User Manual for the Windows R Version of BACC (Bayesian Analysis, Computation, and Communication)

Wei Chen

William McCausland

John J. Stevens

October 29, 2003

Important Information

About this Manual

This manual describes the software developed in connection with the project Bayesian Communication in the Social Sciences, Siddhartha Chib and John Geweke principle investigators. Acknowledgement in any resulting published work would be appreciated. This project was supported, in part, by Grants SBR-9600040 and SBR-9731037 from the National Science Foundation.

Help Keep This Software Free

The National Science Foundation supports this software and its continued development. It is important that we document the use of BACC. We respectfully request that all publications and working papers reporting the results of research using BACC software, include the following acknowledgement and reference:

Computations reported in this paper were undertaken [in part] using the Bayesian Analysis, Computation and Communication software (http://www.econ.umn.edu/~bacc) described in:

Geweke, J. (1999) "Using Simulation Methods for Bayesian Econometric Models: Inference, Development, and Communication" (with discussion and rejoinder), *Econometric Reviews* 18: 1-126.

BACC Software and Documentation

BACC software and documentation is available on the web at

http://www.econ.umn.edu/~bacc

Please send any comments or questions to

bacc@econ.umn.edu

Contents

	Imp	ortant	Information	3
1	Get	ting St	tarted with BACC	11
	1.1	_	uction	11
	1.2		rements	
	1.3	-	ation and Configuration	
2	Mod	dels		13
	2.1	Introd	uction	13
		2.1.1	Dimension parameters	13
		2.1.2	Unknown Quantities	13
		2.1.3	Known Quantities	
		2.1.4	Data Generating Process	
		2.1.5	Prior Distribution	
		2.1.6	Creating a Model Instance	14
		2.1.7	Sampling Algorithms	14
		2.1.8	Marginal Likelihood	14
	2.2	The N	ormal Linear Model	
		2.2.1	Dimension parameters	
		2.2.2	Unknown Quantities	
		2.2.3	Known Quantities	
		2.2.4	Data Generating Process	_
		2.2.5	Priors	
		2.2.6	Creating a Model Instance	
		2.2.7	Sampling Algorithms	
	2.3		eemingly Unrelated Regressions Model	
	2.4		I.D. Finite State Model	
		2.4.1	Dimension parameters	
		2.4.2	Unknown Quantities	18
		2.4.3	Known Quantities	_
		2.4.4	Data Generating Process	
		2.4.5	Priors	
		2.4.6	Creating a Model Instance	
		2.4.7	Sampling Algorithms	

	0.40	M : 1 T : 1 1: 1 1
0.5	2.4.8	Marginal Likelihood
2.5		on-Stationary First Order Markov Finite State Model
	2.5.1	Dimension parameters
	2.5.2	Unknown Quantities
	2.5.3	Known Quantities
	2.5.4	Data Generating Process
	2.5.5	Priors
	2.5.6	Creating a Model Instance
	2.5.7	Sampling Algorithms
	2.5.8	Marginal Likelihood
2.6		tationary First Order Markov Finite State Model
	2.6.1	Dimension parameters
	2.6.2	Unknown Quantities
	2.6.3	Known Quantities
	2.6.4	Data Generating Process
	2.6.5	Priors
	2.6.6	Creating a Model Instance
	2.6.7	Sampling Algorithms
2.7	The P	oisson Model
	2.7.1	Dimension parameters
	2.7.2	Unknown Quantities
	2.7.3	Known Quantities
	2.7.4	Data Generating Process
	2.7.5	Priors
	2.7.6	Creating a Model Instance
	2.7.7	Sampling Algorithms
	2.7.8	Marginal Likelihood
2.8		niform Model
2.0	2.8.1	Dimension parameters
	2.8.2	Unknown Quantities
	2.8.3	Known Quantities
	2.8.4	Data Generating Process
	-	
	2.8.5	Priors
	2.8.6	Creating a Model Instance
	2.8.7	Sampling Algorithms
2.0	2.8.8	Marginal Likelihood
2.9		variate Linear Model with Normal Disturbances
2.10		ichotomous Choice Model
		normally distributed disturbances)
		Dimension parameters
		Unknown Quantities
		Known Quantities
		Data Generating Process
		Priors
		Creating a Model Instance
	2.10.7	Sampling Algorithms

