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Important Information

About this Manual

This manual describes the software developed in connection with the project Bayesian Com-
munication in the Social Sciences, Siddhartha Chib and John Geweke principle investigators.
Acknowledgement in any resulting published work would be appreciated. This project was
supported, in part, by Grants SBR-9600040 and SBR-9731037 from the National Science
Foundation.

Help Keep This Software Free

The National Science Foundation supports this software and its continued development. It is
important that we document the use of BACC. We respectfully request that all publications
and working papers reporting the results of research using BACC software, include the
following acknowledgement and reference:

Computations reported in this paper were undertaken [in part] using the Bayesian
Analysis, Computation and Communication software (http://www.econ.umn.edu/ bacc)
described in:

Geweke, J. (1999) ”Using Simulation Methods for Bayesian Econo-
metric Models: Inference, Development, and Communication” (with
discussion and rejoinder), Econometric Reviews 18: 1-126.

BACC Software and Documentation

BACC software and documentation is available on the web at
http://www.econ.umn.edu/ bacc
Please send any comments or questions to

bacc@econ.umn.edu
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Chapter 1

Getting Started with BACC

1.1 Introduction

The BACC software provides the user several commands for doing Bayesian analysis and
communications. This document describes the function of these commands and their in-
puts and outputs. It also outlines some of the theory behind the commands, and provides
references to the relevant literature.

The following versions of the BACC software and documentation are available:

e Windows Matlab

e Linux/Unix Matlab
e Windows Splus

e Linux/Unix Splus
e Windows R

e Linux/Unix R

o Windows Gauss

e Linux/Unix Gauss
e Windows Console

e Linux/Unix Console

This particular manual is for the Windows R version of BACC.

1.2 Requirements

1.3 Installation and Configuration

Follow these steps to install the Windows R, version of BACC.

11



12 CHAPTER 1. GETTING STARTED WITH BACC

1. Download the zip file baccWinR.zip from the software page of the BACC website
http://www.econ.umn.edu/ bacc.

2. Unzip baccWinR.zip to the directory C:\ using a standard unzipping utility such
as PKZIP (available at http://www.pkware.com). Other freeware and shareware
unzipping utilities are available on the web. This creates the directory C:\BACC_R and
fills it with all the necessary files. You may also install the software into an alternative
directory, in which case the following steps need to be modified accordingly.

The Windows R version of BACC is now installed. Follow these steps to load the BACC
library within R.

1. Start R.

2. Change working directory to BACCR, load the R script baccWin.R and load the dy-
namically linked library for BACC.

> setwd(’C:\BACC_R’)
> source(’baccWin.R’)
> loadBACC()

Follow these steps to run the sample program testBACC.R.
1. Set the working directory to C:\BACC_R\Test.

> setwd(’C:\BACC_R\Test’)
2. Run the R script testBACC.R.

> source(’testBACC.R’)



Chapter 2

Models

2.1 Introduction

This document specifies the models currently supported by the BACC system. Each sec-
tion following this one describes one of the supported models. Each model description is
organized into subsections, following the pattern of this section. Appendix A gives the
probability density and mass functions of the distributions used throughout the document.

2.1.1 Dimension parameters

All the quantities relevant to a model are treated as matrix valued. All matrix sizes are
specified in terms of these dimension parameters. Examples of dimension parameters include
the number of times a variable is observed, the number of individuals in a cross section, and
the number of equations in a linear model. This subsection lists and describes the dimension
parameters for a particular model.

2.1.2 Unknown Quantities

Unknown quantities are all the unobserved elements in a model. They include unknown
parameters of the model, latent variables, and missing data. Separate sub-sub-sections
discuss unknown quantities in each of these categories. Posterior simulation involves drawing
these quantities from their posterior distribution; that is, their conditional distribution given
known quantities.

2.1.3 Known Quantities

Known quantities are all the observed or user-specified values in a model. They include prior
parameters, which index distributions within a family of prior distributions, and observed
data. Separate sub-sub-sections discuss known quantities in both of these categories. The
user of the BACC software must specify all the known quantities of a model in order to
create an instance of the model.

13



14 CHAPTER 2. MODELS

2.1.4 Data Generating Process

This section specifies the conditional distribution of the endogenous observed data, given the
unknown quantities and any observed data ancillary with respect to the unknown quantities.

2.1.5 Prior Distribution

This section specifies the marginal distribution of the unknown quantities, reflecting the
user’s prior beliefs about these quantities. These unknown quantities may or may not be
independent. An example where they are not is a hierarchical prior, in which the prior
density is expressed as the product of marginal densities of the “lowest level” unknowns and
conditional densities of “higher level” unknowns given “lower level” unknowns.

2.1.6 Creating a Model Instance

This section gives all the model specific information a user requires to create a model
instance. It specifies a short mnemonic label that identifies the model, the order in which
the user gives the names to assign the unknown quantities, and the order in which to supply
all the known quantities. To create a model instance, the user issues the minst command,
with appropriate arguments (see section 3.3.14).

2.1.7 Sampling Algorithms

This section has brief descriptions of the algorithm used to generate samples of unknown
quantities from their prior and posterior distributions. One subsection each concerns the
prior distribution and the posterior distribution. For further details on the algorithms, the
user should consult the internal (source code) documentation for the BACC system.

2.1.8 Marginal Likelihood

Where there is an analytical expression for the marginal likelihood in a model, this subsection
provides that expression.
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2.2 The Normal Linear Model

2.2.1 Dimension parameters

There are m equations, k covariate coefficients, and T observations of each variable.

2.2.2 Unknown Quantities

Unknown Parameters

There is a k x 1 coefficient parameter 8 and a m X m precision parameter H.

2.2.3 Known Quantities

Prior Parameters

There is a k x 1 coefficient mean vector 3, a k x k positive definite coefficient precision

matrix H, a precision degrees of freedom parameter v > ’”T_l, and a positive definite
precision inverse scale parameter S.
Data
There are m vectors of observations of dependent variables: y1, ..., y,. Each vector is T'x 1.
There are m matrices of observations of ancillary (with respect to unknown quantities)

variables: Z1,...,Z,,. Each matrix is T x k.
2.2.4 Data Generating Process

(1 Zy €1

y= : = : G+ =ZB+e
Ym Zm €Em

€1 A
€m Zm

2.2.5 Priors

The unknown parameters 3 and H are a-priori independent, and have the following marginal
distributions.

B~N(3 Hg")
H~Wi(S™,v)

When m = 1, the distribution of SH is chi-squared with v degrees of freedom.
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2.2.6 Creating a Model Instance

The mnemonic label identifying the model is nlm.

Supply the names you wish to give the unknown quantities in the following order: first
the name of 3 (“beta” for example) and then the name of H.

Supply the known quantities in the following order: 3, H s, v, S, Z, y.

2.2.7 Sampling Algorithms
Generating Prior Samples

Samples from the prior distribution of § and H are generated independently.

Generating Posterior Samples

The algorithm to generate samples from the posterior distribution 3, H|Z,y is a Gibbs sam-
pling algorithm with two blocks, based on the following conditional posterior distributions.

B|H,y,Z ~N(B,Hy')

HIB,y,Z ~W(S ', 7)

where
Eﬁ = ﬂg + Z’(H ®Ir)Z
- =1
B=Hg [Hgf+Z'(H® Ir)y|

S =5+ [sij],85 = (yi — ZiB)' (ys — Zi3)

v=v+T



2.3. THE SEEMINGLY UNRELATED REGRESSIONS MODEL

2.3 The Seemingly Unrelated Regressions Model

This is a special case of the Normal Linear Model with m > 1. Please see section 2.2.

17



18 CHAPTER 2. MODELS

2.4 The I.I.D. Finite State Model

2.4.1 Dimension parameters

There are m states, IV individuals and T observation times.

2.4.2 Unknown Quantities
Unknown Parameters

There is a 1 X m state probability vector 7.

2.4.3 Known Quantities
Prior Parameters

There is a 1 X m parameter « indexing the prior distribution of 7.

Data

There are state observations s;; € {1,...,m} for each individual ¢ of N individuals and each
observation period t of T periods.

S1,1 't SN,
S:

ST1 't SN,T

2.4.4 Data Generating Process

Each observation s;; is independently and identically distributed as follows.

Pr(sy; = s) = 7s s=1,....m
2.4.5 Priors

7 ~ Di(a)

2.4.6 Creating a Model Instance

The mnemonic label identifying the model is iidfs.
Supply the name you wish to give the unknown quantity 7 (“pi” for example).
Supply the known quantities in the following order: «, S.

2.4.7 Sampling Algorithms
Generating Prior Samples

Samples from the prior distribution of 7 are generated independently.
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Generating Posterior Samples

In this model, the posterior distribution for 7 is the following familiar distribution.

7|S ~ Di(@)
where
a=a+n
n=[ng- Nyl
and ng is the number of observations for which s;; = s. Posterior samples are drawn

independently from this distribution.

2.4.8 Marginal Likelihood
The marginal likelihood is given by
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2.5 The Non-Stationary First Order Markov Finite State
Model

2.5.1 Dimension parameters

There are m states, N individuals and T observation times.

2.5.2 Unknown Quantities
Unknown Parameters

There is a 1 X m initial state probability vector 7 and an m xm Markov transition probability
matrix P.

2.5.3 Known Quantities
Prior Parameters

The prior parameters are a 1 x m vector ¢ indexing the prior distribution of 7, and an
m X m matrix a indexing the prior distribution of P.

Data
There are state observations sy; € {1,...,m} for each individual ¢ and each observation
time ¢.
S11 SIN
S = :
ST1 STN

2.5.4 Data Generating Process

The N observation sequences {s; }7_; are i.i.d., with each sequence being first order Markov.
The initial distribution is 7 and the Markov transition matrix is P.

