, so his certainty equivalent when he agrees to

manage this investment cannot be lower than $50,000. Furthermore, no matter how badly the
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investment turns out, the investors cannot subject the manager to a penalty worse than a $0 wage.

(This last minimum-wage condition may deserve some explanation. It saysthat the
investors cannot ask their agent to put money in an escrow account that would he would forfeit in
the event of a particularly bad investment performance. Such punitive conditions may
unacceptable because the agent might simply not have the money to put in such an account. Or
they may be unacceptable because, if the investors requested such punitive conditions in bad
events, then the agent would become suspicious that the investors might actually know
something bad about this investment project which would increase the probability of the events
where they would profit at his expense.)

Among the feasible compensation plans that would give the manager an incentive to work
diligently on managing this investment, let us try to find the plan that would yield the highest
sum of certainty equivalents for these investors. Thisisadifficult optimization problem. So we
begin by considering by considering a simpler class of compensation plansin Figure 8.6, and
then we can go on to consider amore general class of compensation plans later in Figure 8.7.

The given parameters of the optimal compensation problem are listed in the range
A1:C15 of Figure 8.6. The profit quartilesif the manager works diligently arein B3:B5, the
profit quartiles if the manager shirks arein C3:C5, therisk tolerances of the manager and the
investors are in B9 and C9, the manager's certainty equivalent under his best alternative
employment option isin B11, the manager's private gain from shirking isin B13, and the
required minimum wageisin B15. (All monetary valuesin Figure 8.6 are in $1000s.)

Cells B20:B520 contain 501 simulated values of the profit returned by this investment
when the manager works diligently, and cells C20:C520 contain the corresponding simulated
profit values when the manager shirks. This simulation data was generated by recal cul ations of
the random variables in cells B19 and C19, where we have assumed that the working and
shirking profits are maximally correlated by having the same RAND (in cell A18) drive both of
these random variables. (Because working and shirking are alternatives that cannot both happen
at once, it would not have been wrong to simulate the working and shirking profits by
independent random variables. But using correlated random variables here improves the

expected accuracy of our estimates from any limited number of simulations, because it reduces
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the probability that the no-shirking constraint may be distorted by afalse contrast between
unusually high ssmulated profits from one alternative and unusually low simulated profits from
the other alternative.)

In Figure 8.6, we consider compensation plans where the manager is paid a linear
function of the total profit that is returned by the investment, except that the manager can never
be paid less than the required minimum base. The slope and intercept of this linear function are
entered into cells E12 and E13, and the required minimum base ($0) has been specified in cell
B15. (Wewill ask Solver to choose E12 and E13 optimally, so we may start by putting any
arbitrary valuesin E12 and E13.) Then for our ssimulated profit data, the manager's
corresponding wages when he works diligently can be computed in cells E20:E520 by entering
the formula

=VAX( $E$13+$E$12* B20, $B$15)
into cell E20, and copying E20 to E20:E520. The manager's simulated wages from shirking are
similarly calculated in by entering the formula
=MAX( $E$13+$E$12* C20, $B$15)
into cell F20, and copying F20 to F20:F520. The remaining profits that will be paid to the
investors, in the case where the manager works diligently, are computed by entering the formula
=B20- E20
into cell G20, and copying G20 to G20:G520. Then the manager's certainty equivalent from
working can be estimated in cell E17 by the formula
=CE( E20: E520, $B%$15)
Then the manager's certainty equivalent from shirking (including the private rewards worth listed
in cell B13), can be estimated in cell F17 by the formula
=CE( F20: F520, $B$15) +B13
By Fact 2 (which can be applied to the investors because they have no moral-hazard incentive
constraints among themselves), the sum of the investors' certainty equivalents can be computed

in cell G17 by the formula
=CE( &20: G520, ©9)
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A ] B | C [b] E | F | G | H [ 1 J_[K

1 Profit quartiles
2 Work | Shirk
3 Q 230 190
4 Q 280 230
5 @3 340 280
6 (in $1000s)
7 |Ri sk tol erances
8 Manager |l nvestors |SOLVER Max Gl7 by changi ng E12: E13
9 | 20 480 subject to E17>=Bl1, E17>=F17.
10 |Mgr's alternative CE \ \ \
11 \ 50| Myr' s conpensation plan
12 |Mgr's extra $ if shirks [0.2658Sl ope |
13 \ 10| \ -16. 71{I nt er cept
14 IMgr' s required m nimum (Mnimumis paid when profit <|62.843))
15 0 Myir's CE I nvestors' CE
16 Work | Shirk | with work
17 [(rand) | Simd profit 50 50| 226. 05|
1810.5636| Work | Shirk Mgr's incone |l nvestors' incone
19 [Si nTabl| 293. 28| 240. 89 Work | Shirk | with work
20 0| 423.17|352. 41 95.79| 76.981| 327. 38
21| 0.002 324.7|267.06 69. 615| 54. 291 | 255. 09
22| 0.004)|312.85|257.13 66. 464 | 51. 649| 246. 39
518| 0.996| 282. 43| 231. 99 58.377|44.966| 224. 06
519| 0.998|227. 04| 187. 68 43. 65| 33.188| 183. 39
520 1] 363.59| 300. 19 79.951| 63. 098] 283. 64
521
522|FORMULAS
523|J14. =(B15-E13)/E1l2
524|A18. =RAND() |

525|B19. =CGENLI NV( $A$18, B3, B4, B5)
526|C19. =CGENLI NV($A$18, C3, C4, C5)
527|E20. =NMAX($E$13+$E$12*B20, $B$15)
528|F20. =MAX($E$13+$E$12*C20, $B$15)
529|&20. =B20-E20 \

530| E20: Q0 copied to E20: G520
531|E17. =CE(E20: E520, $B$9) |
532|F17. =CE(F20: F520, $B%$9) +B13
533|Gl7. =CE(G20: G620,C9) |
534|SOLVER. Max Gl7 by changi ng E12: E13
535| subject to E17>=Bl1, E17>=F17. |

Figure 8.6. Optimal linear incentive plan for an agent with moral hazard.

In Figure 8.6, the investors optimal linear compensation plan has been found by asking
Solver to maximize the investors total certainty equivalent in cell G17 by changing the
compensation parametersin cells E12:E13, subject to the constraints E17>=B11 and E17>=F17.
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Thefirst constraint here says that the manager should not prefer his aternative employment
opportunities to working for these investors. The second constraint says that the manager should
not prefer shirking to working. Theresultsin E12:E13 tell us that the manager should be paid
26.58% of the profits, minus a constant deduction of $16,710, except that he would get the $0
minimum wage if this linear formulayielded an amount less than $0. Cell J14 computes that this
minimum wage would apply if profit were less than $62,843, and so in effect the manager is
getting a 26.58% share of all profits above $62,843. When the manager works under this optimal
linear compensation plan, the investors total certainty equivalent is $226,050.

Fact 1 does not apply here because of the moral hazard problem. To see why, notice first
that Fact 1 would suggest that the manager's share of profits be 20000,/ (20000+480000) = 0.04,
because the manager's risk tolerance is $20,000 and the investors' total risk tolerance is $480,000.
With this simulation data, the manager's certainty equivalent from working here could be made
equal to the competitive $50,000 certainty equivalent by offering the manager 4% of the profits
plus afixed payment of $38,662, and the resulting total certainty equivalent for the investors
would then be increased to $233,450. That is, if we entered 0.04 and 38.662 into cells E12 and
E13 of Figure 8.6, then we would get the values 50 in cell E17 and 233.45 in cell G17. But we
would also get the value 58.101 in cell F17, which would mean that the manager could increase
his own certainty equivalent from $50,000 to $58,101 by shirking. If the manager shirked, then
the investors would get only the shirking profits (ssmulated in C20:C520) minus the
corresponding payments to the manager (in F20:F520), which would actually yield a certaintly
equivalent of less than $190,000 for the investors. Thus, because of the moral-hazard problem,
Solver has recommended instead that the manager should be paid 26.58% of all profits above
$62,843, to make sure that he has an incentive to work diligently.

This optimal linear incentive plan is relatively insensitive to different assumptions about
the investors total risk tolerance. If the investors were risk neutral, then the investors' total
certainty-equivalent formulain cell G17 in Figure 8.6 would be changed to

=AVERAGE( GQ20: G520)
If Solver were asked change E12:E13 so as to maximize this new formulain cell G17, with the

same constraints as before, the optimal linear incentive plan would actually remain the same.
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Note on Solver: Numerical difficulties may cause Solver to stall at afalse solution when
different changing cells take values that have very different magnitudes. Such difficulties could
occur in an example like Figure 8.6 when the optimal intercept in cell E13 is many times larger
than the slopein cell E12. If you find that Solver seems unable to change such cellsin asensible
way, then you should try Solver's automatic-scaling option, which is accessed by clicking the
Options button in the Solver Parameters dialogue box, and then selecting the "Use Automatic
Scaling" option.