2.11	The Censored Linear Model	
	(with normally distributed disturbances)	32
	2.11.1 Dimension parameters	
	2.11.2 Unknown Quantities	32
	2.11.3 Known Quantities	32
		32
		32
		32
		33
2.12	The Univariate Latent Linear Model	
	(with normally distributed disturbances)	34
		34
		34
		34
		34
		34
		34
		35
2.13		36
	The Dichotomous Choice Model	00
	(with Student t distributed disturbances)	38
		38
		38
		38
		38
		38
		38
		39
2 15	The Censored Linear Model	00
2.10	(with Student t distributed disturbances)	40
		40
		40
		40
		40
	· · · · · · · · · · · · · · · · · · ·	40
		40
	· · · · · · · · · · · · · · · · · · ·	
0.16	The Univariate Latent Linear Model	41
2.10		40
	\ /	42
	1	42
	· · · · · · · · · · · · · · · · · · ·	42
	·	42
	2.16.4 Data Generating Process	42
		42
	8	42
	2.16.7 Sampling Algorithms	43

2.17	A Uni	variate Linear Model with Finite Mixtures of Normals Disturbances	44
2.18	The D	ichotomous Choice Model	
	(with a	a scale mixture of normals distribution for the disturbances)	46
	2.18.1	Dimension parameters	46
	2.18.2	Unknown Quantities	46
	2.18.3	Known Quantities	46
	2.18.4	Data Generating Process	46
	2.18.5	Priors	46
		Creating a Model Instance	
		Sampling Algorithms	
2.19		ensored Linear Model	
	(with a	a scale mixture of normals distribution for the disturbances)	48
	•	Dimension parameters	48
		Unknown Quantities	
		Known Quantities	
		Data Generating Process	
		Priors	
		Creating a Model Instance	
		Sampling Algorithms	
2.20		nivariate Latent Linear Model	10
		a scale mixture of normals distribution for the disturbances)	50
		Dimension parameters	
		Unknown Quantities	
		Known Quantities	
		Data Generating Process	
		Priors	
		Creating a Model Instance	
		Sampling Algorithms	
2 21		toregression Model	
2.21		Dimension Parameters	
		Unknown Quantities	
		Known Quantities	
		Data Generating Process	
		Prior Distribution	
		Creating a Model Instance	
		Sampling Algorithm	
2 22			
2.22		toregression Model with State Dependant Means	54 54
		Unknown Quantities	54
		Known Quantities	54
		Data Generating Process	55
		Prior Distribution	55
		Creating a Model Instance	56
	2.22.7	Sampling Algorithm	56

3	BA	CC Commands 57
	3.1	Overview of BACC Commands
	3.2	Matlab Issues
	3.3	Detailed Description of Commands
		3.3.1 The dirichletSim Command
		3.3.2 The expect1 Command
		3.3.3 The expectN Command
		3.3.4 The extract Command
		3.3.5 The gammaSim Command
		3.3.6 The gaussianSim Command
		3.3.7 The listModelSpecs Command
		3.3.8 The listModels Command
		3.3.9 The miDelete Command
		3.3.10 The miLoad Command
		3.3.11 The miLoadAscii Command 72
		3.3.12 The miSave Command
		3.3.13 The miSaveAscii Command
		3.3.14 The minst Command
		3.3.15 The mlike Command
		3.3.16 The paretoSim Command
		3.3.17 The postfilter Command
		3.3.18 The postsim Command
		3.3.19 The postsimHM Command
		3.3.20 The priorRobust Command
		3.3.21 The priorfilter Command
		3.3.22 The priorsim Command
		3.3.23 The setseedconstant Command
		3.3.24 The setseedtime Command
		3.3.25 The weightedSmooth Command
		3.3.26 The wishartSim Command
4	A B	BACC Tutorial 91
	4.1	Working through a model instance
	4.2	Simulating from various distributions
\mathbf{A}	Dist	tributions 95
	A.1	The Dirichlet Distribution
	A.2	The Gamma Distribution
	A.3	The Normal Distribution
	A.4	The Pareto Distribution
	A.5	The Poisson Distribution
	A.6	The Wishart Distribution
В	A B	Brief S-PLUS/R Tutorial 99
	B.1	Basic syntax of expressions
		Data objects