Pr(s1; =s) =ms s=1,....,m

PI‘(Sti = Sl‘st—l,i = S) = Pss/

2.5.5 Priors

The m rows Ps of P and 7 are mutually independent, and have the following marginal
distributions.
™ ~ Di(ay)

PSE[PSIM"vPsm}NDZ.(QS) s=1,....m

a=[ayn - Qo |
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gsz[gsl gsm] s=1,....,m

2.5.6 Creating a Model Instance

The mnemonic label identifying the model is nsfomfs.

Supply the names you wish to give the unknown quantities in the following order: first
the name of m (“pi” for example), and then the name of P.

Supply the known quantities in the following order: ¢, o, S.
2.5.7 Sampling Algorithms

Generating Prior Samples

Samples from the prior distributions of 7 and P are generated independently.

Generating Posterior Samples

In the posterior distribution 7, P|S, the parameters w and P are conditionally independent,
and their marginal posterior distributions are the following familiar distributions.

71| ~ Di(a)

P,|S ~ Di(a@;) s=1,...,m

where

Qap = g+ no

a=a+n
Qs = [ Q51 Qsm ]
nog = [ o1 nom }
ni1 Nim
n= :
Nm1  Nmm

where ng, is the number of individuals starting in state s, and ngy is the number of transi-
tions from state s to state s’ in the data.
Posterior samples are drawn independently from this distribution.

2.5.8 Marginal Likelihood

The marginal likelihood is available in closed form:

TS ) T T(Ees) 1y (TS0, ) T, T(@es)
P = T T o) T, o)LL [H:f_l F(ayy) TS, @ae)

s=1
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2.6 The Stationary First Order Markov Finite State
Model

2.6.1 Dimension parameters

There are m states, N individuals and T observation times.

2.6.2 Unknown Quantities
Unknown Parameters

There is an m x m Markov transition probability matrix P.

2.6.3 Known Quantities
Prior Parameters

The prior parameter is an m X m matrix « indexing the prior distribution of P.

Data
There are state observations sy € {1,...,m} for each individual ¢ and each observation
time t.
S11 S1IN
S = :
ST1 't STN

2.6.4 Data Generating Process
The N observation sequences {s; }Z_; are i.i.d., with each sequence being first order Markov
with transition matrix P. The initial distribution vector is assumed to be the invariant
distribution 7 for P.
Pr(s1; = s) = ms s=1,....m
Pr(sy = s'|si—1, = 8) = Py

where 7 is the left eigenvector of P corresponding to the eigenvalue A = 1.

2.6.5 Priors

The m rows P of P are mutually independent, and have the following marginal distributions.

P; =[P, ..., Psm] ~ Di(ay) s=1,...,m

o [gsl gsm] s=1,....m



2.6. THE STATIONARY FIRST ORDER MARKOYV FINITE STATE MODEL 23

2.6.6 Creating a Model Instance

The mnemonic label identifying the model is sfomfs.
Supply the name you wish to give the unknown quantity P.
Supply the known quantities in the following order: «, S.
2.6.7 Sampling Algorithms
Generating Prior Draws

Samples from the prior distribution of P are generated independently.

Generating Posterior Draws

In this model, an independance Metropolis-Hastings chain is used to draw from the posterior
distribution for P. The distribution P*|S of candidate draws is

P?|S ~ Di(as) s=1,....m

where

a=a+n
as = [ Q51 <o Ogm ]
niy o0 Nim
n =
Nm1 - Nmm

where n,, is the number of transitions from state s to state s’ in the data.
The Hastings ratio for this block is given by

N *
1>
i=1 TS
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2.7 The Poisson Model

2.7.1 Dimension parameters

There are N observations.

2.7.2 Unknown Quantities
Unknown Parameters

There is a scalar mean parameter .

2.7.3 Known Quantities
Prior Parameters

There is a scalar shape parameter a > 0 and a scalar scale parameter 3 > 0 indexing the
prior distribution of A.

Data

Each observation z; is a non-negative integer.

T

TN

2.7.4 Data Generating Process

The observations x; are independently and identically Poisson distributed.

x; ~ Po(\)

2.7.5 Priors

A~ Ga(a, 8)

2.7.6 Creating a Model Instance

The mnemonic label identifying the model is poisson
Supply the names you wish to give the unknown quantity A (“lambda” for example).
Supply the known quantities in the following order: a, 3, X.

2.7.7 Sampling Algorithms
Generating Prior Samples

Samples from the prior distribution of A\ are generated independently.
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Generating Posterior Samples

In this model, the posterior distribution for A is the following familiar distribution.

Posterior samples are drawn independently from this distribution.

2.7.8 Marginal Likelihood
The marginal likelihood is given by the following expression.

Y Da+r) 1
(B+N)tr T(a) TV, 2!

1=

p(X) =

where

N
T = E Ty
i=1
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2.8 The Uniform Model

2.8.1 Dimension parameters

There are N observations.

2.8.2 Unknown Quantities
Unknown Parameters

There is a scalar support parameter 6.

2.8.3 Known Quantities
Prior Parameters

There is a scalar notional count parameter @ > 0 and a scalar notional maximal element
parameter 3 > 0 indexing the prior distribution of 6.

Data

Each observation z; is a non-negative real-valued scalar.

L1
TN

2.8.4 Data Generating Process

Each observation x is independently and identically distributed with a uniform distribution
on [0,6].

z; ~11.d.U(0,0)
2.8.5 Priors

0 ~ Pa(a, 3)

2.8.6 Creating a Model Instance

The mnemonic label identifying the model is uniform. Supply the name you wish to give
the unknown quantity 6 (“theta” for example).
Supply the known quantities in the following order: «, 8, X.
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2.8.7 Sampling Algorithms
Generating Prior Samples

Samples from the prior distribution of # are generated independently.

Generating Posterior Samples

In this model, the posterior distribution for 6 is the following familiar distribution.

6| ~ Pa(@, B)

where
a=a+N

3 = max {ﬁ, miaxxi}

Posterior samples are drawn independently from this distribution.

2.8.8 Marginal Likelihood

The marginal likelihood is given by the following expression.

N
= (a/a@) H (pi/B;)

where B
B; = max{f3, maxx;}
- <

and

b | (G072 it > B,
1 otherwise.
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2.9 A Univariate Linear Model with Normal Distur-
bances

The mnemonic label identifying the model is n_ulm.

Dimension Parameters

T  number of observations

K number of covariates

Unknown Quantities

8 (K x1) vector of covariate coefficients

h (1x1) precision of disturbance

Known Quantities

B (K x1) prior mean of
Hg; (K xK) prior precision of

s> (1 x1) prior inverse scale of h

v (1 x1)  prior degrees of freedom of h
X (I'xK) covariates
Y

(T'x 1)  dependant variable

Data Generating Process

The observables y are given by
y=XB+u,

where wu is a T x 1 vector of i.i.d. normal disturbances, with u.|h ~ N(0,h~1):

p(ul X, B,h) = (2m) 7T /2hT/? exp(—hu'u/2).

Prior Distribution

The vectors 3 and h, together with X, are mutually independant. The covariate coefficient
vector (3 has distribution N (8, H 3):

p(B) = (2m) /2| H | exp[~ (8 — B) Hg (B — B)/2].
The precision parameter h has a scaled chi-squared distribution, with s2h ~ v:

p(h) = 27471 (1/2) 7} (s*)*/*h*~2)/% exp(—5°h/2).
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Sampling Algorithm

See Example 3.4.1 in “Contemporary Bayesian Econometrics and Statistics,” by John Geweke,
at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.10 The Dichotomous Choice Model
(with normally distributed disturbances)

2.10.1 Dimension parameters

There are k covariate coefficients and T observations of each variable.

2.10.2 Unknown Quantities

Unknown Parameters

There is a k x 1 coefficient parameter (3, a scalar precision parameter h, and a T' X 1 vector
1y of latent outcomes.

2.10.3 Known Quantities

Prior Parameters

There is a k x 1 coefficient mean vector 3, a k x k positive definite coefficient matrix H g,
a precision degrees of freedom parameter v, and a positive definite precision inverse scale
parameter S.

Data

There is a T' x 1 vector of observations of dependent variables y taking values in {0, 1}.
There is a T' x k matrix X of observations of ancillary (with respect to unknown quan-
tities) variables.

2.10.4 Data Generating Process

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.10.5 Priors

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.10.6 Creating a Model Instance

The mnemonic label identifying the model is udcht.

Supply the names you wish to give the unknown quantities in the following order: first
the name of § (“beta” for example), then the name of h (“hHomo” for example), and finally
the name of the latent variable ¢ (“yTilde” for example).

Supply the known quantities in the following order: 3, Hg, S, v, X, y.
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2.10.7 Sampling Algorithms

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html .
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2.11 The Censored Linear Model
(with normally distributed disturbances)

2.11.1 Dimension parameters

There are k covariate coefficients and 1" observations of each variable.

2.11.2 Unknown Quantities
Unknown Parameters

There is a k x 1 coefficient parameter (3, a scalar precision parameter h, and a T' X 1 vector
7 of (possibly) latent outcomes.

2.11.3 Known Quantities
Prior Parameters

There is a k x 1 coefficient mean vector (3, a k x k positive definite coefficient matrix
H 3, a precision degrees of freedom parameter v, a positive definite precision inverse scale
parameter S, and a censoring parameter c.

Data

There is a T' x 1 vector of observations of dependent variables y.
There is a T' x k matrix X of observations of ancillary (with respect to unknown quan-
tities) variables.