8.4 Piecewise-linear sharing rules with mora hazard

Figure 8.7 reconsiders the same problem as Figure 8.6, but it allows nonlinear
compensation plans that are piecewise linear on the intervals between adjacent profitsin cells
E3:E13. The basic parameters of the problem, aslisted in the range A1:C15, are the samein
Figure 8.7 asin Figure 8.6. But in therange E1:H13 in Figure 8.7, we can construct a nonlinear
sharing rule similarly to Figure 8.3.

Cell E3in Figure 8.7 contains the lowest profit level that is observed under working or
shirking in our simulation datain B20:C520, and cell E13 contains a value above the highest
profit level in this simulation data. Cells E4:E12 contain a sequence of selected profit values that
break the interval between E3 and E13 into ten similar-sized subintervals. A compensation plan
can be specified in cells F3:F13 by listing here the manager's wage for each of the corresponding
profit valuesin E3:E13. (We will ask Solver to choose F3:F13 optimally, so we could start by
entering any arbitrary initial valuesin F3:F13.) For profits between any adjacent pair in E3:E13,
the manager's wage is computed by a linear interpolation between the corresponding pair of
wagesin F3:F13. So for profits between E3 and E4, the manager's wage isto be determined by a
linear function with the slope and intercept computed in cells G3 and H3 respectively by the
formulas

=(F4-F3)/ (E4-E3) and =F3- G3*E3
Then copying G3 and H3 to G3:G12 and H3:H12 yields the slopes and intercepts that are applied
in each of the ten subintervals. Thus, cells E3:H12 form atable which lists the low ends of our

ten subintervalsin the first column (E), and which lists the slope and intercepts of the piecewise-
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linear wage function for each subinterval in the third and fourth columns (G and H).

So the manager's wage for the simulated profit in cell B20 can be computed in cell E20 of

Figure 8.7 by the formula
=VLOOKUP( B20, $E$3: $H$12, 4) +B20* VLOOKUP( B20, $E$3: $H$12, 3)

Copying cell E20 to E20:F520, we get the manager's simulated wages from working in cells
E20:E250, and we get his simulated wages from shirking in cells F20:F520. Entering the
formula

=B20- E20
in cell G20, and copying G20 to G20:G520, we get in cells G20:G520 the profits that are paid to
the investors when the manager works diligently. Then the certainty equivalents that the
manager would get from working and from shirking are computed in cells E17 and F17
respectively by the formulas

=CE( E20: E520, $B%$9) and =CE(F20: F520, $B$9) +$B$13
The investors total certainty equivalent is computed in cell G17 by the formula

=CE( &X0: G520, ©9)

In Figure 8.7, the investors optimal piecewise-linear compensation plan has been found
by asking Solver to maximize the investors' total certainty equivalent in cell G17 by changing the
compensation parametersin cells F3:F13, subject to the constraints F3>=B15, G3:G12>=0,
G3:G12<=1, E17>=F17, and E17>=B11. The constraint G3:G12>=0 asserts that, in each
subinterval, the slope of the wage function must not be negative. That is, the manager's wage
must never be decreased by an increase in the investment's total profits, because otherwise the
manager could have an incentive to incur unnecessary costs simply to reduce profits where this
reduction would increase hiswage. The constraint G3:G12<=1 says that the manager must never
gain more than $1 for an additional $1 of profit, because otherwise the manager could have an
incentive to artificially inflate profits by covertly adding some of his own money. The constraint
F3>=B15 guarantees that the manager's wage is never below the required minimum wage of $0
in cell B15, because F3 is the manager's wage at the lowest profit, and the nonnegative slopesin
G3:G12 imply that the wages cannot be lower at higher profits. The constraint E17>=B11 says

that the manager must not prefer his alternative employment opportunities (which pay the

27



amount $50,000 shown in B11) over working to manage this investment. The constraint
E17>=F17 says that the manager must not prefer shirking to working here.

With so many variables to adjust and so many constraints to satisfy, this Solver problem
can take along time on older computers, but newer computersin 2002 can do al thisin afew
minutes. The optimal plan, as shown in Figure 8.7, pays the minimum wage at the lowest
possible profit level in our simulation data, but then increases the manager's wage with a share of
profits that starts above 50% and declines gradually as profit increases. For profits above
$300,000, this Solver solution gives the manager a share of incremental profits that varies
somewhat erratically but that averages around 4% over the interval from $300,000 to $685,000.
(The wrinkles in the compensation curve for profits above $300,000 could be caused by small
random clustersin our simulated profit data, which the Solver may exploit by wrinkling the
compensation curve to pay less at the shirking-profit clusters and more at the working-profit
clusters. Such effects would tend to disappear if we used alarger simulation sample or wider
subintervals.) Theinvestors total certainty equivalent with this optimal piecewise-linear
incentive plan is $229,990, shown in cell G17, which is about $4000 more than the certainty
equivalent that they got from their best linear incentive plan in Figure 8.6. (Note: Figure 8.7
actually uses the same simulation datain B20:C520 as Figure 8.6, so thisincrease isreally dueto

the change of alowing some nonlinearity in the manager's compensation plan.)
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A B [ C D E | F | G | H I J
1 Profit quartiles Mgr' s conpensation pl an
2 Work | Shirk Profit |PayMyr | Sl ope |I ntercept
3 Q 230 190 114.58 0] 0.5675|-65.02
4 Q 280 230 150] 20. 102| 0. 5384 | - 60. 66
5 @3 340 280 200( 47.021] 0. 1138| 24. 253
6 (in $1000s) 250( 52.714] 0. 1763| 8. 6494
7 |Ri sk tol erances 300 61. 526| 0. 0153 56. 931
8 Manager |l nvestors 350] 62. 2921 0. 0437 47
9 | 20 480 400| 64. 4771 0. 1045| 22. 662
10 [Mgr's alternative CE 450| 69. 704 0| 69.704
11 | 50] 500 69. 704] 0. 0678| 35. 787
12 [Mgr's extra $ if shirks 5501 73. 095] 0. 0345| 54. 131
13 \ 10| \ 685. 35| 77. 762
14 IMgr' s required m nimum
15 0 Myr's CE I nvestors' CE
16 Work | Shirk | with work
17 [(rand) | Simd profit 50 50] 229. 99|
18 10. 7439 Work | Shirk Mgr's incone |l nvestors' income
19 |Si mrabl| 338. 15| 278. 43 Work | Shirk | with work
20 0]423.17|352.41 66. 898| 62. 398| 356. 27
21| 0.002| 324.7|267.06 61.905| 55.721| 262.8
22| 0.004|312.85|257.13 61.723| 53.969| 251. 13
518 0.996| 282. 43| 231. 99 58. 43| 50. 663 224
519 0.998|227.04| 187.68 50.099| 40.39|176.94
520 1| 363. 59| 300. 19 62.886| 61.529| 300.7
521
523 80 -
524 ©
525|FORMULAS g -
526[{A18. =RAND() )
527|B19. =GENLI NV( $A$18, B3, B4, B5) & 40
528|C19. =GENLI NV( $A$18, C3, C4, C5) = 00 |
529|E3. =M N(B20: C520) |
530[E13. =MAX(B20: C520) +1 0 ‘ ‘ ‘ ‘
531|&3. =(F4-F3)/(E4-E3)
T35l =F3. G E3 | 100 200 P?;ggt 400 500
533| G3: H3 copied to G3: H12 - ‘ ‘ ‘
534|E20. =VLOOKUP( B20, $E$3: $H$12, 4) +B20* VLOOKUP( B20, $E$3: $H$12, 3)
535|F20. =VLOOKUP( C20, $E$3: $H$12, 4) +C20* VLOOKUP( C20, $E$3: $H$12, 3)
536|{&0. =B20- E20 \ E20: QR0 copied to E20: G520
537|E17. =CE(E20: E520, $B%$9) |F17. =CE(F20: F520, $B$9) +B13
538|GL7. =CE(G20: G520, C9) |
539|SOLVER: Max Gl7 by changing F3: F13 subject to

540

F3>=B15, G3: Gl2>=0, G3: Gl2<=1, E17>=F17, E17>=Bll.

Figure 8.7. Optimal piece-wiselinear incentive plan for an agent with moral hazard.

29




If the investors were risk neutral, or if there were so many investors that the sum of their
risk tolerances was too large to measure, then the investors ' total certainty equivalent would be

their expected share of profits, which could be estimated in cell G17 by the formula
=AVERAGE( G20: G520)

If we ask Solver to maximize this measure of the investors' expected profit by changing the same
variables with the same constraints as we used in Figure 8.7 (using the same simulation data as

used in Figures 8.6 and 8.7), then the optimal compensation plan (in $1000s) would become:

Profit M anager Slope [ntercept
114.58 0 0.474 -54.323
150 16.795 0.711 -89.821
200 52.334 0.04 44.396
250 54.319 0.133 20.963
300 60.990 0 60.990
350 60.990 0 60.990
400 60.990 0.046 42.446
450 63.308 0 63.308
500 63.308 0 63.308
550 63.308 0.003 61.931
685.35 63.646

The main difference between this compensation plan and the one in Figure 8.7 is that the
manager here gets almost no wage increases for profit increases above $300,000. So the positive
wage increases for profit increases above $300,000 that we see in cells G7:G12 of Figure 8.7 are
due mainly to the advantages of adding the manager as another partner in risk sharing. Most of
the required incentives for working instead of shirking are generated in Figure 8.7 by the big pay
increases that the manager can get from increasing profits up to $300,000.