10	CONTENT
40	CONTEN

Bibliography 103

Chapter 1

Getting Started with BACC

1.1 Introduction

The BACC software provides the user several commands for doing Bayesian analysis and communications. This document describes the function of these commands and their inputs and outputs. It also outlines some of the theory behind the commands, and provides references to the relevant literature.

The following versions of the BACC software and documentation are available:

- Windows Matlab
- Linux/Unix Matlab
- Windows Splus
- Linux/Unix Splus
- Windows R
- Linux/Unix R
- Windows Gauss
- Linux/Unix Gauss
- Windows Console
- Linux/Unix Console

This particular manual is for the Windows R version of BACC.

1.2 Requirements

1.3 Installation and Configuration

Follow these steps to install the Windows R version of BACC.

- 1. Download the zip file baccWinR.zip from the software page of the BACC website http://www.econ.umn.edu/~bacc.
- 2. Unzip baccWinR.zip to the directory C:\ using a standard unzipping utility such as PKZIP (available at http://www.pkware.com). Other freeware and shareware unzipping utilities are available on the web. This creates the directory C:\BACC_R and fills it with all the necessary files. You may also install the software into an alternative directory, in which case the following steps need to be modified accordingly.

The Windows R version of BACC is now installed. Follow these steps to load the BACC library within R.

- 1. Start R.
- 2. Change working directory to BACC_R, load the R script baccWin.R and load the dynamically linked library for BACC.

```
> setwd('C:\BACC_R')
> source('baccWin.R')
> loadBACC()
```

Follow these steps to run the sample program testBACC.R.

1. Set the working directory to C:\BACC_R\Test.

```
> setwd('C:\BACC_R\Test')
```

2. Run the R script testBACC.R.

```
> source('testBACC.R')
```

Chapter 2

Models

2.1 Introduction

This document specifies the models currently supported by the BACC system. Each section following this one describes one of the supported models. Each model description is organized into subsections, following the pattern of this section. Appendix A gives the probability density and mass functions of the distributions used throughout the document.

2.1.1 Dimension parameters

All the quantities relevant to a model are treated as matrix valued. All matrix sizes are specified in terms of these dimension parameters. Examples of dimension parameters include the number of times a variable is observed, the number of individuals in a cross section, and the number of equations in a linear model. This subsection lists and describes the dimension parameters for a particular model.

2.1.2 Unknown Quantities

Unknown quantities are all the unobserved elements in a model. They include unknown parameters of the model, latent variables, and missing data. Separate sub-sub-sections discuss unknown quantities in each of these categories. Posterior simulation involves drawing these quantities from their posterior distribution; that is, their conditional distribution given known quantities.

2.1.3 Known Quantities

Known quantities are all the observed or user-specified values in a model. They include prior parameters, which index distributions within a family of prior distributions, and observed data. Separate sub-sub-sections discuss known quantities in both of these categories. The user of the BACC software must specify all the known quantities of a model in order to create an instance of the model.

2.1.4 Data Generating Process

This section specifies the conditional distribution of the endogenous observed data, given the unknown quantities and any observed data ancillary with respect to the unknown quantities.