2.11.4 Data Generating Process

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.11.5 Priors

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.11.6 Creating a Model Instance

The mnemonic label identifying the model is ucensor.

Supply the names you wish to give the unknown quantities in the following order: first
the name of 8 (“beta” for example), then the name of h (“hHomo” for example), and finally
the name of the latent variable ¢ (“yTilde” for example).

Supply the known quantities in the following order: 3, Hg, S, v, ¢, X, y.
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2.11.7 Sampling Algorithms

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.12 The Univariate Latent Linear Model
(with normally distributed disturbances)

2.12.1 Dimension parameters

There are k covariate coefficients and T observations of each variable.

2.12.2 Unknown Quantities
Unknown Parameters

There is a k x 1 coefficient parameter (3, a scalar precision parameter h, and a T' X 1 vector
7 of (possibly) latent outcomes.

2.12.3 Known Quantities
Prior Parameters

There is a k x 1 coefficient mean vector 3, a k X k positive definite coefficient matrix H g,
a precision degrees of freedom parameter v, and a positive definite precision inverse scale
parameter S.

Data

Corresponding to the (possibly) latent outcome g, there are two T x 1 vectors ¢ and d, ¢ > d,
which describe the observed, set-valued outcome.

There is a T' X k matrix X of observations of ancillary (with respect to unknown quan-
tities) variables.

2.12.4 Data Generating Process

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html .

2.12.5 Priors

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html .

2.12.6 Creating a Model Instance

The mnemonic label identifying the model is ullm.

Supply the names you wish to give the unknown quantities in the following order: first
the name of § (“beta” for example), then the name of A (“hHomo” for example), and finally
the name of the latent variable g (“yTilde” for example).

Supply the known quantities in the following order: 3, Hg, S, v, X, ¢, d.
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2.12.7 Sampling Algorithms

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html .
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2.13 A Univariate Linear Model with Student t Distur-
bances

The mnemonic label identifying the model is t_ulm.

Dimension Parameters

T number of observations

K number of covariates

Unknown Quantities

8 (K x1) vector of covariate coefficients

h (1 x1) precision of Student t distribution

h (T x1) time varying latent precision variable

A (Ix1) degrees of freedom of Student t distribution

Known Quantities
B (K x1) prior mean of 3
H; (K x K) prior precision of 3

2 (1x1) prior inverse scale of h

[V

I

(1 x1)  prior degrees of freedom of h
A (1 x1)  prior mean of A

X (T'xK) covariates
y (T'x 1) dependant variable

Data Generating Process

The observables y are given by
y=Xp+u,

where wis a T x 1 vector of independant Student t disturbances, with ug|h, X ~ (0, A1, N).
Conditioning on the latent h gives u¢|h, h ~ N (0, (hhs)~1):

T
p(ulX, 8, h,h) = (2m)~T2RT2 [ hy'? exp(—hheu? /2).

t=1

See Section 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John Geweke,
at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html for details.
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Prior Distribution

The vectors 3, h, and (71,)\), together with X, are mutually independant. The covariate
coefficient vector 3 has distribution N (3, Hz):

p(B) = (2m) "2 Hg|'? exp[— (8 — B)' Hy(8 — 5)/2).
The precision parameter h has a scaled chi-squared distribution, with s2h ~ v:
plh) = 22T (w/2) (822 2hE D2 exp(~s2h/2).

The time varying latent precision parameters h are i.i.d. scaled chi-squared variates, with
Ay~ x2(\):

T
p(RIN) = [2V2T(/2)] A2 T 27 exp(—AR/2)

t=1

The degrees of freedom parameter A is distributed exp(A):
p(N) = A7 exp(=A/A).

Sampling Algorithm

See Section 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John Geweke,
at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.14 The Dichotomous Choice Model
(with Student ¢ distributed disturbances)

2.14.1 Dimension parameters

There are k covariate coefficients and T' observations of each variable.

2.14.2 Unknown Quantities
Unknown Parameters

There is a k x 1 coefficient parameter (3, a scalar precision parameter h, a T" x 1 vector of
precision parameters h;, a T x 1 vector ¢ of latent outcomes, and a scalar degrees of freedom
parameter .

2.14.3 Known Quantities
Prior Parameters

There is a k x 1 coefficient mean vector 3, a k x k positive definite coefficient matrix
H 3, a precision degrees of freedom parameter v, a positive definite precision inverse scale
parameter S, and a degrees of freedom parameter \A.

Data

There is a T' x 1 vector of observations of dependent variables y taking values in {0, 1}.
There is a T x k matrix X of observations of ancillary (with respect to unknown quan-
tities) variables.

2.14.4 Data Generating Process

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.14.5 Priors

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.14.6 Creating a Model Instance

The mnemonic label identifying the model is t_udcht.

Supply the names you wish to give the unknown quantities in the following order: first
the name of B (“beta” for example), then the name of h (“hHomo” for example), then
the name of h; (“hHetero” for example), then the name of the latent variable ¢ (“yTilde”
for example), and finally the name of the degrees of freedom parameter A\ (“lambda” for
example).

Supply the known quantities in the following order: 3, Hg, S, v, A, X, y.
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2.14.7 Sampling Algorithms

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.15 The Censored Linear Model
(with Student ¢ distributed disturbances)

2.15.1 Dimension parameters

There are k covariate coefficients and T' observations of each variable.

2.15.2 Unknown Quantities

Unknown Parameters

There is a k x 1 coefficient parameter (3, a scalar precision parameter h, a T x 1 vector of
precision parameters hy, a T x 1 vector § of (possibly) latent outcomes, and a scalar degrees
of freedom parameter .

2.15.3 Known Quantities
Prior Parameters

There is a k x 1 coefficient mean vector (3, a k X k positive definite coefficient matrix
H 3, a precision degrees of freedom parameter v, a positive definite precision inverse scale
parameter S, a degrees of freedom parameter A\, and a censoring parameter c.

Data

There is a T x 1 vector of observations of dependent variables .
There is a T x k matrix X of observations of ancillary (with respect to unknown quan-
tities) variables.

2.15.4 Data Generating Process

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.15.5 Priors

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.15.6 Creating a Model Instance

The mnemonic label identifying the model is t_ucensor.

Supply the names you wish to give the unknown quantities in the following order: first
the name of B (“beta” for example), then the name of h (“hHomo” for example), then
the name of h; (“hHetero” for example), then the name of the latent variable g (“yTilde”
for example), and finally the name of the degrees of freedom parameter A (“lambda” for
example).

Supply the known quantities in the following order: 3, Hg, S, v, A, ¢, X, y.
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2.15.7 Sampling Algorithms

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.16 The Univariate Latent Linear Model
(with Student ¢ distributed disturbances)

2.16.1 Dimension parameters

There are k covariate coefficients and T' observations of each variable.

2.16.2 Unknown Quantities

Unknown Parameters

There is a k x 1 coefficient parameter (3, a scalar precision parameter h, a T x 1 vector of
precision parameters hy, a T x 1 vector § of (possibly) latent outcomes, and a scalar degrees
of freedom parameter .

2.16.3 Known Quantities
Prior Parameters

There is a k x 1 coefficient mean vector 3, a k x k positive definite coefficient matrix
H 3, a precision degrees of freedom parameter v, a positive definite precision inverse scale
parameter S, and a degrees of freedom parameter \A.

Data

Corresponding to the (possibly) latent outcome g, there are two T x 1 vectors ¢ and d, ¢ > d,
which describe the observed, set-valued outcome.

There is a T' x k matrix X of observations of ancillary (with respect to unknown quan-
tities) variables.

2.16.4 Data Generating Process

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.16.5 Priors

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.16.6 Creating a Model Instance

The mnemonic label identifying the model is t_ullm.

Supply the names you wish to give the unknown quantities in the following order: first
the name of § (“beta” for example), then the name of h (“hHomo” for example), then
the name of h; (“hHetero” for example), then the name of the latent variable g (“yTilde”
for example), and finally the name of the degrees of freedom parameter A\ (“lambda” for
example).
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Supply the known quantities in the following order: 3, H g, S, v, A, X, ¢, d.

2.16.7 Sampling Algorithms

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.17 A Univariate Linear Model with Finite Mixtures
of Normals Disturbances

The mnemonic label identifying the model is fmn_ulm.

Dimension Parameters

T
K

m

number of observations

number of covariates

number of mixture components (or states)

Unknown Quantities

m 5> 2

3

((m + K) x

(Ix1)
(mx 1)
(T'x1)
(1 xm)

1) vector of state means and covariate coefficients

constant multiplicative precision component
state dependant multiplicative precision component
time varying latent discrete state

state probabilities

Known Quantities

hy,

&
Hg

(Ix1)
(K x1)
(K x K)
(Ix1)
(Ix1)
(1x1)
(Ix1)
(Ix1)
(T x K)
(T x1)

prior precision parameter for state means

prior mean of covariate coefficients

prior precision of covariate coefficients

prior inverse scale of h

prior degrees of freedom of h

number of states

degrees of freedom parameter for state precisions
Dirichlet parameter for state probabilities
covariates

dependant variable

Data Generating Process

The observables y are given by

y=XB+u,
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where wu is a T x 1 vector of independant discrete normal mixture disturbances, with
uglh, 7, , h, X given by:

p(uglh, 7,0, h, X) = (2m)"/2p1/2 Z th;/2 exp[—h - hj(u — ;)? /2]
Jj=1
Conditioning on the latent states gives
p(uglh, 0, h, X) = (27r)_1/2h1/2h;t/2 exp[—h - hs, (us — as,)?/2].

See Section 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John Geweke,
at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html for details.