The optimality of the nonlinear incentive plan in Figure 8.7 may depend, however, on our
implicit assumption that the manager must decide once whether to work or shirk, and only
thereafter can he learn how much profit will be earned. But in area world that is more complex
than our simple model, the profits from such an investment project might actually be earned over

aperiod of weeks or months, and the manager might be able to decide about working or shirking
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every day, knowing how much profit has already been earned so far. If our optimal incentive
plan from Figure 8.7 were applied in such aworld, then the manager might work diligently only
until the accumulated profits reach $300,000, and thereafter he might start shirking, which would
significantly reduce the investors' chances of earning any higher profits above $300,000. To
avoid this dynamic moral-hazard problem, we may recommend that the investors should restrict
their attention to linear compensation plans, as assumed in Figure 8.6, because the incentives to
continue working under linear compensation plans would be less affected by good news in the

early weeks of the project.

8.5. Corporate decision-making and asset pricing in the stock market

The preceding two sections provide the basis for understanding optimal decision-making
under uncertainty in big publicly held corporations. Actually, we should have two theories of
decision analysis in corporations, depending on whether the decision analysisis supposed to be
for the benefit of senior managers who control the corporation, or for the benefit of the
stockholders who legally own the corporation. The latter assumption is the main focus of this
section, but let usfirst devote one paragraph to the former assumption.

Under a well-designed compensation plan, as we saw in Sections 8.3 and 8.4, senior
managers may anticipate that their personal rewards will depend substantially on the profits that
they generate for the corporation, because they should have strong incentives to increase these
profits. But then corporate risks will generate substantial personal risks for senior managers. So
a senior manager may want to evaluate corporate risks using a risk-averse corporate utility
function similar to those we have studied for individual decision-making. If F(X) denotesthe
senior manager's income when X is the corporation's total profit (under the manager's
compensation plan), and if U denotes the manager's personal utility function for income, then the
manager should personally prefer that corporate decisions under uncertainty should maximize
E(U(F(X))). In effect, the manager would want the corporation to evaluate risky profits by the
expected value of a utility function V such that V(x) = U(F(x)) for any amount of corporate
profits X. But as agents of the corporation, senior managers are not supposed to define the

corporation’s interests so blatantly in terms of their own, and so decision analysts rarely use such
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an approach to assessing a corporate utility function. Nevetheless, the sensitivity of a corporation
to risks cannot be well understood unless we recognize that corporate risks typically generate
substantial personal risks for the risk-averse senior managers who are responsible for making
corporate decisions. In this context, decision analysts have found that senior managers may be
comfortable with an expected-utility analysis of corporate risks, using risk tolerances for
corporate profits that are sometimes about 1/6 of the total value of the corporation.

The perspective of the stockholders on corporation decision-making is often very
different. Individual stockholders may be very risk averse, but a single corporation’s risks may
have only avery small impact on the overall net worth of atypical well-diversified individual
stockholder. From the perspective of such well-diversified stockholders, the goal of corporate
decision-making should be to adopt strategies that, when generally understood by investors, will
increase the market value of the corporations's stock. To apply this criterion, we need some
theory to predict how pricesin the stock market are determined. So we will discuss here the
elements of such atheory, which is based on asimplified idealized version of the stock market,
but which can offer real practical insights into the pricing of capital assets.

The most important fact about the stock market is that the future prices of stocks and
other financial assets are unknown quantities. So any individuals beliefs about a collection of
asset prices at some future date should be described by ajoint probability distribution. In our
financial theory, we assume that all investors' beliefs about future prices at some future date (say,
ayear from now) can be described by some joint probability distribution. That is, we assume that
everybody shares the same beliefs which can be measured by a joint probability distribution for
these unknown quantities. The end result of our asset-pricing theory will be to show how to
compute what an asset should be worth now in the stock market, given such ajoint probability
distribution of future asset prices.

Let us assume here that investors in the stock market have constant risk tolerance, so that
we can apply what we have already |earned about optimal risk-sharing among such individuals.
The market portfolio is the collection of al the risky assets that are available to be bought and

sold in the stock market (or in other financial markets). All therisksin this market portfolio

must be shared in some way among the investors, and we may think of the entire stock market as
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arisk-sharing partnership that includes all investors. So Fact 1 tells us that, when the stock
market achieves an optimal allocation of risks, each investor should have a share in the whole
market portfolio of risky assets that is proportional to hisor her risk tolerance. If any investor
owned more or less of some asset than his proportional share then, by Fact 3, investors could
make mutually beneficial trades of money and risky assets until an optimal allocation of risksis
achieved. So in amarket equilibrium, the prices of all financial assets should be such that an
investor with constant risk tolerance is willing to hold the same share of every risky asset in the
market portfolio, and the only difference among investors should be that their shares differ in
proportion to their risk tolerances. Thus, al investors could simply buy sharesin well-diversified
mutual funds that hold all the stocks in the market portfolio. But every corporation’'s stock isa
part of this overall market portfolio. So the price of a stock today must be such that, when an
investor has bought his optimal share of the market portfolio, then he does not want to buy or sell
any additional amounts of this stock now.

To understand all these complex ideas of asset pricing, let us apply them to a specific
example, asillustrated in Figures 8.8 and 8.9.
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A [ B | ¢ | D [ E | F [ G| H |1 J
1 |M = $Returns next year to $1 now in the Market Portfolio
2 [X, Y = $Val ues (per share) of Assets 1 and 2 next year \
3 M X Y SOLVER: max F13 by changi ng F11.
4 LogMean 0. 09 20 200Q1
5 [LogStdev| 0.25 25 25|Q2
6 32 32|B VWhat if prices now are:
7 Correl (M X) for X for Y
8 0.8 25 25
9 |1+i nterest Ri skTol I nvest now ...invest nore?
10 1. 06| 10000 | $inM $inXjor | $inY
11 Y is independent of Mand X 9703 1 1
12| corands|0.9703|0.9772 CE CE change
13 M X Y 332.713 -0. 0377 0. 04125
14 [Si mlrable| 1.753| 54.96| 23.66 | ncone
15 0| 1.024| 17.74| 23.53 -348. 09 - 348. 45 -348.21
16 0.002| 1.091| 30.98| 41.16 299. 817 299. 996 300. 403
17 0.004| 1.097| 20.80| 48.35 362.924 362. 696 363. 798
18 0.006| 1.189| 23.84| 18.74 1252 1251.9 1251. 69
19 0.008| 1.419| 32.84| 24.72 3483. 57 3483. 82 3483.5
511 0.992| 1.508| 49.79| 19.99 4348. 74 4349. 67 4348. 48
512 0.994| 0.689| 19.60| 36.04 -3597.1 -3597.4 -3596.7
513 0.996| 1.005| 29.54| 25.08 -537.17 -537.05 -537. 22
514 0.998| 0.912| 18.92| 19.57 -1434. 4 -1434.7 -1434.7
515 1/ 1.110| 32.08| 22.38 486. 686 486. 909 486. 521
516
517|FORMULAS
518|B12: C12. {=CORAND( B8)}
519|B14. =EXP(NORM NV( B12, B4, B5))
520[{C14. =GENLI NV(C12, C4, C5, C6) |
521|D14. =GENLI NV( RAND(), D4, D5, D6)
522(F15. =$F$11*(B15- $A$10)
523 F15 copied to F15: F515
524|F13. =CE(F15: F515, C10)
525[H15. =F15+$H$11* ( C15/ $H$8- $A$10)
526(J15. =F15+$J$11*( D15/ $J$8- $A$10)
527| H15:J15 copied to H15:J515 |
528|H13. =CE(H15: H515, $C$10) - $F$13
529|J13. =CE(J15:J515, $C$10) - $F$13

Figure 8.8. Comparing investmentsthat differ in correlation with the market portfolio.




In this example, we consider probability information about values next year of the market
portfolio and a couple of selected assetsin it. We assume that adollar invested today in the
market portfolio (that is, in awell-diversified mutual fund that holds this market portfolio on
behalf of itsinvestors) will be worth an amount next year that has a Lognormal probability
distribution with log-mean 0.09 and log-standard-deviation 0.25. That is, the logarithmic growth
rate of an investment in the market portfolio has expected value 0.09 and standard deviation 0.25.
We also assume that investors can borrow or lend at arisk-free interest rate such that $1 today
returns $1.06 next year, asindicated in cell A10 of Figure 8.8.