2.1.5 Prior Distribution

This section specifies the marginal distribution of the unknown quantities, reflecting the user's prior beliefs about these quantities. These unknown quantities may or may not be independent. An example where they are not is a hierarchical prior, in which the prior density is expressed as the product of marginal densities of the "lowest level" unknowns and conditional densities of "higher level" unknowns given "lower level" unknowns.

2.1.6 Creating a Model Instance

This section gives all the model specific information a user requires to create a model instance. It specifies a short mnemonic label that identifies the model, the order in which the user gives the names to assign the unknown quantities, and the order in which to supply all the known quantities. To create a model instance, the user issues the minst command, with appropriate arguments (see section 3.3.14).

2.1.7 Sampling Algorithms

This section has brief descriptions of the algorithm used to generate samples of unknown quantities from their prior and posterior distributions. One subsection each concerns the prior distribution and the posterior distribution. For further details on the algorithms, the user should consult the internal (source code) documentation for the BACC system.

2.1.8 Marginal Likelihood

Where there is an analytical expression for the marginal likelihood in a model, this subsection provides that expression.

2.2 The Normal Linear Model

2.2.1 Dimension parameters

There are m equations, k covariate coefficients, and T observations of each variable.

2.2.2 Unknown Quantities

Unknown Parameters

There is a $k \times 1$ coefficient parameter β and a $m \times m$ precision parameter H.

2.2.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a $k \times k$ positive definite coefficient precision matrix \underline{H} , a precision degrees of freedom parameter $\underline{\nu} > \frac{m-1}{2}$, and a positive definite precision inverse scale parameter \underline{S} .

Data

There are m vectors of observations of dependent variables: y_1, \ldots, y_m . Each vector is $T \times 1$. There are m matrices of observations of ancillary (with respect to unknown quantities) variables: Z_1, \ldots, Z_m . Each matrix is $T \times k$.

2.2.4 Data Generating Process

$$y \equiv \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} Z_1 \\ \vdots \\ Z_m \end{bmatrix} \beta + \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_m \end{bmatrix} \equiv Z\beta + \epsilon$$
$$\begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_m \end{bmatrix} | \begin{bmatrix} Z_1 \\ \vdots \\ Z_m \end{bmatrix} \sim \mathcal{N}(0, H^{-1} \otimes I_T)$$

2.2.5 **Priors**

The unknown parameters β and H are a-priori independent, and have the following marginal distributions.

$$\beta \sim N(\underline{\beta}, \underline{H}_{\beta}^{-1})$$

$$H \sim Wi(S^{-1}, \nu)$$

When m=1, the distribution of <u>SH</u> is chi-squared with $\underline{\nu}$ degrees of freedom.

2.2.6 Creating a Model Instance

The mnemonic label identifying the model is nlm.

Supply the names you wish to give the unknown quantities in the following order: first the name of β ("beta" for example) and then the name of H.

Supply the known quantities in the following order: $\underline{\beta}$, \underline{H}_{β} , $\underline{\nu}$, \underline{S} , Z, y.

2.2.7 Sampling Algorithms

Generating Prior Samples

Samples from the prior distribution of β and H are generated independently.

Generating Posterior Samples

The algorithm to generate samples from the posterior distribution β , H|Z,y is a Gibbs sampling algorithm with two blocks, based on the following conditional posterior distributions.

$$\beta|H, y, Z \sim \mathcal{N}(\overline{\beta}, \overline{H}_{\beta}^{-1})$$

$$H|\beta, y, Z \sim W(\overline{S}^{-1}, \overline{\nu})$$

where

$$\overline{H}_{\beta} = \underline{H}_{\beta} + Z'(H \otimes I_T)Z$$

$$\overline{\beta} = \overline{H}_{\beta}^{-1} [\underline{H}_{\beta} \underline{\beta} + Z'(H \otimes I_T) y]$$

$$\overline{S} = \underline{S} + [s_{ij}], s_{ij} = (y_i - Z_i\beta)'(y_i - Z_i\beta)$$

$$\overline{\nu} = \underline{\nu} + T$$

2.3 The Seemingly Unrelated Regressions Model

This is a special case of the Normal Linear Model with m > 1. Please see section 2.2.