Prior Distribution

The vectors (v, h), h, and (3, 7), together with X, are mutually independant. The 7 pa-
rameter vertically stacks the parameters o and 3, where « is the m x 1 vector of state
dependant means and ( is the K x 1 vector of covariate coefficients. They are independent,
with alh ~ N(0, (b, h)~!) and 8 ~ N(B,Hp):

p(ylh) = plalh) - p(B) = (2m)"/*(hoh)™? exp(—hoha'a/2)
(2m) K72 Hy|"? exp|— (8 — B) Hu(B — B)/2).

The precision parameter h has a scaled chi-squared distribution, with s2h ~ v:
p(h) = 27T (v/2) " Y (s®) ¥/ 2 =2/ 2 exp(—52h/2).

The state dependant precisions h; are i.i.d., with v.h; ~ x*(v.):
_ omu, 2\my. /2 s (—v.—2)/2 _ .
p(h) = 2" T (v /2) ()™ T ] k; exp(—1.h;/2).
j=1
The latent states are i.i.d., with the probability Pr[s; = j] given by n;, for j =1,...,m:
T
p(3lm) =[] 7,
t=1
The vector 7 of probabilities is distributed Dirichlet(r, ..., r):

p(m) =T(mr)T(r) " [[ ="

Sampling Algorithm

See section 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John Geweke,
at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.18 The Dichotomous Choice Model
(with a scale mixture of normals distribution for
the disturbances)

2.18.1 Dimension parameters

There are k covariate coefficients, T observations of each variable, and m components for
the mixture of normals (i.e., m states).

2.18.2 Unknown Quantities
Unknown Parameters

There is a k x 1 coefficient parameter 7y, a scalar precision parameter h, a T" x 1 vector of
state indices, a 1 x m vector of probabilities, an m x 1 vector of precision parameters h,
and a T x 1 vector g of latent outcomes.

2.18.3 Known Quantities
Prior Parameters

There is a k x 1 coefficient mean vector 3, a positive scalar precision parameter H ,, a
k x k positive definite coefficient matrix H E, a precision degrees of freedom parameter v, a
positive definite precision inverse scale parameter S, an m x 1 vector of precision degrees of
freedom parameters v, an m x 1 vector of positive definite precision inverse scale parameter

j
S;, and a 1 x m vector of hyperparameters r.

Data

There is a T' x 1 vector of observations of dependent variables y taking values in {0, 1}.
There is a T x k matrix X of observations of ancillary (with respect to unknown quan-
tities) variables.

2.18.4 Data Generating Process

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.18.5 Priors

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.18.6 Creating a Model Instance

The mnemonic label identifying the model is fmn_udcht.

Supply the names you wish to give the unknown quantities in the following order: first
the name of v (“gamma” for example), then the name of s, then the name of p, then the
name of h; (“hState” for example), and finally the name of the latent outcome variable g
(“yTilde” for example).

Supply the known quantities in the following order: 3, H,, Hg, S, v, S;, v,

r, X, y.

2.18.7 Sampling Algorithms

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.19 The Censored Linear Model
(with a scale mixture of normals distribution for
the disturbances)

2.19.1 Dimension parameters

There are k covariate coefficients, T observations of each variable, and m components for
the mixture of normals (i.e., m states).

2.19.2 Unknown Quantities
Unknown Parameters

There is a k x 1 coefficient parameter 7y, a scalar precision parameter h, a T' x 1 vector of
state indices, a 1 x m vector of probabilities, an m x 1 vector of precision parameters h,
and a T x 1 vector ¢ of (possibly) latent outcomes.

2.19.3 Known Quantities
Prior Parameters

There is a k x 1 coefficient mean vector 3, a positive scalar precision parameter H ,, a
k x k positive definite coefficient matrix H E, a precision degrees of freedom parameter v, a
positive definite precision inverse scale parameter S, an m x 1 vector of precision degrees of
freedom parameters v, an m x 1 vector of positive definite precision inverse scale parameter

J
S;, a1l x m vector of hyperparameters r, and a censoring parameter c.

Data

There is a T' x 1 vector of observations of dependent variables y.
There is a T x k matrix X of observations of ancillary (with respect to unknown quan-
tities) variables.

2.19.4 Data Generating Process

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.19.5 Priors

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.19.6 Creating a Model Instance

The mnemonic label identifying the model is fmn_ucensor.

Supply the names you wish to give the unknown quantities in the following order: first
the name of v (“gamma” for example), then the name of s, then the name of p, then the
name of h; (“hState” for example), and finally the name of the outcome variable g (“yTilde”
for example).

Supply the known quantities in the following order: 8, H,,, Hg, S, v, S;, v;, 1, ¢, X, y.

2.19.7 Sampling Algorithms

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.20 The Univariate Latent Linear Model
(with a scale mixture of normals distribution for
the disturbances)

2.20.1 Dimension parameters

There are k covariate coefficients, T observations of each variable, and m components for
the mixture of normals (i.e., m states).

2.20.2 Unknown Quantities
Unknown Parameters

There is a (m+k) x 1 coefficient parameter v, a scalar precision parameter h, a T x 1 vector
of state indices, a 1 X m vector of probabilities, an m x 1 vector of precision parameters h,
and a T x 1 vector ¢ of (possibly) latent outcomes.

2.20.3 Known Quantities
Prior Parameters

There is a k x 1 coeflicient mean vector 3, a positive scalar precision parameter H ,, a
k x k positive definite coefficient matrix H g, a precision degrees of freedom parameter v, a
positive definite precision inverse scale parameter S, an m x 1 vector of precision degrees of
freedom parameters v ;, an m x 1 vector of positive definite precision inverse scale parameter

J
S;, and a 1 x m vector of hyperparameters r.

Data

Corresponding to the (possibly) latent outcome g, there are two T x 1 vectors ¢ and d, ¢ > d,
which describe the observed, set-valued outcome.

There is a T x k matrix X of observations of ancillary (with respect to unknown quan-
tities) variables.

2.20.4 Data Generating Process

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.20.5 Priors

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.20.6 Creating a Model Instance

The mnemonic label identifying the model is fmn_ullm.

Supply the names you wish to give the unknown quantities in the following order: first
the name of v (“gamma” for example), then the name of s, then the name of p, then the
name of h; (“hState” for example), and finally the name of the outcome variable g (“yTilde”
for example).

Supply the known quantities in the following order: v, H,, Hg, S, v, S;, v;, 1, X, ¢, d.

2.20.7 Sampling Algorithms

See Sections 4.5 and 4.8 in “Contemporary Bayesian Econometrics and Statistics,” by John
Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html
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2.21 An Autoregression Model

2.21.1 Dimension Parameters

The model features the following dimension parameters.

Dimension Parameter Description

T number of observations
K number of covariates
P autoregressive order

2.21.2 Unknown Quantities

The model features the following unknown quantities.

Unknown Quantity Dimensions Description

Ié] Kx1 covariate coefficient vector
h 1x1 residual precision
o) px1 vector of autoregression coefficients

2.21.3 Known Quantities

The model features the following known quantities.

Known Quantity Dimensions Description

3 Kx1 prior mean of 8
H 3 KxK prior precision of

1% 1x1 prior degrees of freedom of h

52 1x1 prior inverse scale of h

o px1 prior mean of ¢ before truncation
I:I¢ pXp prior precision of ¢ before truncation
X Tx K covariates

Y Tx1 dependant variable

2.21.4 Data Generating Process

The data generating process is given by

y =+ €
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where z; is the t'th row of X, as a column vector,

p
€ = E Pi€t—i + Ug,

i=1

and
up ~ ii.d. N(0,h™1)

2.21.5 Prior Distribution

The unknowns are a-priori independent and have the following distributions.

B ~N(B, Hz")
52h ~ x2(7)
The prior for ¢ is obtained by truncating the following density to the region for which y is

stationary.

¢ ~N(¢, Ht)

2.21.6 Creating a Model Instance

The mnemonic label identifying the model is AR.

Supply the names you wish to give the unknown quantities in the same order as they
appear in the table of unknown quantities. Supply the known quantities in the same order
as they appear in the table of known quantities.

2.21.7 Sampling Algorithm

The sampling algorithm for prior simulation features three blocks, each making independent
draws from the prior distribution of one of the unknown quantities. The sampling algorithm
for posterior simulation features three blocks, each making draws from the conditional pos-
terior distribution of one of the unknown quantities.
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2.22 An Autoregression Model with State Dependant
Means

2.22.1 Dimension Parameters

The model features the following dimension parameters.

Dimension Parameter Description

number of observations

T

K number of covariates
D autoregressive order
m

number of states

2.22.2 Unknown Quantities

The model features the following unknown quantities.

Unknown Quantity  Dimensions  Description

y (m+ K) x 1 vertical stack of alpha and beta

h 1x1 residual precision

10) px1 vector of autoregression coefficients
P mXxXm state transition probability matrix
s Tx1 latent states

f T xm filter probabilities

2.22.3 Known Quantities

The model features the following known quantities.
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Known Quantity Dimensions Description

ol (m+K)x1 prior mean of ~y
H, (m+ K) x (m+ K) prior precision of 7

U 1x1 prior degrees of freedom of h

52 1x1 prior inverse scale of h

o px1 prior mean of ¢ before truncation
H, pPXD prior precision of ¢ before truncation
A mXm parameters of prior for P

X Tx K covariates

Y Tx1 dependant variable

2.22.4 Data Generating Process

The data generating process is given by
Yo = s, + 0w + &

where z; is the t’th row of X, as a column vector, and a (m x 1) and 8 (K x 1) are obtained
by partitioning -,
p
€ = Z bi€t—i + ut,
i=1

and
ug ~id.d. N(0,h™ 1)

2.22.5 Prior Distribution

The unknowns are a-priori independent and have the following distributions.