Cells B15:B515 of Figure 8.8 contain 501 simulated values of the returns next year per
dollar now in the market portfolio, generated by arandom variable in cell B14 that hasthis
Lognormal distribution. (Notice that rows 20 to 510 are hidden in Figure 8.8.) Now consider an
individual who has constant risk tolerance $10,000, asindicated in cell C10, suppose that cell
F11 denotes the amount of money that this individua chooses to invest now in the market
portfolio. Let usaccount the results of thisindividual's investmentsin the stock market in terms
of gains or losses next year relative to the wealth that he would have next year if he depositing all
his wealth now into arisk-free bank account that pays $1.06 next year for each $1 invested now.
Relative to this safe strategy, each dollar invested in the market portfolio costs him $1.06 next
year (regardless of whether he takes the dollar from his bank account or he borrows the money,
given our simplifying assumption that he can both borrow and lend at the same risk-free rate).

So if B15 were the market portfolio's growth ratio over the next year, then his net gain next year
from investing F11 dollars now in the market portfolio can be computed in cell F15 by the
formula

=$F$11* ( B15- $A$10)
Copying cell F15 to F15:F515 yields the investor's net gains next year from investing F11 dollars
now in the market portfolio, for all of our ssmulated market outcomes. The certainty equivalent
of these gainsis computed in cell F13 by the formula

=CE( F15: F515, C10)

Now we can ask Solver to maximize the investor's certainty equivalent in cell F13 by

changing hisinvestment in cell F11, and the resulting optimal solution is as shown in Figure 8.8.
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That is, his optimal strategy (with this simulation data) isto invest $9703 in the market portfolio
now, which will yield a net gamble that is as good as the certainty equivalent gain of $332.71
(relative to what he could get next year by putting all his wealth now in the bank). If changed the
risk tolerance and ran Solver again, then the optimal investment in cell F11 would changein
proportion to the risk tolerance. For example, if we doubled the risk tolerance to $20,000 into
cell C10 and ran Solver again, then Solver would maximize the certainty equivalent F13 by
doubling the investment amount to $19,406 in cell F11.

The optimal investment quantity for each investor in these cal cul ations depends on the
risk-free interest rate that banks are assumed to pay (in cell A10). If thisinterest rate were lower,
then the net gains from putting money in the stock market would be greater, and the optimal
investment in the risky market portfolio would increase for any individual investor. In amarket
equilibrium, the risk-free interest rate has been determined by the condition that the sum of all
individuals investments in shares of the market portfolio must equal the whole portfolio of
stocks and other financial assets available in the market.

So in amarket equilibrium, al financial assets must be priced now in such away that,
when individual investors solve the optimal investment problem that we have just described, they
buy different shares of the general market portfolio, and no one wants to buy or sell any further
shares of any financial asset. This no-further-trade condition can be used to characterize the
prices must be for financia assets in a market equilibrium.

Two other financial assets are considered in Figure 8.8. Y ou should think of these as
being just two among the very large number of stocks in the stock market that make up the
market portfolio. Let X denote the price per share of the first stock next year, and let Y denote
the price per share of the second stock next year. To be specific, we suppose here that these two
stock prices next year have the same marginal probability distribution which is a Generalized
Lognormal distribution with quartile points $20, $25, and $32. But suppose that the first stock's
future price X has a correlation 0.8 with the growth ratio of the market portfolio, while the
second stock's price Y isindependent of the market portfolio. These two random variables are
simulated in cells C14 and D14 of Figure 8.8, where the array formula{ =CORAND( 0. 8) } in
cells B12:C12 provides the specified correlation between the simulated X in cell C14 and the
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simulated growth of the market portfolio (M) in cell B14. The simulated Y in cell D14 here
depends independently on its own RAND.

Column H analyzes the effects of making another small investment now in the first stock,
in addition to the individual's F11 optimal investment in the market portfolio. The effect of such
an additional investment would depend, of course, on the price that the investor has to pay now
for ashare of thisstock. Our goal in this exerciseisto compute what this price should be (based
on the probability information about X), but let us begin here by entering in cell H8 some
arbitrary guess about what this current stock price might be. Next, let us specify in cell H11 any
small amount of money that the investor might consider adding now to his investment in this
stock. Figure 8.8 considers the possibility of investing an additional $1 (H11) to this stock when
its price per share now is $25 (H8). For the first outcome of our simulation model, stored in row
15 of the simulation table, this additional investment would change the investor's net gains next
year from the amount in cell F15 to

=F15+$H$11* ( C15/ $H$8- $A$10)
which has been entered into cell H15. To understand this formula, notice that each of the H11
(1) additional dollars that he invests now buys 1/H8 (1/25) shares of this stock at the current
price, which will yield next year C15/H8 dollarsin this simulated market outcome, but investing
the dollar now also reduces the individual's bank account by A10 (1.06) dollars next year. Then
copying the formula from H15 to cells H15:H515, we get the net gains next year with this
additional investment for all the outcomesin our simulation table. So the change of the
investor's certainty equivalent next year that would be generated by this additional investment in
thefirst stock is computed in cell H15 by the formula

=CE( H15: H515, $C$10) - $F$13

A similar calculation is done for the second stock in column J of Figure 8.8. Here cell J8
contains our guess about the current price per share of this stock, and cell J11 contains an amount
of money that we are thinking of investing in this stock now, as an addition to the optimal
investment in the market portfolio. Then, by copying cells H13:H515 to J13:J515, we similarly
compute in cell J13 the change of the investor's certainty equivalent next year that would be

generated by this additional investment in the second stock. (These additional investments are

37



being considered here as alternative possibilities, and so the simulated gains in J15:J515 include
the J11 additional investment in the second stock but do not include the H11 additional
investment in the first stock.)

In Figure 8.8, the computed changes of certainty equivalent in cellsH13 and J13 are
-0.0377 and 0.04125 respectively. This meansthat, if the prices of these stocks were both $25
now (as assumed in cells H8 and J8), then investing an additional dollar in the first stock would
decrease the investor's certainty equivalent next year by ailmost 4 cents, but investing an
additional dollar in the second stock would increase the investor's certainty equivalant next year
by a bit more than 4 cents. But remember, in a market equilibrium, every investor should hold an
optimal share in the whole market portfolio that is proportional to hisrisk tolerance, and should
not want to add any other disproportionate investment in particular stocks. So if the positive
value of cell J13 indicates that thisinvestor could do strictly better by adding another $1 (J11) in
the second stock here when its current priceis as specified in cell J8 ($25) , then the assumed
pricein cell J8 must betoo low. So in an equilibrium of the stock market now, the price per
share of the second stock must be strictly more than $25, because investors like this one would
want to buy more of this stock for $25 now.

The negative value of cell H13 in Figure 8.8 indicates that this investor could not improve
his portfolio by adding another $1 (H11) in the first stock. But what about selling some of the
first stock? Remember, every stock isasmall part of the market portfolio, and so his optimal
investment in the market portfolio must implicitly include some small amount of money in this
stock, which (in principle) he could sell separately now. Selling the first stock can be represented
in this spreadsheet by entering a negative number in cell H11. For example, if we entered the
value -1 into cell H11, to represent the investor selling $1's worth of the first stock now, then the
calculationsin cell H13 would show him increasing his certainty equivalent next year by
$0.0377. (Hisincrease of CE from selling $1's worth would be aimost the same size as his
decrease of CE from buying $1'sworth.) This result indicates that, in an equilibrium of the stock
market now, the price per share of the first stock must be strictly less than $25, because investors
like this one would want to sell their shares of this stock for $25 now.

So the current price per share of the first stock should be less than $25 and the current
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price per share of the second stock should be more than $25, even though investors anticipate
that the prices per share of these stocks next year have the same marginal probability
distribribution. The only difference between these stocksisthat the first (X) has a positive
correlation with the market portfolio, while the second (Y) isindependent and so has zero
correlation with the market portfolio. This observation illustrates an important general fact: A
higher correlation with the market portfolio tends to decrease the current value of the asset (when
the marginal probability distribution of its value at some future date is held fixed).

Intuitively, the second stock is worth more than the first stock now because the second
stock can offer better insurance against the risks in the market portfolio that the investors are
holding. Theinvestors, being risk averse, would get more extra utility from an extra dollar of
income next year in an event where their overall portfolio has done badly than in an event when
their overall portfolio has done well. But thefirst stock, being highly correlated with the market
portfolio, tends to pay its highest returns in the same events where the market portfolio does well.
Both of these stocks have the same probability of selling for more than $32 next year (0.25), but
thereisamuch smaller probability of the first stock being so profitable when the overall market
portfolio does badly, because of its positive correlation with the market portfolio.