2.4 The I.I.D. Finite State Model

2.4.1 Dimension parameters

There are m states, N individuals and T observation times.

2.4.2 Unknown Quantities

Unknown Parameters

There is a $1 \times m$ state probability vector π .

2.4.3 Known Quantities

Prior Parameters

There is a $1 \times m$ parameter $\underline{\alpha}$ indexing the prior distribution of π .

Data

There are state observations $s_{ti} \in \{1, ..., m\}$ for each individual i of N individuals and each observation period t of T periods.

$$S = \begin{bmatrix} s_{1,1} & \cdots & s_{N,1} \\ \vdots & \ddots & \vdots \\ s_{T,1} & \cdots & s_{N,T} \end{bmatrix}$$

2.4.4 Data Generating Process

Each observation s_{ti} is independently and identically distributed as follows.

$$\Pr(s_{ti} = s) = \pi_s \qquad s = 1, \dots, m$$

2.4.5 **Priors**

$$\pi \sim \text{Di}(\underline{\alpha})$$

2.4.6 Creating a Model Instance

The mnemonic label identifying the model is iidfs.

Supply the name you wish to give the unknown quantity π ("pi" for example). Supply the known quantities in the following order: $\underline{\alpha}$, S.

2.4.7 Sampling Algorithms

Generating Prior Samples

Samples from the prior distribution of π are generated independently.

Generating Posterior Samples

In this model, the posterior distribution for π is the following familiar distribution.

$$\pi | S \sim \mathrm{Di}(\overline{\alpha})$$

where

$$\overline{\alpha} = \underline{\alpha} + n$$

$$n = [n_1 \cdots n_m]$$

and n_s is the number of observations for which $s_{ti} = s$. Posterior samples are drawn independently from this distribution.

2.4.8 Marginal Likelihood

The marginal likelihood is given by

$$p(S) = \frac{\Gamma(\sum_{i=1}^{m} \underline{\alpha}_i)}{\prod_{i=1}^{m} \Gamma(\underline{\alpha}_i)} \frac{\prod_{i=1}^{m} \Gamma(\overline{\alpha}_i)}{\Gamma(\sum_{i=1}^{m} \overline{\alpha}_i)}.$$

2.5 The Non-Stationary First Order Markov Finite State Model

2.5.1 Dimension parameters

There are m states, N individuals and T observation times.

2.5.2 Unknown Quantities

Unknown Parameters

There is a $1 \times m$ initial state probability vector π and an $m \times m$ Markov transition probability matrix P.

2.5.3 Known Quantities

Prior Parameters

The prior parameters are a $1 \times m$ vector $\underline{\alpha}_0$ indexing the prior distribution of π , and an $m \times m$ matrix $\underline{\alpha}$ indexing the prior distribution of P.

Data

There are state observations $s_{ti} \in \{1, ..., m\}$ for each individual i and each observation time t.

$$S = \left[\begin{array}{ccc} s_{11} & \cdots & s_{1N} \\ \vdots & \ddots & \vdots \\ s_{T1} & \cdots & s_{TN} \end{array} \right]$$

2.5.4 Data Generating Process

The N observation sequences $\{s_{ti}\}_{t=1}^{T}$ are i.i.d., with each sequence being first order Markov. The initial distribution is π and the Markov transition matrix is P.

$$\Pr(s_{1i} = s) = \pi_s$$
 $s = 1, ..., m$

$$\Pr(s_{ti} = s' | s_{t-1,i} = s) = P_{ss'}$$

2.5.5 **Priors**

The m rows P_s of P and π are mutually independent, and have the following marginal distributions.

$$\pi \sim \text{Di}(\underline{\alpha}_0)$$

$$P_s \equiv [P_{s1}, \dots, P_{sm}] \sim \text{Di}(\underline{\alpha}_s) \qquad s = 1, \dots, m$$

$$\underline{\alpha}_0 \equiv \begin{bmatrix} \underline{\alpha}_{01} & \dots & \underline{\alpha}_{0m} \end{bmatrix}$$

$$\underline{\alpha}_s \equiv \begin{bmatrix} \underline{\alpha}_{s1} & \dots & \underline{\alpha}_{sm} \end{bmatrix} \qquad s = 1, \dots, m$$

2.5.6 Creating a Model Instance

The mnemonic label identifying the model is nsfomfs.