1
v~ N@F,Hy )
52h ~ x*()
The prior for ¢ is obtained by truncating the following density to the region for which y is
stationary. o
¢ ~N(p, Hy")

PI‘[St = j|5t—1 = Z] = Pij
The unknown quantity f gives, for each observation time ¢, the state probabilities at ¢ given
previous states, previous values of the observed variables, and the other unknown quantities.

It is not a primitive unknown quantity, and it is included to give the user access to filtered
probabilities.
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2.22.6 Creating a Model Instance

The mnemonic label identifying the model is Hamilton.

Supply the names you wish to give the unknown quantities in the same order as they
appear in the table of unknown quantities. Supply the known quantities in the same order
as they appear in the table of known quantities.

2.22.7 Sampling Algorithm

The sampling algorithm for prior simulation features five blocks. Four blocks make indepen-
dent draws from the prior distributions of 7, h, ¢ and P. The fifth makes draws from the
distribution s|P. The sampling algorithm for posterior simulation features five blocks, each
making draws from the conditional posterior distribution of one of the unknown quantities.



Chapter 3

BACC Commands

3.1 Overview of BACC Commands

The following is a list of BACC commands with brief descriptions.

dirichletSim

expectl

expectN

extract
gammaSim
gaussianSim
listModelSpecs
listModels
miDelete
miload
miloadAscii
miSave
miSaveAscii

minst

Generates a sample from a multiple Dirichlet distribution.

Calculates, for a weighted random sample, the sample mean and stan-
dard deviation, estimates of the numerical standard error for the mean,
and estimates of the relative numerical efficiency.

Calculates combined sample means, with numerical standard errors, for
a set of different weighted random samples, and tests for the equality of
their individual population means.

Returns simulation matrices for a model instance.
Generates a sample from a gamma distribution.
Generates a sample from a Gaussian distribution.

Lists all available model specifications (e.g. nlm, poisson).
Lists all open model instances.

Closes without saving a (or all) model instances.

Loads a model instance stored in a binary file.

Loads a model instance stored in a text file.

Saves a model instance in a binary file.

Saves a model instance in a text file.

Creates an instance of a particular model specification.

o7
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mlike

paretoSim

postfilter

postsim

postsimHM

priorRobust

priorfilter

priorsim

setseedconstant

setseedtime

weightedSmooth

wishartSim

CHAPTER 3. BACC COMMANDS
Computes various estimates of the marginal likelihood for a model in-
stance, with numerical standard errors.
Generates a sample from a Pareto distribution.

Filters out previously generated draws from the posterior simulation ma-
trix of a given model instance.

Generates or appends to the posterior simulation matrix of a given model
instance.

Generates or appends to the posterior HM simulation matrix of a given
model instance.

Calculates upper and lower bounds on the mean of a posterior function of
interest, as the prior distribution is varied from its original specification.

Filters out previously generated draws from the prior simulation matrix
of a given model instance.

Generates or appends to the prior simulation matrix of a given model
instance.

Sets the seeds of the random number generators to a constant value.

Sets the seeds of the random number generators to the number of seconds
since the beginning of 1970.

Estimates a univariate density function for a weighted random sample,
using a kernel smoothing algorithm adapted to weighted samples.

Generates a sample from a Wishart distribution.

3.2 Matlab Issues

Help is available within Matlab for BACC commands. Type help commandName at the
Matlab prompt, or help BACC for a list of BACC commands.

3.3 Detailed Description of Commands

Each BACC command is described in detail in one of the following sections.
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3.3.1 The dirichletSim Command
Description

Generates a sample from a multiple Dirichlet distribution.

Usage

sample <- dirichletSim(A, n);

Inputs
A m by K matrix: Dirichlet parameters
n Integer: number of draws to generate
Outputs
sample n by nK matrix: sample generated from multiple Dirichlet dis-
tribution
See Also

paretoSim, gaussianSim, gammaSim, wishartSim.

Example

A = array(c(1.0,2.0,3.0,4.0,5.0,6.0) ,dim=c(2,3))

sample <- dirichletSim(A, 1000);

Details

The sample consists of n draws. Each of the n draws of the sample is an m by
K matrix with independent rows. Each row has a Dirichlet distribution with
parameters given by the corresponding row of A.

The result is given as a n by mK matrix, and each column gives a draw in
column major order. See Appendix A for the parameterization of the Dirichlet
distribution.
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3.3.2 The expectl Command
Description

Calculates, for a weighted random sample, the sample mean and standard devi-
ation, estimates of the numerical standard error for the mean, and estimates of
the relative numerical efficiency.

Usage

out <- expectl(logWeight, sample, taper = c(4.0 8.0 15.0));

Inputs

logWeight Vector of length M: log sample weights

sample Vector of length M: sample of scalar draws

taper Vector of length K: taper half-widths (optional)
Outputs

mean Real scalar: weighted sample mean

std Real scalar: weighted sample standard deviation

nse Vector of length K + 1: estimated numerical standard errors

rne Vector of length K + 1: estimated relative numerical efficiency
See Also

expectN, priorRobust.

Example

# Use default taper values

out <- expectl(lw, z);

# Use alternate taper values

taper = array(c(4.0,8.0),dim=c(1,2))

out <- expectN(lw, z, taper);

Details

Let z = (z1,...,2n) be the sample and (logws,...,logwys) be the vector of
log weights. Let A = (A1,...,Ak) be the vector of half-widths. The sample is
broken into T' groups of size J = M divT and the last M modT elements are
ignored. Thus Mz, = JT elements are used.
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The sample mean and standard deviation are calculated as follows:

ML\SE Muse
z= Win Zm, E Wy,
m=1 m=1

Myse Myse 2
N2
o, = E Wi (2m — Z) E W,
m=1 m=1

For the calculation of the first numerical standard error 79, we assume no serial
correlation in (21, ...,2a). This is appropriate for independence or importance
sampling. Following Geweke (1989) [3], this leads to

MUSG MuSe 2
TRT)= [Z w2, (2 — Z)? (Z Wi )?
m=1 m=1

For the calculation of 7; through 7, the remaining K estimates of the nu-
merical standard error, the following method is used. First, expectl calculates
group and sample means of the numerator quantity w,, z,, and the denominator
quantity w,:

tJ tJ

1 1
n(t):j Z WmZm d(t):j Z Wm t=1,...,T
m=(t—1)J+1 m=(t—1)J+1
= WmZm = Wi
" Muse Muse
m=1 m=1

Then it calculates the following sample autocorellation and autcovariance func-

tions:

tn(®) =7 3 (n(s) = mn(s 1) —n) =0, T-1
s=t+1
1 & _ ;

) = = Y (@A) = dd(s—t)—d)  t=0,....,T~1
s=t+1
1 & _

Walt) =7 Y (n(s) —a)(d(s —t) —d)  t=0,....T -1
s=t+1

A/dn(t):% (d(s) —d)(n(s —t) —n) t=0,...,7-1
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Then it calculates, for each k € {1,..., K}, estimates Ui(k), Ug(k), and oy,4(k) of
02 = Var[n(t)], 03 = Var[d(t)] and 0,4 = Cov[n(t),d(t)], based on the taper
half-width Ag:
N —s
p —
s=1
N A — s
p—
OGacky = Yaa(0) + 2 Z " Yad(s)
s=1
N A — s
o —
Taatky = Tna(0) + Z " [Ynd(8) + Yan(s)]
s=1

These calculations are based on conventional time series methods for a wide
sense stationary process, described in Geweke (1992) [4].

By the conventional asymptotic expansion, the square of the numerical standard
error is approximated by

2 1
a, Ond
2 _ N~ 1 1 n n d
74 =Var(=) = [ i & } \ .
Ond Og a2
For each k € {1,..., K} it calculates the approximation 7 using Ufm(k), afld(k)
and UfL d(k) defined above.
Relative numerical efficiencies (v, ..., vk ) are calculated using
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3.3.3 The expectN Command
Description

Calculates combined sample means, with numerical standard errors, for a set of
different weighted random samples, and tests for the equality of their individual
population means.

Usage
out <- expectN(logWeightl, samplel, logWeight2, sample2, taper = c(4.0
8.0 15.0));

Inputs

logWeightl  Vector of length M;: log sample weights for first sample
samplel Vector of length M;: first sample of scalar draws

logWeight2  Vector of length Ms: log sample weights for second sample

sample?2 Vector of length Ms: second sample of scalar draws
taper Vector of length K: taper half-widths (optional)
Outputs
mean Vector of length K + 1: estimated combined weighted sample
means
nse Vector of length K + 1: estimated numerical standard errors
equal Vector of length K + 1: marginal significance levels for a chi-

squared test of the equality of the population means

See Also

expectl.

Example
# Use default taper values
out <- expectN(lwl, z1l, 1lw2, z2);
# Use alternate taper values
taper = array(c(4.0,8.0),dim=c(1,2))

out <- expectN(lwl, zl, 1lw2, z2, taper);



64 CHAPTER 3. BACC COMMANDS

Details

In general, there are N pairs of weighted samples, not just two. For each
sample (9| expectN calculates individual sample moments z(*) and estimates

of numerical standard errors (Téi), . ,TI(?) from the samples (zgi),...,z](\?i),
the log weights (log z@,...,log 21(\2), and the half-taper values (A1,..., k),
in the same way that expectl calculates zZ and (79,...,7x) from (21,...,2nm),

(log z1,...,logzpr), and (A1, ..., Ak).