Now let me tell you how you could use the spreadsheet in Figure 8.8 to compute the
current price of the first stock. Remember, cell F11 contains the optimal investment in the
market portfolio that Solver generated to maximize the certainty equivalent in cell F13. Keeping
thisvaluein cell F11, you could now ask Solver to change the additional investment in cell H11
to maximize the additional certainty equivalent that it generatesin cell H13. If Solver returns a
positive investment in cell H11, then the price for the first stock that you assumed in cell H8 is
too low. If Solver returns a negative investment in cell H11 (indicating that investors would
want to sell this stock at this price), then the price for the first stock that you assumed in cell H8
istoo high. When the right current price for the first stock is entered into cell H8, Solver should
report that the additional certainty equivalent in H13 is maximized by setting the additional
investment in H11 equal to $0. For the simulation data in this spreadsheet, the correct current
price of thefirst stock turns out to be $24.11. (Results may differ dightly with other simulation
data.)
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Similarly, you can find the current equilibrium price for the second stock in Figure 8.8 by
adjusting the price in cell J8 so that, when Solver is asked to maximize J13 by changing J11,
Solver will reports an optimal additional investment of $0 in cell J11. For the simulation datain
this spreadsheet, the correct current price of the second stock turns out to be $25.97. The
difference between this $25.97 for the second stock and the price $24.11 for the first stock is
caused by the difference between these stocks' correlations with the market portfolio.

Running Solver so many times may be awkward, so Figure 8.9 shows away to directly
calculate the current price of astock from its distribution of future returns. To simplify the
spreadsheet, we only consider the first stock (the one that will be worth X next year), but the
simulation model and datain columns B and C of Figure 8.9 are the same asin Figure 8.8. The
interest rate in A10 and the investor's risk tolerance in C10 are also the same in both Figures.
Column E of Figure 8.9 repeats the analysis of the individual's optimal investment in the market
portfolio that we already saw in column F of Figure 8.8. That is, cell E11 containsthe
individual's monetary investment now in the market portfolio, cells E15:E515 contain his
resulting monetary gains next year from this investment (compared to the alternative of putting
all hiswealth in bank accounts) with the smulated market outcomes, and cell E13 computes his
certainty equivalent for this gamble with the formula

=CE( E15: E515, C10)
The investment amount shown in E11 ($9703) is the result of asking Solver to maximize E13 by
changing E11.

In Column Fin Figure 8.9, you can find areview of the calculations by which the CE
function computes the certainty equivalent in cell E13. First, the utility values of the monetary
incomesin cells E15:E515 are computed, by entering the formula

=UTI L( E15, $C$10)
into cell F15, and then copying F15 to F15:F515. Then these utility values are averaged, and the

average utility is converted back to the equivalent monetary value by UINV by the formula
=Ul NV( AVERAGE( F15: F515) , C10)

incell F13. Theresult in cell F13 isthe same as the certainty equivalent value that is computed
by the CE function in cell E13.



A |

B |

C

D] E [ F [ G [H

| J | K

1 |[M = $Returns next year to $1 now in the Market Portfolio

2 |X = $Vvalue (per share) of Asset next year | ] |

3 M X SOLVER(1): nmax E13 by changi ng E11.
4 | LogMean 0. 09 2001 SOLVER(2): nmax 113 by changing | 11.
5 |LogSt dev 0. 25 25|Q2 (Should find I11=0 optimal!)
6 328 ] |

7 Correl (M X) Val ue of Asset now = E (X)/(1+i)
8 0.8 24. 11|

9 |1+i nterest Ri skTol | nvest now | nvest nore?
10 1.06 10000 $in M $in X

11 9703 0

12| corands|0.5563|0.4176 CE Ul NV( EV) CE change

13 M X 332.71/332.71 0

14 |Si niTabl e| 1.134| 23.27 I ncone |Uti | Wei ghts |l ncone

15 0| 1.024| 17.74 -348.1|-1.035/0.0021| |-348.1

16 0.002| 1.091 30.98 299.82| -0.97 0.0020| |299.82

17 0.004| 1.097 20.80 362.92|-0.964 0.0020| |362.92

18 0.006| 1.189 23.84 1252|-0.882|0. 0018 1252

19 0.008| 1.419 32.84 3483.6|-0.706/0.0015| |3483.6

511 0.992| 1.508| 49.79 4348.7|-0.647/0.0013| |4348.7

512 0.994| 0.689 19.60 -3597|-1.433|0. 0030 - 3597

513 0.996| 1.005 29.54 -537.2|-1.055/0.0022| |-537.2

514 0.998| 0.912| 18.92 -1434|-1.154/0. 0024 -1434

515 1/ 1.110| 32.08 486.69|-0.952/0. 0020, |486.69

516

517|FORMULAS

518|B12: C12. {=CORAND( B8)} E (X)

519|B14. =EXP(NORM NV( B12, B4, B5)) 25.56

520|C14. =GENLI NV(C12, C4, C5, C6)

521(E15. =$E$11*( B15- $A$10) E( X)

522| E15 copi ed down | 27.66

523|E13. =CE(E1l5: E515, C10)

524|F15. =UTIL(E15, $C$10)

525 F15 copi ed down

526|F13. =U NV( AVERAGE( F15: F515), C10)

527|Gl5. =F15/ SUM $F$15: $F$515)

528] G15 copi ed down ]

529]1 8. =SUMPRODUCT( C15: C515, G15: G515) / A10

530|1 15. =E15+$I| $11* ( C15/ $| $8- $A$10)

531| 115 copi ed down ]

532|1 13. =CE(115:1515, C10) - E13

533|1519. =SUMPRODUCT( C15: C515, G15: G515)

534[1522. =AVERAGE( C15: C515) | |

Figure 8.9. Computing an asset'svaluein a market with constant risk-tolerant investors.
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But now let us do something else with these utility valuesin F15:F515. Recall from
Chapter 4 that the constant risk-tolerance utility functions are defined by the following
mathematical formula

UTIL(X, r) = -EXP(-Xx/T),
for any monetary amount x and any positive risk tolerancer. This exponential formula has the
special property that, as the amount of money x is varied with afixed risk tolerance, the slope of
the utility function is proportional to the absolute value of the utility function itself. If you look
back at the graph in Figure 3.1 in Chapter 3, you can see that the slope of a constant risk-
tolerance utility curve is proportionally steeper in regions where the utility value is farther below
zero. Thus, with these special exponentia utility functions, the investor's utility benefit from a
small increase in income should be greater in the bad outcomes where his utility is farther below
zero, in direct proportion to the distance of his utility below zero. So investor'srelative
sensitivity to income changes in the various simulated outcomes here may be measured by the
weights shown in G15:G515 of Figure 8.9, which are computed entering by the formula

=F15/ SUM $F$15: $F$515)
into cell G15 and then copying G15 to G15:G515. The utility valuesin F15:F515 are all negative
numbers, but then their sum is also negative, and so these weightsin G15:G515 are all positive
numbers. (A negative number divided by a negative number yields a positive number.)
Furthermore, the sum of these weightsin G15:G515 isequal to 1. In effect, these weights ook
like a probability distribution over the various outcomes in our simulation table, where bad
outcomes are given more probability than the good outcomes, in proportion to the slopes of his
utility curve at these different outcomes. For example, row 511 in Figure 8.9 gets a small weight
0.0013 in cell G11, because this row represents a good outcome where the market portfolio goes
up and the investor gains $4349 (E11). But row 512 gets arelatively large weight 0.0030 in cell
G12, because this row represents a bad outcome where the market portfolio goes down and the
investor loses $3597, which would make him much more sensitive to additional income than he
would be in the good outcome.

Until now, we have aways analyzed simulation dataasif every outcome in every row of

our simulation table represented an equally likely outcome from our probability model. But now
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let usinstead pretend that the outcomes in the various rows have instead the probabilities shown
in G15:G515, which we may call the market-adjusted probabilities. Let ususe E' to denote the

expected value of arandom variable when we apply these mysterious market-adjusted
probabilities. With these market-adjusted probabilities, the expected price-per-share of our
selected stock next year would be computed by the formula

E'(X) = SUMPRODUCT(C15:C515, G15:G515),
because cells C15:C515 contain the simulation data for this stock's future value X. With the
simulation data, this market-adjusted expected valueis E'(X) = $25.56. For comparison, if we
treated al rows as equally likely and conventionally estimated the expected value E(X) by
AVERAGE(C15:C515), then we would get E(X) = $27.66 with this simulation data. The
market-adjusted expected value E'(X) is smaller than E(X) here because X is positively
correlated with the market portfolio M, and so the high values of X tend to come in rows where
the market portfolio does well and thus where the market-adjusted probability is relatively small.

The price X isafuture value of this stock, and so it is denominated in future dollars, a
year from today. But such future dollars can be exchanged for dollars today by borrowing or
lending at a bank, at the ratio defined by the bank's interest rate, here 1+i = 1.06 as shown in cell
Al10inFigure 8.9. So to convert future monetary values into current monetary values here, we
should divide by A10. In particular, the current monetary equivalent of the market-adjusted
expected value of the price per share of this stock next year is

E'(X)/(1+) = SUMPRODUCT(C15:C515, G15:G515),/A10
Thisimportant formula

=SUMPRODUCT( C15: C515, G15: G515) /A10
has been entered into cell 18, and it is the answer to our question of what should be the
equilibrium price of this stock today.