Supply the names you wish to give the unknown quantities in the following order: first the name of π ("pi" for example), and then the name of P.

Supply the known quantities in the following order: $\underline{\alpha}_0$, $\underline{\alpha}$, S.

2.5.7 Sampling Algorithms

Generating Prior Samples

Samples from the prior distributions of π and P are generated independently.

Generating Posterior Samples

In the posterior distribution π , P|S, the parameters π and P are conditionally independent, and their marginal posterior distributions are the following familiar distributions.

$$\pi | S \sim \mathrm{D}i(\overline{\alpha}_0)$$

$$P_s|S \sim \mathrm{D}i(\overline{\alpha}_s)$$
 $s = 1, \dots, m$

where

$$\overline{\alpha}_0 \equiv \underline{\alpha}_0 + n_0$$

$$\overline{\alpha} \equiv \underline{\alpha} + n$$

$$\overline{\alpha}_s \equiv \begin{bmatrix} \overline{\alpha}_{s1} & \cdots & \overline{\alpha}_{sm} \end{bmatrix}$$

$$n_0 \equiv \begin{bmatrix} n_{01} & \cdots & n_{0m} \end{bmatrix}$$

$$n \equiv \begin{bmatrix} n_{11} & \cdots & n_{1m} \\ \vdots & \ddots & \vdots \\ n_{m1} & \cdots & n_{mm} \end{bmatrix}$$

where n_{0s} is the number of individuals starting in state s, and $n_{ss'}$ is the number of transitions from state s to state s' in the data.

Posterior samples are drawn independently from this distribution.

2.5.8 Marginal Likelihood

The marginal likelihood is available in closed form:

$$p(S) = \frac{\Gamma(\sum_{s=1}^{m} \underline{\alpha}_{0s})}{\prod_{s=1}^{m} \Gamma(\underline{\alpha}_{0s})} \frac{\prod_{s=1}^{m} \Gamma(\overline{\alpha}_{0s})}{\Gamma(\sum_{s=1}^{m} \overline{\alpha}_{0s})} \cdot \prod_{s=1}^{m} \left[\frac{\Gamma(\sum_{s'=1}^{m} \underline{\alpha}_{ss'})}{\prod_{s'=1}^{m} \Gamma(\underline{\alpha}_{ss'})} \frac{\prod_{s'=1}^{m} \Gamma(\overline{\alpha}_{ss'})}{\Gamma(\sum_{s'=1}^{m} \overline{\alpha}_{ss'})} \right]$$

2.6 The Stationary First Order Markov Finite State Model

2.6.1 Dimension parameters

There are m states, N individuals and T observation times.

2.6.2 Unknown Quantities

Unknown Parameters

There is an $m \times m$ Markov transition probability matrix P.

2.6.3 Known Quantities

Prior Parameters

The prior parameter is an $m \times m$ matrix $\underline{\alpha}$ indexing the prior distribution of P.

Data

There are state observations $s_{ti} \in \{1, ..., m\}$ for each individual i and each observation time t.

$$S = \left[\begin{array}{ccc} s_{11} & \cdots & s_{1N} \\ \vdots & \ddots & \vdots \\ s_{T1} & \cdots & s_{TN} \end{array} \right]$$

2.6.4 Data Generating Process

The N observation sequences $\{s_{ti}\}_{t=1}^{T}$ are i.i.d., with each sequence being first order Markov with transition matrix P. The initial distribution vector is assumed to be the invariant distribution π for P.

$$\Pr(s_{1i} = s) = \pi_s$$
 $s = 1, ..., m$

$$\Pr(s_{ti} = s' | s_{t-1,i} = s) = P_{ss'}$$

where π is the left eigenvector of P corresponding to the eigenvalue $\lambda = 1$.