The estimated sample means Zj are given by

(4

N N 1
szz—i) ZW k=1,....K
i= i=1 Tk

2(
1 Tg

The estimated numerical standard errors 74 are given by

m|'_'

1
= Z 2(0)

i
i=1 Tk

=

For each k, the marginal significance level is the value of p; such that

Z,Ff) B Zz(gl)

Z,(€3) . 2}(62)
2}(62) B 21(91) Z}(CN) . ZI(CN_U } .n-L : = X%—pk (N -1)
EJ(CN) B ZI(CNA)

where ¥ is the following matrix

TZ(l) + 75(2) —7',3(2) 0 cee 0 0
I T I O R 0 0
0 —® O 20 0 0
0 0 0 ... T,f(N72) + T,f(Nfl) —T,f(Nfl)
0 0 0 A TN 4 VY
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3.3.4 The extract Command
Description

Returns simulation matrices for a model instance.

Usage

sim <- extract(modellnst);

Inputs

modelInst Integer: model instance identifier.
Outputs

sim Structure: simulation matrices
Example

sim <- extract(mi);

Details

The return value is a structure (named list in S-PLUS and R) with the following
fields (components in S-PLUS and R):

id Model instance identifier.

logWeightPost Log weights for posterior draws.

logPrior Value of log prior for posterior draws.

logXPrior Value of transformed log prior values for posterior draws

logLike Value of log likelihood for posterior draws.

logPriorHM Value of log prior for posterior HM draws.

logLikeHM Value of log likelihood for posterior HM draws.

logWeightPrior Log weights for prior draws.

logPriorPrior Value of log prior for prior draws.

logLikePrior Value of log likelihood for prior draws.

* Posterior simulation matrix of unknown quantity named *.

*Prior Prior simulation matrix of unknown quantity named *.

*HM Posterior HM simulation matrix of unknown quantity named *.

All simulation matrices have three dimensions. The first two dimensions give the
row and column of the unknown quantity. The third dimension is the simulation

dimension. Each value of the third index gives a different draw of the unknown
quantity.
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3.3.5 The gammaSim Command
Description

Generates a sample from a gamma distribution.

Usage

sample <- gammaSim(alpha, beta, n);

Inputs
alpha Real scalar: shape parameter of gamma distribution
beta Real scalar: inverse scale parameter of gamma distribution
n Integer: number of draws to generate
Outputs
sample n by 1 matrix: sample generated from gamma distribution
See Also

paretoSim, gaussianSim, dirichletSim, wishartSim.

Example
alpha <- 3.0
beta <- 5.0

sample <- gammaSim(alpha, beta, 1000);

Details

Each of the n draws of the sample is a scalar with a gamma distribution. The
result is given as a n by 1 matrix.

See Appendix A for the parametrization of the gamma distribution.
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3.3.6 The gaussianSim Command
Description

Generates a sample from a Gaussian distribution.

Usage

sample <- gaussianSim(mean, precision, n);

Inputs
mean Vector of length K: mean of Gaussian distribution
precision K by K matrix: precision of Gaussian distribution
n Integer: number of draws to generate
Outputs
sample n by K matrix: sample generated from Gaussian distribution
See Also

paretoSim, dirichletSim, gammaSim, wishartSim.

Example
mean = array(c(1.0,2.0),dim=c(2,1))
precision = array(c(1.0,0.0,0.0,1.0),dim=c(2,2))

sample <- gaussianSim(mean, precision, 1000);

Details

Each of the n draws of the sample is a vector of length K with a Gaussian
distribution. The result is given as a n by K matrix.

See Appendix A for the parametrization of the Gaussian distribution.
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3.3.7 The listModelSpecs Command
Description

Lists all available model specifications (e.g. nlm, poisson).

Usage

listModelSpecs();

Inputs

None.

Outputs

None.

See Also

minst, listModels.

Example

listModelSpecs();

Detalils

A printed message gives a list of model specifications.



3.3. DETAILED DESCRIPTION OF COMMANDS

3.3.8 The listModels Command
Description

Lists all open model instances.

Usage

listModels();

Inputs

None.

Outputs

None.

See Also

minst, miDelete, listModelSpecs.

Example

listModels();

Detalils

A printed message gives the model instance identification number, the name of
the model specification (e.g. nlm, poisson), and the number of prior, posterior,
and posterior HM draws.

69



70 CHAPTER 3. BACC COMMANDS

3.3.9 The miDelete Command
Description

Closes without saving a (or all) model instances.

Usage

miDelete (modelInst) ;

Inputs

modelInst Integer: model instance identifier.

Outputs

None.

See Also

minst, listModels.

Example

miDelete(mi);
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3.3.10 The milLoad Command

Description

Loads a model instance stored in a binary file.

Usage

modelInst <- miLoad(filename);

Inputs

filename String: name of binary file storing the model instance
Outputs

modelInst Integer: model instance identifier.
See Also

miSave, minst, miLoadAscii.

Example

mi <- miLoad("miFile");
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3.3.11 The miloadAscii Command

Description

Loads a model instance stored in a text file.

Usage

modelInst <- miLoadAscii(filename);

Inputs

filename String: name of text file storing the model instance
Outputs

modelInst Integer: model instance identifier.
See Also

miSaveAscii, minst, miLoad.

Example

mi <- miLoadAscii("miFile.txt");
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3.3.12 The miSave Command
Description

Saves a model instance in a binary file.

Usage

miSave (modelInst, filename);

Inputs

modelInst Integer: model instance identifier.

filename String: name of binary file in which to store the model instance

Outputs

None.

See Also

miLoad, minst, miSaveAscii.

Example

miSave(mi, "miFile");

Details

If the file already exists, it is written over.
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3.3.13 The miSaveAscii Command
Description

Saves a model instance in a text file.

Usage

miSaveAscii(modelInst, filename);

Inputs

modelInst Integer: model instance identifier.

filename String: name of text file in which to store the model instance

Outputs

None.

See Also

miLoadAscii, minst, miSave.

Example

miSaveAscii(mi, "miFile.txt");

Details

If the file already exists, it is written over. The ascii version of a model instance
is platform independent and human readable, but long and inefficient.
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3.3.14 The minst Command
Description

Creates an instance of a particular model specification.

Usage

modelInst <- minst(modelSpecName, unknownNames, knowns);

Inputs

modelSpecName String: name of model specification

unknownNames List of strings: user provided names for unknown quantities

knowns List of matrices: user provided matrices of known quantities
Outputs

modelInst Integer: model instance identifier.
Example

a = array(c(1,1,2),dim=c(1,3))

s = array(c(1,1,2,3,3,3),dim=c(3,2))

myMI <- minst(’iidfs’, ’pi’, a, s);

Detalils

The available model specifications are described in Chapter 2. For each model
specification, there is a section “Creating a Model Instance” with the relevant

information, namely

e The name of the model specification.

e The order in which the user specifies the names for the unknown quantities

of the model.

e The order in which the user provides the matrices giving the values of the

known quantities of the model.
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3.3.15 The mlike Command

Description
Computes various estimates of the marginal likelihood for a model instance, with
numerical standard errors.

Usage
out <- mlike(modelInst, p = c(0.1 0.5 0.9), taper = c(4.0 8.0 15.0));

Inputs

modelInst Integer: model instance identifier.

P Vector of length L: truncation parameters (optional)

taper Vector of length K: taper half-widths (optional)
Outputs

ml Vector of length L: marginal likelihood estimates

mlnse L by K + 1 matrix: numerical standared error estimates
See Also

postsim, postsimHM.

Example

# Use default truncation and taper values
out <- mlike(mi);

# Use alternate truncation values

p = array(c(0.1,0.3,0.5,0.7,0.9),dim=c(1,5))
out <- mlike(mi, p);

# Use alternate truncation and taper values
taper = array(c(4.0,8.0),dim=c(1,2))

out <- mlike(mi, p, taper);

Details

The method used is a modification described in Geweke [5] of the method pro-
posed in Gelfand and Dey [2].

The truncation parameters p; € [0, 1] index the truncated multivariate normal
distribution f(-) discussed in Geweke [5]. For each p;, mlike generates (inter-
nally) an unweighted vector (z!,...,2%,), where M is the number of posterior

samples in the given model instance.
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For each [, mlike calculates the sample mean Z; and numerical standard errors
(7,..., 7)) from (24,...,24,) and (A1,...,Ak) in the same way that expectl
calculates (7o,...,7x) from (z1,...,2np), & vector of equal log weights, and

(M, ..., Ak). Then for all [, the estimate of the log marginal likelihood is given
by

= —logz

and for all [ and k, the estimate of the numerical standard error for the log
marginal likelihood is given by

When numerical standard error is small, results are not sensitive to the choice of
p. In these cases L = 1 and p; = 0.5 will suffice. However the additional compu-
tational burden of increasing L is negligible. If you are concerned about standard
errors, it is best to use several values of p;, for example, p = (0.1,0.2,...,0.9).

7
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3.3.16 The paretoSim Command
Description

Generates a sample from a Pareto distribution.

Usage

sample <- paretoSim(alpha, beta, n);

Inputs

alpha Real scalar: tail parameter of Pareto distribution

beta Real scalar: location parameter of Pareto distribution

n Integer: number of draws to generate
Outputs

sample n by 1 matrix: sample generated from Pareto distribution
See Also

dirichletSim, gaussianSim, gammaSim, wishartSim.

Example
alpha <- 1.0
beta <- 4.0

sample <- gammaSim(alpha, beta, 1000);

Details

Each of the n draws of the sample is a scalar with a pareto distribution. The
result is given as a n by 1 matrix.

See Appendix A for the parametrization of the Pareto distribution.
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3.3.17 The postfilter Command

Description

Filters out previously generated draws from the posterior simulation matrix of
a given model instance.