When today's price per share of this stock is as computed in cell 19 of Figure 8.9, the
investor will not want to buy or sell any additional amounts of this stock now, once he has made
his optimal (E11) investment in the market portfolio. To demonstrate this result, cell 113 in
Figure 8.9 computes the net change in this investor's certainty equivalent next year if he were to

invest in this stock today the additional amount of money that is entered in cell 111, given the
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current price per sharein cell 19. If we asked Solver to maximize this certainty equivalent in 113
by changing the investment amount in 111 (holding fixed the previously optimized market-
portfolio investment in E11), then Solver cannot do better than by letting the investment amount
in111 be $0. So the formulain cell 19 gives us the correct equilibrium price today for this stock
that will have the price X next year, because individual investors will not want to change their
optimal investment in the market portfolio by buying or selling this stock at this price today.

The price that we have computed in cell 19 of Figure 8.9 does not depend on the particular
risk tolerance of $10,000 that we assumed in cell C10. For example, suppose we doubled the
risk tolerance by entering $20,000 into cell C10, and we then asked Solver again to maximize the
new certainty equivalent in cell E13 by changing cell E11. Then the new optimal market-
portfolio investment in cell E11 would double, and all the net incomesin cells E15:E515 would
double, relative to the amounts shown in Figure 8.9. But then the utility valuesin cells F15:F515
would remain the same as shown in Figure 8.9, because UTIL(x,t) = -EXP(-x,/r) depends only
on the ratio of the income x to the risk tolerance r, and so doubling them both would leave the
utility unchanged. So the market-adjusted probabilitiesin cells G15:G515 (which depend only
on F15:F515) and the computed stock pricein cell 19 (which depends only on G15:G515 and the
simulation data and the interest rate) would aso be unchanged. Thus, the market-adjusted
probabilities and the computed stock price in Figure 8.9 would not be affected by a change of the
risk tolerance in cell C10, once Solver has changed the optimal investment in E11 to maximize
the new certainty equivalent in E13. Our results here depend only on the assumption that
investors are risk averse and have some constant risk tolerance.

Thisfinancial asset-pricing model has important applications to corporate decision-
making. To develop these applications, we just need to extend our interpretation of the random
variable X in cell C14.

Suppose that a big publicly-held corporation is considering a major new investment
project which would cost 25 $million now. For simplicity, suppose that all the monetary returns
from this project would be realized one year from now, and that these returns next year would
have a Generalized Lognormal probability distribution with quartile points 20, 25, and 32

$million. Suppose also that these returns would have a correlation 0.8 with the growth ratio of
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the market portfolio next year. Thus, the returns from this project next year would have the same
marginal probability distribution and the same relationship with the market portfolio asthe
random variable X that we considered in Figures 8.8 and 8.9. So let us now reinterpret X asthis
unknown quantity that the project will earn next year.

Should this project be recommended now as being to the benefit of the corporation's
stockholders? Thisisadecision under uncertainty, because the payoff X next year isan
unknown quantity that could be much greater or much less than the cost of the project. But any
current stockholder in this corporation could sell his shares tomorrow, and so al stockholders
can benefit from decisions that will increase the current market value of the corporations's stock.
So we should ask whether a decision to undertake this project would tend to increase or decrease
the value of this corporation in the stock market now (once the decision becomes widely known
to investors).

According to our analysisin Figure 8.9, astock coupon (or alottery ticket) that will be
worth X dollars next year should have avalue of $24.11 in the stock market today. When this
corporation invests in this project that will pay X million dollars next year, it is essentially
buying amillion such coupons. So the corporations investment in this project should be worth
24.11 $million in the stock market today. That is, the prospect of earning X $million next year
from this project should add 24.11 $million to the total value of the corporation’s stock. But
undertaking this project requires an expense of 25 $million today. This expense would make the
corporation increase its debt (or decrease its liquid assets) by 25 $million, which should have the
effect of subtracting 25 $million now from the total market value of the corporation. So
according to our analysis, a decision to undertake this project should change the current total
value of this corporation by 24.11-25 = -0.89 $million, as soon as the decision becomes
understood by investors in the stock market. Thus, the project should not be recommended on
behalf of the stockholders, because it would tend now to decrease the value of their sharesin the
corporation.

This conclusion depends critically on our assumption that the project's future earnings
have correlation 0.8 with the future performance of the market portfolio. If the project's future

earning were considered instead to be independent of the future performance of the market
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portfolio, then the project's future earnings would have a current value that is greater than 25
$million, because it would be like the gamble that pays Y in Figure 8.8. In general, the value of a
project or risky investment to investorsin the stock market cannot be determined without
anayzing how the project's risks are related to the broader macroeconomic risks that investors
bear in the market portfolio. To do such analysis, we must use amodel of the joint probability
distribution of the investment's returns X and the market portfolio M, asin cells B14.C14 of
Figure 8.9.

(Financial analysts often estimate asset values using the capital asset pricing model, or

CAPM, which is similar to the constant risk-tolerance model that we have developed here.
CAPM isbased on an assumption that investors care only about the mean and standard deviation
of their portfolio's value, and so it yields an asset-pricing formula which depends only on the
asset's expected value and covariance of returns with the market portfolio. When future asset
returns are drawn from a Multivariate Normal distribution, the CAPM model is equivalent to the
model that we have developed here. Even for the nonNormal datain Figure 8.9, a CAPM
analysis would yield a stock price differing by only $0.05 from the value that we computed in
cell 19. But CAPM can yield nonsensical results for some extremely skewed nonNormal

distributions that are avoided by the method that we have developed here.)

*8.6. Fundamental ideas of arbitrage pricing theory

In arbitrage pricing theory, we assume that there is some list of possible states of the
world such that exactly one of these states will occur and the future values of financial assets will

be determined by the state that occurs. We would say that an arbitrage opportunity existed if

there were some portfolio of loans and assets that an individual could acquire with zero initial
investment of his own but which would guarantee him a positive future return in all states. That
is, an arbitrage opportunity would be an opportunity to get something for nothing without any
risks. Arbitrage pricing theory characterizes financial asset prices when such arbitrage
opportunities do not exist.

Let us begin by considering a simple two-state example in which State 1 is a state of the

world with high oil prices and State 2 is a state of the world with low oil prices. Suppose that the
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value of some automotive company's stock will be $80 per share next year if State 1 occurs, but it
will be $140 if State 2 occurs. Similarly, suppose that the future value of some oil company's
stock will be $140 per share next year if State 1 occurs, but it will be $80 if State 2 occurs.
Suppose also that investors can borrow and lend at a 10% annual interest rate, so that 1.1 isthe
annual return ratio for risk-free bonds. If these two stocks are currently selling for $90 per share,
then an arbitrage opportunity exists. For each $180 that we borrow, we could buy one share of
each of these two stocks now, and then next year (after selling the shares and repaying the debt)
we would could take a sure profit of (80+140)-180*1.10 = $22 in all possible states. By
borrowing more money we could make as much money as we like, with no risk to ourselves.

If the current prices for these two stocks are each $100 per share, however, then such
arbitrage opportunities would not exist. At this price, if we assessed a probability 0.5 for each of
the two states, then the expected returns next year per dollar invested now would be
(.5*80+.5* 140) /100 = $1.10, which exactly equals the cost next year of borrowing a dollar now.
If every financial asset that we can buy or sell has an expected return of 10% then, no matter how
we mix investments and debts, the expected value of our portfolio next year will be 10% more
than itsvalue thisyear. In particular, if we start with no initial investment of our own funds, then
the expected total value of our portfolio must be $0 (=0* 1.10) next year, and so there cannot
exist any arbitrage strategy that offers positive returnsin all states with zero net initial
investment.

In general, if there exists some way of assigning probabilities to the various possible
states such that every financial asset offers the same expected return ratio as risk-free bonds, then
arbitrage opportunities cannot exist. With each investment offering the same expected return
ratio as the risk-free bonds, no portfolio can offer a higher (or lower) expected return ratio than
thisrisk-free return ratio on the net initial investment. But an arbitrage strategy which guarantees
apositive return with $0 initia investment would be offering an infinite expected return ratio.

So there cannot exist any arbitrage strategy for generating positive returnsin all states with zero
net initial investment.

Conversdly, if arbitrage opportunities do not exist in afinancial market then, there must

exist some way of assigning probabilities to the possible states such that, when we compute
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expected returns using this probability distribution, the expected return ratio of every financial
asset is equal to therisk-free return ratio. Thisimportant fact isthe main result of arbitrage
pricing theory.