2.6.5 **Priors**

The m rows P_s of P are mutually independent, and have the following marginal distributions.

$$P_s \equiv [P_{s1}, \dots, P_{sm}] \sim \text{Di}(\underline{\alpha}_s) \qquad s = 1, \dots, m$$

$$\underline{\alpha}_s \equiv \left[\begin{array}{ccc} \underline{\alpha}_{s1} & \dots & \underline{\alpha}_{sm} \end{array}\right] \qquad s = 1, \dots, m$$

2.6.6 Creating a Model Instance

The mnemonic label identifying the model is **sfomfs**. Supply the name you wish to give the unknown quantity P. Supply the known quantities in the following order: $\underline{\alpha}$, S.

2.6.7 Sampling Algorithms

Generating Prior Draws

Samples from the prior distribution of P are generated independently.

Generating Posterior Draws

In this model, an independence Metropolis-Hastings chain is used to draw from the posterior distribution for P. The distribution $P^*|S$ of candidate draws is

$$P_s^*|S \sim \mathrm{D}i(\overline{\alpha}_s)$$
 $s = 1, \dots, m$

where

$$\overline{\alpha} \equiv \underline{\alpha} + n$$

$$\overline{\alpha}_s \equiv \begin{bmatrix} \overline{\alpha}_{s1} & \cdots & \overline{\alpha}_{sm} \end{bmatrix}$$

$$n \equiv \begin{bmatrix} n_{11} & \cdots & n_{1m} \\ \vdots & \ddots & \vdots \\ n_{m1} & \cdots & n_{mm} \end{bmatrix}$$

where $n_{ss'}$ is the number of transitions from state s to state s' in the data.

The Hastings ratio for this block is given by

$$\prod_{i=1}^{N} \frac{\pi_{S_{1i}}^*}{\pi_{S_{1i}}}$$

2.7 The Poisson Model

2.7.1 Dimension parameters

There are N observations.

2.7.2 Unknown Quantities

Unknown Parameters

There is a scalar mean parameter λ .

2.7.3 Known Quantities

Prior Parameters

There is a scalar shape parameter $\underline{\alpha} > 0$ and a scalar scale parameter $\underline{\beta} > 0$ indexing the prior distribution of λ .

Data

Each observation x_i is a non-negative integer.

$$X = \left[\begin{array}{c} x_1 \\ \vdots \\ x_N \end{array} \right]$$

2.7.4 Data Generating Process

The observations x_i are independently and identically Poisson distributed.

$$x_i \sim \text{Po}(\lambda)$$

2.7.5 **Priors**

$$\lambda \sim \operatorname{Ga}(\underline{\alpha}, \underline{\beta})$$

2.7.6 Creating a Model Instance

The mnemonic label identifying the model is poisson

Supply the names you wish to give the unknown quantity λ ("lambda" for example). Supply the known quantities in the following order: $\underline{\alpha}$, $\underline{\beta}$, X.

2.7.7 Sampling Algorithms

Generating Prior Samples

Samples from the prior distribution of λ are generated independently.

Generating Posterior Samples

In this model, the posterior distribution for λ is the following familiar distribution.

$$\lambda | X \sim Ga(\overline{\alpha}, \overline{\beta})$$
$$\overline{\alpha} = \underline{\alpha} + \sum_{i=1}^{N} x_i$$
$$\overline{\beta} = \underline{\beta} + N$$

Posterior samples are drawn independently from this distribution.