Usage

postfilter(modelInst, filter);

Inputs

modelInst Integer: model instance identifier.

filter Vector of integers of length n: indices of existing draws to keep

Outputs

None.

Example
filter = seq(101,1000)

postfilter(mi, filter);

Details

The ith draw of the posterior simulation matrix is kept if and only if ¢ = f; for
some j from 1 to n.
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3.3.18 The postsim Command
Description

Generates or appends to the posterior simulation matrix of a given model in-
stance.

Usage

postsim(modellnst, m, n);

Inputs
modelInst Integer: model instance identifier.
m Integer: number of posterior draws to record
n Integer: number of posterior draws to generate for each one
recorded
Outputs
None.
See Also

minst, postfilter, mlike, priorsim, postsimHM, extract.

Example

postsim(mi, 1000, 1);

Details

Generates draws of unknown quantities from their posterior distribution. Gen-
erates mn new posterior draws, and appends every nth draw to the posterior
simulation matrix. If there are any draws from a previous invocation of postsim,
the first new draw comes from the transition kernel of the Markov chain used
for posterior simulation. Otherwise, it comes from the initial distribution of the
Markov chain.

Use the extract command to obtain the posterior draws.
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3.3.19 The postsimHM Command

Description

Generates or appends to the posterior HM simulation matrix of a given model
instance.

Usage

postsimHM(modelInst, m, n, scalePrecision);

Inputs
modelInst Integer: model instance identifier.
m Integer: number of posterior draws to record
n Integer: number of posterior draws to generate for each one

recorded

scalePrecision Real scalar: factor used to rescale the precision matrix of the
random walk innovation

Outputs

None.

See Also

minst, mlike, postsim, extract.

Example

postsimHM(mi, 1000, 1, 10.0);

Details

Generates draws of unknown quantities from their posterior distribution using a
Gaussian random walk Metropolis chain with proposal covariance proportional to
the sample covariance of draws from the posterior simulation matrix. Generates
mn new posterior draws, and appends every nth draw to the posterior simulation
matrix. If there are any draws from a previous invocation of postsimHM, the first
new draw comes from the transition kernel of the Markov chain used for posterior
simulation. Otherwise, it comes from the initial distribution of the Markov chain.

Use the extract command to obtain the posterior HM draws.
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3.3.20 The priorRobust Command

Description
Calculates upper and lower bounds on the mean of a posterior function of inter-
est, as the prior distribution is varied from its original specification.

Usage

out <- priorRobust(logWeight, sample, factors);

Inputs

logWeight Vector of length m: log weights

sample Vector of length m: posterior sample of some scalar function of
interest
factors Vector of length n: bound factors for robustness analysis
Outputs
mean Real scalar: posterior sample mean for original prior specification
std Real scalar: posterior sample standard deviation for original

prior specification

Vector of length n: exact upper bounds

L Vector of length n: exact lower bounds

Ut Vector of length n: asymptotic upper bounds

Lt Vector of length n: asymptotic lower bounds
Example

K = array(c(5.0,10.0,20.0) ,dim=c(1,3))
out <- priorRobust(lw, beta, K);

Detalils

For each bound factor, calculates exact lower and upper bounds and asymptotic
lower and upper bounds for the posterior mean. For each bound parameter
k;, priorRobust calculates exact lower and upper bounds L; and U; for the
posterior mean of the function of interest g, for the following set of prior density
kernels.

{p*(~) : %p(ﬁ) <p*(0) < kip(0) VO € @}

where p(-) is the actual prior density. It uses the algorithm described in Geweke
and Petrella [6]. Also for each k;, priorRobust calculates asymptotically valid
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lower and upper bounds L; and U, using the results of DeRobertis and Hartigan

[1].
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3.3.21 The priorfilter Command
Description

Filters out previously generated draws from the prior simulation matrix of a
given model instance.

Usage

priorfilter(modelInst, filter);

Inputs

modelInst Integer: model instance identifier.

filter Vector of integers of length n: indices of existing draws to keep

Outputs

None.

Example

filter = seq(101,1000)

priorfilter(mi, filter);

Details

The ith draw of the prior simulation matrix is kept if and only if ¢ = f; for some
j from 1 to n.
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3.3.22 The priorsim Command
Description

Generates or appends to the prior simulation matrix of a given model instance.

Usage

priorsim(modelInst, m, n);

Inputs

modellnst Integer: model instance identifier.
m Integer: number of prior draws to record

n Integer: number of prior draws to generate for each one recorded

Outputs

None.

See Also

minst, priorfilter, postsim, extract.

Example

priorsim(mi, 1000, 1);

Details

Generates draws of unknown quantities from their prior distribution. Generates
mmn new prior draws, and appends every nth draw to the prior simulation matrix.
If there are any draws from a previous invocation of priorsim, the first new draw
comes from the transition kernel of the Markov chain used for prior simulation.
Otherwise, it comes from the initial distribution of the Markov chain.

Use the extract command to obtain the prior draws.
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3.3.23 The setseedconstant Command
Description

Sets the seeds of the random number generators to a constant value.

Usage

setseedconstant () ;

Inputs

None.

Outputs

None.

See Also

setseedtime.

Example

setseedconstant () ;

Detalils

This is useful for ensuring that repeated invocations of a command generating
random values lead to the same results.
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3.3.24 The setseedtime Command
Description

Sets the seeds of the random number generators to the number of seconds since
the beginning of 1970.

Usage

setseedtime();

Inputs

None.

Outputs

None.

See Also

setseedconstant.

Example

setseedtime();

Detalils

This is useful for ensuring that repeated invocations of a command generating
random values lead to different results.
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3.3.25 The weightedSmooth Command

Description
Estimates a univariate density function for a weighted random sample, using a
kernel smoothing algorithm adapted to weighted samples.

Usage

out <- weightedSmooth(logWeight, sample, ktype = uniform, krange = quantile,
wwf = 0.5, nplot = 1000, range_al = 0.001, range a2 = 0.009);

Inputs
logWeight Vector of length M: log weights
sample Vector of length M: a posterior sample of some function of in-
terest
ktype String: kernel type (optional)
krange String: kernel range type (optional)
wwi Real scalar: window width fraction (optional)
nplot Integer: number of ordered pairs to generate (optional)
range_al Real scalar: left bound range parameter (optional)
range_a2 Real scalar: right bound range parameter (optional)
Outputs
X Vector of length N: ordinate values
v Vector of length N: abscissa values
Example

out <- weightedSmooth(lw, z);
nplot <- 2000

ktype <- triangular

out <- weightedSmooth(lw, z);

Details
The estimated density at a point z is

Z%:l Wi K (%)
h Zi\r{:l W,

The functional form of the kernel function K depends on the value of ktype
according to Table 3.1.

f(z) =
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Table 3.1: Values of Ktype

Ktype K

uniform K(t) = %X(—l,l)(ﬂ
triangle K(t)=(1-— |t|)X(—1,1)(t)
biweight K(t) = 12(1—2%)%x_1.1(t)

For any set S, the function yg(+) is a set membership indicator function.

The value h is given by
h =gz —q1)

where ¢, denotes the a’th sample quantile of z.

The weightedSmooth command generates N ordered pairs (z;,y;). The values
x; are evenly spaced between ,,;, and .., determined by Krange according
to Table 3.2. The values y; satisfy y; = f(x;).

Table 3.2: Values of Krange

Krange Tmin  Tmax
quantile Ga, Qay
absolute a1 ao

For most plotting routines, N should be in the range of 200 to 400. The choice
of A depends on how smooth the resulting plot is desired to be. As with all
kernel smoothing methods, some experimentation will probably be necessary.
The greater the number of simulations available, the smaller A can be and still
retain visual smoothness. It is generally easier to use the Krange=quantile
option and specify a7 in the range .001 to .01 and as in the range .99 to .999;
this will include the important part of the estimated density while not wasting
space on the plot for points where the density is small.
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3.3.26 The wishartSim Command
Description

Generates a sample from a Wishart distribution.

Usage

sample <- wishartSim(A, nu, n);

Inputs
A m by m matrix: inverse scale parameter of Wishart distribution
nu Real scalar: degrees of freedom parameter of Wishart distribu-
tion
n Integer: number of draws to generate
Outputs
sample n by m? matrix: sample generated from Wishart distribution
See Also

paretoSim, gaussianSim, gammaSim, dirichletSim.

Example
A = array(c(1.0,0.0,0.0,1.0),dim=c(2,2))
nu <- 100
sample <- wishartSim(A, nu, 1000);

Details

Each of the n draws of the sample is an m by m matrix with a Wishart distri-
bution. The result is given as a m by m? matrix.

See Appendix A for the parametrization of the Wishart distribution.



Chapter 4

A BACC Tutorial

In order to answer commonly asked questions, this chapter contains a step-by-step tutorial
with explanations of what each step is doing and what each term means.
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4.1 Working through a model instance

Before creating a model instance, you need to load all the know quantities. These quantities
can be either vector or matrix data objects.

The following code demonstrates how a normal linear model called sim is created and
manipulated.