To illustrate this result, consider the example shown in Figure 8.10, which describes a
simple imaginary financial market in which three stocks are traded, and the return ratios for these
stocks over the next year will depend on which of four possible states of the world occurs. The
table in cells BS:E7 lists the return ratio for each stock in each possible state of the world. The
return ratio for risk-free bondsis 1.10, whichislisted in cell Al

Given thisfinancial data, Figure 8.10 shows how to use Solver to find an arbitrage
opportunity if one exists. Cells G5:G7 represent the money to be invested in each of the three
stocks now, in our investment strategy. If any of these cells becomes negative, it can be
interpreted as the amount of money to be raised now by selling the corresponding stock short.
The net investment in these stocks is assumed to come out of bonds that pay the risk-free interest
rate of 10% per year, and so the formula

=SUMPRODUCT( B5: B7, $G$5: $G$7) -SUM $G55: $G37) * $AS1
in cell B9 represents the net returns from our investmentsif State 1 occurs. Copying cell B9 to
B9:E9 gives us cells representing the net returns from our investments in each of the four
possible states. In cell G10, we enter a"goal” of returns that our investment strategy will try to
achievein all states. The shortfall from this goal in each state is computed in cellsB11:E11, by
entering the formula

=$G$10-B9
in cell B11, and then copying B11 to B11:E11. Thus, a positive shortfall in cellsB11:E11
denotes afailure to achieve the goal in some state. With this spreadsheet formulation, we can

now ask Solver to find the highest goal that can be achieved in all states by an investment
strategy.



A B | C | D | E F | G [ H
1 1.1Risk-free return ratio ($ next year per $1 invested now)
2
3 |$Returns next year per $1 invlested now
4 State 1 |State 2 |State 3 |State 4 I nvest now
5 [Stock A 0.95 0.90 1.30 1.20 0
6 [Stock B 0.95 1.35 0. 85 1.00 0
7 [Stock C 1.30 1.10 1.15 1.00 0
8
9 |Net $return 0 0 0 0 CGoall
10 0
11 |Shortfall 0 0 0 O|(+ is bad!)
12
13 |SCLVER (wi th Options: AssunelLi near Model ) :
14 |Maxi m ze GLO by changing Gb: G7, GLO subject to Bll: E11<=0.
15 |Sel ect SensitivityReport when Sol ver finishes.
16
17 State 1 |State 2 |State 3 |State 4
18 [ShadowPr oby | 0.01504| 0.43609| 0.34586| 0.20301
19 ShadowE( $Ret ur ns)
20 [Stock A 1.1
21 |Stock B 1.1
22 [Stock C 1.1
23
24 [FORMULAS FROM RANGE Al: Q22
25 [B9.  =SUMPRCDUCT( B5: B7, $G$5: $G$7) - SUM $G$5: $G37) * $AS1
26| B9 copied to B9: E9
27 |B11. =$G$10- B9
28| Bll copied to Bl1l: El1
29 |B20. =SUMPRODUCT( $B$18: $E$18, B5: E5)
30| B20 copied to B20: B22
31 [Shadow probabilities (or Lagrange Miultipliers) in B18: E18 are copied
32 [(with paste-special,transpose) from Solver's SensitivityReport.
33
34 [Fact: |If arbitrage opportunities do nLt exi st, then Sol‘ver nmust
35(|ternminate with O optinal value in cell Gl0, and the Shadow Prices
36 [(or Lagrange Multipliers) in the Sensitivity Report will give us a
37 [shadow probability distribution over the states such that all assets
38 |have the same shadow expected return ratio as risk-free bonds. |

Figure8.10. A simple example of arbitrage pricing theory.

In the Solver dialogue box, let ustell Solver to maximize the target cell G10 by changing
cells G5:G7,G10 subject to the constraints B11:E11<= 0. (It isimportant to include G10 among

the changing cells as shown. Solver will accept multiple ranges separated by commasin the

changing-cells box.) To take advantage of the special linear structure of this problem, which will
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enable Solver to analyze this problem more accurately, let us also go to the Solver "Options®
dialogue box and check the "Assume Linear Model™ option (then "OK"). Then we can go back
to the basic Solver dialogue box and click the "Solve" button. When Solver finishes and
announces that it has found a solution, we should also select the "Sensitivity" option in the
"Reports’ box, which causes Solver to add a Sensitivity-Report page in our workbook.

For this example, Solver will report the value 0 in cell G10 as the maximum return that
can be guaranteed with no net investment. (Solver may report a value of G10 slightly different
form O, such as 1.1E- 06, which denotes 1.1* 10°(- 6) = 0.0000011, but this tiny deviation from O
isjust due to roundoff error.) Getting this Solver output tells us that an arbitrage strategy for
guaranteeing a positive return in all states with no net investment does not exist. Thus, the main
result of arbitrage pricing theory tells us that there must exist some probability distribution that
makes each stock have an expected return ratio equal to the return ratio of risk-free bonds. But
where can we find this probability distribution?

The answer isin the Sensitivity Report that Solver added to the workbook, when we
selected the Sensitivity option when Solver finished the optimization. Solver's Sensitivity

Report, as shown in Figure 8.11, includes alot of numbers, but the only important numbers for

our purposes are those listed for the constraints under the heading Shadow Price or Lagrange
Multiplier. (Solver usesthe term "Shadow Price" when the "Assume Linear Model" option has
been selected, and it uses the equivalent term "Lagrange Multiplier” otherwise.) In general, the
shadow price of aconstraint is ameasure of the rate at which the optimal value of the target cell
would increase if we started increasing the value on the right-hand side of the constraint. But
Solver's shadow prices have a special interpretation herein this problem of searching for
arbitrage opportunities. This problem includes one constraint for each of the possible states, and
the shadow prices of these constraints are nonnegative numbers that sum to 1. So the shadow

prices generated by Solver for this problem can be interpreted as a shadow probability

distribution over the set of possible states.
This shadow probability distribution from the sensitivity report has been copied (and

pasted-special transposed) to the range B18:E18 in Figure 8.10. Then the formula
=SUMPRODUCT ( $B$18: $E$18, B5: E5)

50



in cell B20 computes the expected return ratio for Stock A under this shadow probability
distribution. Copying thisformulato cells B20:B22, we find that all three stocks have
shadow-expected return ratios equal to the return ratio on risk-free bonds in this market.

M crosoft Excel Sensitivity Report

Changing Cells

Fi nal Reduced oj ective Allowable Al owabl e

Cel | Name Val ue Cost Coefficient Increase Decrease
$G$5 Stock A Invest now 0 0 0 0. 05227 0. 00370
$G$6 Stock B I nvest now 0 0 0 0. 08846 0. 00455
$G$7 Stock C Invest now 0 0 0 0. 05610 0. 02500
$G$510 Goal 0 0 1 1E+30 1

Constraints

Final Shadow Constraint Allowable Al owabl e
Cel | Nane Value Price R H Side Increase Decrease

$B$11 Shortfall State 1 0 0.01504 0 1E+30 1E+30
$C$11 Shortfall State 2 0 0.43609 0 1E+30 1E+30
$D$11 Shortfall State 3 0 0.34586 0 1E+30 1E+30
$E$11 Shortfall State 4 0 0.20301 0 1E+30 1E+30

Figure8.11. Solver Sensitivity Report for the problem in Figure 8.10.

Thisresult is completely general. If you change the returnslisted in cells B5:E7 of
Figure 8.10, or the risk-freereturn ratio listed in cell A1, then one of two cases will hold.
Case 1 isthat the Solver will find an optimal solution with O as the best goal that can be
guaranteed in cell G10, in which case the shadow prices in the Sensitivity Report will form a
shadow probability distribution with which al stocks offer the same expected return ratio as
risk-free bonds. Case 2 isthat Solver may report "the set cell values do not converge,” which
means that arbitrage opportunities are possible and returns that exceed any positive goal can be
guaranteed. (If you want to see what these arbitrage strategies look like, you can add the
constraint G10<=1000, which tells Solver to try to stop when it finds away to guarantee returns
higher than $1000 with no initial investment. To get an example where such arbitrage
opportunities exist, you can change the value of cell B5 in Figure 8.10 from 0.95 to 1.19 or
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higher, leaving all other parameters the same.)

Now look back at our asset-pricing model in Figure 8.9. The current value of the asset, as
computed in cell 19, is an expected value of the asset next year divided by the return ratio for
risk-free bonds, but where the expected value is computed using the market-adjusted
probabilitiesin cells G15:G515. So when these market-adjusted probabilities are used to
compute the asset's expected return ratio (its future values in C15:C515 divided by its current
valuein 19), the resulting market-adjusted expected return ratio is exactly the risk-free return
ratioin cell A10. Thus, the market-adjusted probabilitiesin cells G15:G515 of Figure 8.9 are the
shadow probabilities that make this asset-pricing model a specia case of arbitrage pricing theory.

But Figure 8.9 also teaches us more about how such market-adjusted shadow
probabilities may differ from traditional probabilities (which are defined by relative frequency,
and so would be all be equal to 1,501 in the analysis of 501 simulation outcomes). The
difference is that higher market-adjusted probabilities are assigned to the bad outcomes where the
market portfolio does poorly, and lower market-adjusted probabilities are assigned to the good
outcomes where the market portfolio does well. This over-weighting of bad outcomes occurs
because risk-averse investors should be more sensitive to income changes in the states where

their overall portfolio has done badly.