# Specify the names for the unknown quantities
unknownNames <- c("beta","h")

# Specify the known quantities of the model instance.
# Only the name of the data objects are accepted. These data
# objects must be preloaded.

knowns <- list(betahd,Hhd,nuhd,shd,Xhd,yhd)

# Creat an instance of the normal linear model
modelInst <- minst("nlm",unknownNames,knowns)

# Simulate 5000 prior samples
setseedconstant ()
priorsim(modelInst,5000,1)

# Simulate 1000 posterior samples
setseedconstant ()
postsim(modelInst,1000,1)

# Filter out the first 100 posterior samples
£<-101:1000
postfilter(model,f)

# Add 4100 new posterior samples
setseedconstant ()
postsim(modelInst,4100,1)

# Simulate 10000 new HM posterior samples
setseedconstant ()
postsimhm(modelInst,10000,1,1)

# extract all the quantities related to the model created
out<-extract(modelInst)

# Get the vector of posterior samples of the first element
# of beta
betal<-out$betall,1,]
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# Get the vector of log weight evaluations
lw<-out$logweightPost

# Get the vector of prior samples of the first element
# of beta
betapl<-out$betaPrior[1,1,]

# Find the posterior mean and standard deviation of betal

# using the default value of taper

expl<-expectl(lw,betal)

# The following four operations are only to demonstrate

# what are included in expl. expl$... is good enough for use
postmean<-expl$mean

poststd<-expl$std

postnse<-expl$nse

postrne<-expl$rne

# Specify truncation parameters for marginal likelihood computation
p <- 1:9%0.1 # A short way to write p<-c(0.1,0.2,...,0.9)
mlike.out <- mlike(modellInst,p)

# As expl, it is sufficient to use mlike.out$... to get the

# components. Replace ... by ml, mlNSE, mlHM, mlNSEHM as desired

# Specify the logweight and function of interest variables

# for expectN. These variables must be preloaded
mlist<-list(lw,betal,lw,betapl)

expN<-expectN(mlist)

# Again, it is sufficient to use expN$... to get the components
# mean, nse, p of expN

# Find the minimum and maximum values of the posterior mean

# of betal as the prior is changed from its original specification
robust.out <- priorRobust(lw,betal)

# The components of robust.out would be mean, std, exactUP, exactDown,
# DeRHUp, and DeRHDown

# Generate (x,y) paris tracing an estimated posterior marginal

# density of betal

smooth.out <- weightedSmooth(lw,betal)

# plot the estimated posterior marginal density of betal
plot(smooth.out) # Or equivalently, plot(smooth.out$y smooth.out$x)

# Save the current model instance in the test file "baccSim"
# under the current working directory
miSaveAscii(modelInst,"baccSim")
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4.2 Simulating from various distributions

1.

Dirichlet

a<-matrix(1:6,2,3,byrow=T)
sample<-dirichletSim(a,1000)

cat("dirichlet mean:\n",mean(sample), "\n")

Gamma

sample<-gammaSim(3,5,1000)
cat ("gamma mean:\n",mean(sample), "\n")

Gaussian(Multivariate Normal)

mean<-c(1,2)

precision<-matrix(c(1,0,0,1),2,2)
sample<-gaussianSim(mean,precision,1000)
cat("gaussian mean:\n",apply(sample,2,mean), "\n")

Pareto

sample<-paretoSim(3,5,1000)
cat("pareto mean:\n", mean(sample), "\n")

Wishart
scale<-matrix(c(1,0,0,1),2,2)

sample<-wishartSim(scale,10,1000)
cat("wishart mean:\n",apply(sample,2,mean), "\n")



Appendix A

Distributions

This appendix gives the density and mass functions for the distributions used in this docu-
ment.

A.1 The Dirichlet Distribution

A random vector 7 of length n has the Dirichlet distribution with parameter vector o € R},
denoted 7 ~ Di(«), if its probability density function is

_ oM, o m o — _ n . n _
m 1/2% [T mt medy={peRy YL pi=1}

0 otherwise

p(mla) =

The mean and variance are given by
a;
Z?:l Qj
E[mi|a](1 — E[mi|a])
1+ Z]‘:1 Qj
—E[m|a]Elr;|a]
1+ ZZ:l (673

E[m;|a] =

Var[m;la] =
Cov[m;, mjla] =

A.2 The Gamma Distribution

A random scalar A has the Gamma distribution with shape parameter o > 0 and scale
parameter (> 0, denoted A\ ~ Ga(a, 3), if its probability density function is

B2 Ne—le=BA X >0
p(Aa, ) = § T
0 otherwise
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The mean and variance are given by

EMa, 8] =

IR

Var[Aa, 0] = 2

A.3 The Normal Distribution

A random vector 2 has the Normal Distribution with mean parameter vector u € % and
positive definite k x k variance parameter matrix ¥, denoted  ~ N(p, X)), if its probability
density function is

1

plalp, D) = |72 @m) 2 exp | —g(@ — ) @ —p)| Ve eR"
The mean and variane are given by
Elz|p, X] = p
Var[z|p,X] =X

A.4 The Pareto Distribution

A random scalar x has the Pareto Distribution with parameters o > 0 and 8 > 0, denoted
0 ~ Pa(a, ), if its probability density function is

a9+ 9>

p(0la, B) =
otherwise
The mean and variance are given by
o
Ef|a, 8] = )
a3?
Var[fla, 5] = o —12(a—2)

A.5 The Poisson Distribution

A discrete random variable x has the Poisson distribution with mean parameter A\ > 0,
denoted = ~ Po(\), if its probability mass function is

e 2e{0,1,...}
p(x) = '
0 otherwise
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The mean and variance are given by

E[z|\] = A
Var[z|\] = A

A.6 The Wishart Distribution

An m xm random matrix H has the Wishart distribution with positive definite m x m scale
parameter matrix A and degrees of freedom parameter v > m, denoted H ~ Wi(A,v), if
its probability density function is

gom(m=1)/4) 4 ~v/2

p(H|A,v) = 2"/PIIL T
0 otherwise

5 - |H|(v=m=1/2 exp [—3tr(A7'H)] H p.d.

The mean, and mean of the matrix H~! are given by

E[H|A,v] =vA
1

e
v—m-—1

E[H YA, v] =
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Appendix B

A Brief S-PLUS/R Tutorial

This section gives a brief overview of S-PLUS and R commands, and their data types. It
is not intended to be a complete tutorial. Consult the S-PLUS and R manuals for further
information. You can find S-PLUS manuals at URL:

http://www.splus.mathsoft.com/splus/resources/doc
and R manuals at URL:

http://lib.stat.cmu.edu/R/CRAN/contents.html#doc

B.1 Basic syntax of expressions

Variable names in S-PLUS and R are case sensitive, so that x and X are different. A function
call consists of a function name followed by an argument list (which may be empty) in
parentheses:

setseedconstant ()
plot(smooth.out)
gaussianSim(mean,precision, 1000)

One of the most frequently used operators is the assignment operator <= (or _). If the
value of a function is not assigned to an object using <- or _, it is automatically printed and
stored as .Last.value. When values returned by BACC functions are complicated objects,
it is a good idea to use an assignment statement to store them.

B.2 Data objects

Data in S-PLUS and R are organized into data objects. FEach data object has a name,
consisting of alphanumeric characters and periods (.). Names cannot start with a number.
Four basic S-PLUS/R data objects are used in BACC commands:
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e Vectors:

1. Creating a vector:
The following examples show some useful functions for creating vectors

# A vector with elements 1, 2, 3, 4, 5
x1<-1:5

# A vector with elements 1, 3, 4, 6, 10, 5
x2<-c(1,3,4,6,10,5)

# A vector of strings
y<_C(" Dbsu s IIAgeII)

# A vector with elements from 0.1 to 0.6 with step size 0.05
z<-seq(0.1,0.6,0.05)

# A zero vector of length 6
z<-rep(0,6)
2. Attributes of a vector

— length The length of the vector.

length(x1)
# Returns 5

length(y)
# Returns 2

— mode One of numeric, character, logical, or complex.

mode (x1)
# Returns "numeric"

mode (y)
# Returns "character"

— names Label associated with values.

3. Concatenating vectors

z<-c(x1,x2)
# z is the vector obtained by vertically stacking x1 and x2

e Matrices:

1. Creating a matrix
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# Create a 6 by 2 matrix using the values of z. The first
# column of zl1 is equal to x1 and the second column is

# equal to x2.

zl<-matrix(z,6,2)

z1[,1] # First column of zl, equal to x1

# Create a 2 by 6 matrix using the values of z. The first

# row of z2 is equal to x1 and the second row is equal to x2
z2<-matrix(z,2,6,byrow=T)

z2[1,] # First row of z2, equal to x1

2. Attributes of a matrix

— length The total number of element

length(z1)
# Returns 12

length(z2)
# Returns 12

— mode As above.
— dim The number of rows and columns of a matrix

dim(z1)
# Return the vector (6, 2)

nrow(z1)
# Returns the number of rows of zl, i.e. 6

ncol(zl)
# Returns the number of columns of zl1l, i.e. 2

— dimnames The row and column names
3. some other manipulations of matrices
# z3 is z2, reshaped to have dimensions 3 by 4

z3<-matrix(z2,3,4)

# z4 is the transpose of z2
z4<-t(z2)

# Indexing the elements of a matrix

z1[,1] # First column of z1
z2[1,] # First row of z2

e arrays
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Arrays are like matrices, but with an arbitrary number of dimensions. The examples
for matrices above can be generalized for arrays.

e lists Unlike vectors, matrices, and arrays, lists may contain data objects with differ-
ent data types (or modes).

1. Create a list

# Create a list with components x1, x2 (numeric vectors),
# y (character vector), and zl (matrix)
mylist<-list(x1,x2,y,z1)

2. Attributes of a list

— length The number of components in the list
length(mylist)
# Returns 4

— mode The mode of a list is alway "list"

— names The names of the components

# Check names of the components in the list ’mylist’
names (mylist)
# Returns a vector with elements "x1", "x2", "y", "z1"

3. To access list components

(a) To access list components by name

# Show the value of component zl of mylist
mylist$z1

# Show the dimensions of compoonent zl of mylist
dim(mylist$z1)
(b) To access list components by index
Indexes must be enclosed in double barckets([[ 11)
# Display the value of component zl of mylist
mylist[[4]]
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