8.7. Summary
Individuals with constant risk tolerance can maximize the sum of their certainty

equivalents by sharing risks linearly in proportion to their individual risk tolerances. If the
members of an investment partnership were not using such an optimal sharing rule, then one
partner could propose such an optimal sharing rule, together with some fixed payments among
the partners, with the result that he does better and no one else does worse (in terms of their
certainty equivalents). When partners share arisky gamble in this optimal way, the sum of their
certainty equivalents of their separate shares is the same as what the certainty equivalent of the
whole gamble would be to asingle individual whose risk tolerance was the sum of the partners
risk tolerances. In this sense, a partnership should evaluate gambles and choose among them just

asif it were asingle person with arisk tolerance equal to the sum of the partners individual risk
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tolerances.

This simple theory of sharing risks in proportion to risk tolerances is based on an
assumption that the way that profits are divided among the partners does not affect the
probability distribution of total profits earned. But this assumption may fail, and so this ssmple
theory of optimal risk sharing may not apply, when the partnership's profits depend on the efforts
of an individual whose work cannot be perfectly monitored by the other partners. His
temptation to shirk instead of work is an example of mora hazard problems that can be caused
by systems of risk sharing and insurance. In such cases, thisindividual may have to bear alarger
share of therisks, to give him more motivation for diligent efforts on behalf of the partnership.
We learned how to compute optimal linear and nonlinear sharing rules that satisfy the
moral-hazard incentive constraints for such an agent.

We then moved from the study of partnershipsto publicly held corporations with a stock
market that includes many investors with constant risk tolerance. Among two financial assets
that have the same marginal probability distribution of values next year, the one that has lower
correlation with the overall market portfolio should have a higher value now, because it offers
better insurance against the risks of the diversified market portfolio that investors hold. We
developed a spreadsheet model for computing an asset's current value in the stock market from
the joint distribution of the future values of this asset and the market portfolio. This model yields
asset values such that, when expected values are computed using some market-adjusted
probabilities for the possible outcomes, the expected growth ratio of the every asset'svalueis
equal to the return ratio on risk-free bonds or bank accounts. This market-adjusted probability
distribution puts relatively more weight on bad outcomes where the market portfolio does poorly,
because risk-averse investors are relatively more sensitive to income changes in such bad
outcomes. The property of all assets having equal expected return ratios in terms of some
shadow probability distribution is a general characteristic of any asset-pricing system that does

not create arbitrage opportunities.
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EXERCISES

1. G. Washington owns areal-estate development which will pay returns drawn from a Normal
distribution, with expected value $50,000, and standard deviation $12,000. Washington has
constant risk tolerance, and his risk-tolerance index is $8000. J. Madison's risk-tolerance index
is$5000. (The development does not require any significant unobservable effort from
Washington himself.)

(8 What is Washington's certainty equivalent for the real-estate development, if he keeps
the development for himself?

(b) Washington is planning to sell Madison a share in the development. To maximize
their total certainty-equivalent values of their shares, what share should Washington sell to
Madison? What is the minimum price that Washington should accept for selling this share?
What is the maximum price that Madison would be willing to pay for this share?

(c) B. Arnold owns areal-estate development up river that will pay returns drawn from a
Normal distribution with expected value $64,000 and standard deviation $20,000. Arnold has
offered to exchange his up-river development for Washington's development. Washington
expects to take Madison on as a partner in his real-estate deals in any case. Should Washington
accept Arnold's offer to exchange developments? Explain your answer.

2. Case: The Wilson Estate

Daniel Wilson and Rebecca Wilson Tidler have just inherited their mother's real estate
holdings, which consist of scattered commercial properties, some of which have substantial
mortgages. Without their mother to manage the properties, they plan to sell the properties and
split the returns equally.

A sudden offer by P. J. Cooney to buy all of their mother's properties for $140,000 over
the cost of repaying all mortages has caused disagreement among the brother and sister, however.
Daniel is eager to accept the offer, but Rebecca feels strongly that they should try to do better by
selling the various properties separately over the coming year. Y ou have been asked to help
resolve their conflict.

After lengthy discussions with the Daniel and Rebecca, you have found that they
essentially agree about their prospective risksif they turn down Cooney's offer. Appraisals of the
properties by independent real -estate agents have suggest that the expected returns from selling
the properties separately is $200,000 over the cost of repaying all mortages, although their actual
realized returns could be substantially above or below that amount. So both Daniel and Rebecca
agree that aNormal distribution with this mean of $200,000 and a standard deviation of $75,000
can accurately describe their beliefs about their combined returns from selling the properties
separately after rejecting Cooney's offer.



Where the siblings differ isin their risk tolerance, however. Daniel, with children about
to enter college, is substantially less risk-tolerant than Rebecca. By asking them about their
willingness to take hypothetical risks, you have assessed Daniel's risk-tolerance index to be
$20,000, and you have assessed Rebecca's risk-tolerance index to be $45,000. It seems
reasonabl e to assume that they each have constant risk tolerance.

(&) What is Daniel's certainty equivalent for a 50% share of the returns from selling the
properties after regjecting Cooney's offer? What is Rebecca's certainty equivalent for a 50% share
of the returns from selling the properties after rejecting Cooney's offer?

(b) Consider an alternative plan in which Rebecca pays her brother some amount of
money now to buy a larger share of the returns from the properties. To increase the sum of their
certainty equivalents as much as possible, what share should Rebeccatake? How much money
would she have to pay Daniel now to buy thisincreased share, so that his certainty equivalent for
his remaining share plus her payment to him should be equal to $70,000 (the amount that he
would get if they sold to Cooney now and divided the money equally)?

(c) If Rebeccapaid her brother and increased her share of the returns from selling the
properties as you described in part (b), then what would be her certainty equivalent for her share
of the returns minus her payment to her brother?

(d) Make achart showing the (inverse) cumulative distribution of the net returns
(including the payment to or from the other sibling) that Daniel and Rebecca will each get under
your plan from part (b).

3. If the manager is diligent, then the gross profits that our company will earn from a new project
will be arandom variable drawn from a Normal distribution with mean $900,000 and standard
deviation $200,000. But if the manager shirks then these profits will be reduced by 20%. We
cannot observe whether the manager is diligent or shirking, but we will be able to observe the
gross profits that are generated. The manager has constant risk tolerance $50,000. Shirking
would be worth an additional $40,000 in compensation to the manager. The manager's pay may
depend on the gross profit earned, but this pay cannot be less than $80,000 in any case, and the
manager would quit now if the certainty equivalent of his compensation plan was less than
$200,000. We want to maximize our company's expected net profit, after subtracting the amount
that we pay the manager.

(a) Let usconsider linear compensation plans, adjusted to the minimum wage $80,000 where
necessary. That is, suppose that the wage that we pay the manager will be some fixed constant
plus afixed fraction of the gross profits, or $80,000, whichever islarger. Find the compensation
plan of this linear form that maximizes our expected net profit. Under this plan, what isthe
highest gross profit for which the manager gets only $80,000? What fraction of profits over this
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amount do we pay to the manager?

(b) If we consider nonlinear compensation plans, how much can you increase our expected net
profit?

(c) Suppose instead that we compensate the manager in such away that he does not quit but he
shirks. What is the highest expected net profit that our company can earn from this project with a
shirking manager?

(d) How would your optimal linear compensation plan in part (a) changeif shirking reduced
gross profits by 25%, but everything else is the same?

4. Consider again the Part C of the Superior Semiconductor case, as described at the beginning
of Chapter 4 and analyzed in Section 4.6. Let us assume, for smplicity, that al costs and
revenues of this T-regulator product will accrue 2 years from now, but the interest rate on risk-
free bondsis essentialy zero. Thevauein 2 years of $1 that isinvested now in the well-
diversified market portfolio will be a Generalized Lognormal random variable with quartile
boundary points $0.80, $1.10, and $1.50. Suppose that, in the T-regulator project, the
development costs, the event of successful development, and the number of entering competitors
are believed to be independent of the returnsto the market portfolio. But the total value of the
market for the T-regulator product in this case will be dependent on the same macroeconomic
forces that will determine the returns to the market portfolio in the stock market. To be specific,
suppose that Superior Semiconductor's business-marketing manager says that, if she were told
that the stock market portfolio would decrease to $0.80 in 2 years per dollar invested now, then
she would revise her median value of the whole T-regulator market to $85 million.

(&) Assuming that investorsin the stock market understood all the facts described above and in
Part C of the Superior Semiconductor case, would you recommend that Superior Semiconductor
develop the new T-regulator product? How would the total value of Superior Semiconductor's
stock change if the company announced that it was developing the T-regulator device?

(b) How would your answer change if the business-marketing manager instead assessed a
conditional median of $90 million for value of the T-regulator market given the stock market
portfolio decreasing to $0.80 in 2 years?
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