2.7.8 Marginal Likelihood

The marginal likelihood is given by the following expression.

$$p(X) = \frac{\underline{\beta}^N}{(\underline{\beta} + N)^{\underline{\alpha} + r}} \frac{\Gamma(\underline{\alpha} + r)}{\Gamma(\underline{\alpha})} \frac{1}{\prod_{i=1}^N x_i!},$$

where

$$r = \sum_{i=1}^{N} x_i$$

2.8 The Uniform Model

2.8.1 Dimension parameters

There are N observations.

2.8.2 Unknown Quantities

Unknown Parameters

There is a scalar support parameter θ .

2.8.3 Known Quantities

Prior Parameters

There is a scalar notional count parameter $\underline{\alpha} > 0$ and a scalar notional maximal element parameter $\underline{\beta} \geq 0$ indexing the prior distribution of θ .

Data

Each observation x_i is a non-negative real-valued scalar.

$$X = \left[\begin{array}{c} x_1 \\ \vdots \\ x_N \end{array} \right]$$

2.8.4 Data Generating Process

Each observation x is independently and identically distributed with a uniform distribution on $[0, \theta]$.

$$x_i \sim \text{i.i.d.} U(0, \theta)$$

2.8.5 **Priors**

$$\theta \sim \operatorname{Pa}(\underline{\alpha}, \underline{\beta})$$

2.8.6 Creating a Model Instance

The mnemonic label identifying the model is uniform. Supply the name you wish to give the unknown quantity θ ("theta" for example).

Supply the known quantities in the following order: $\underline{\alpha}$, $\underline{\beta}$, X.

2.8.7 Sampling Algorithms

Generating Prior Samples

Samples from the prior distribution of θ are generated independently.

Generating Posterior Samples

In this model, the posterior distribution for θ is the following familiar distribution.

$$\theta | X \sim Pa(\overline{\alpha}, \overline{\beta})$$

where

$$\overline{\alpha} = \underline{\alpha} + N$$

$$\overline{\beta} = \max\left\{\underline{\beta}, \max_i x_i\right\}$$

Posterior samples are drawn independently from this distribution.

2.8.8 Marginal Likelihood

The marginal likelihood is given by the following expression.

$$p(X) = (\underline{\alpha}/\overline{\alpha}) \prod_{i=1}^{N} (p_i/\overline{\beta}_i)$$

where

$$\overline{\beta}_i = \max\{\underline{\beta}, \max_{j \le i} x_j\}$$

and

$$p_i = \begin{cases} (\frac{\overline{\beta}_i}{x_i})^{(1+\underline{\alpha}+i)} & \text{if } x_i > \overline{\beta}_i\\ 1 & \text{otherwise.} \end{cases}$$

2.9 A Univariate Linear Model with Normal Disturbances

The mnemonic label identifying the model is n_ulm .

Dimension Parameters

T number of observations

K number of covariates

Unknown Quantities

 β (K × 1) vector of covariate coefficients

 $h (1 \times 1)$ precision of disturbance

Known Quantities

 β $(K \times 1)$ prior mean of β

 \underline{H}_{β} $(K \times K)$ prior precision of β

 \underline{s}^2 (1 × 1) prior inverse scale of h

 $\underline{\nu}$ (1 × 1) prior degrees of freedom of h

 $X (T \times K)$ covariates

 $y = (T \times 1)$ dependant variable

Data Generating Process

The observables y are given by

$$y = X\beta + u,$$

where u is a $T \times 1$ vector of i.i.d. normal disturbances, with $u_t | h \sim N(0, h^{-1})$:

$$p(u|X, \beta, h) = (2\pi)^{-T/2} h^{T/2} \exp(-hu'u/2).$$

Prior Distribution

The vectors β and h, together with X, are mutually independent. The covariate coefficient vector β has distribution $N(\beta, \underline{H}_{\beta})$:

$$p(\beta) = (2\pi)^{-K/2} |\underline{H}_{\beta}|^{1/2} \exp[-(\beta - \underline{\beta})' \underline{H}_{\beta} (\beta - \underline{\beta})/2].$$

The precision parameter h has a scaled chi-squared distribution, with $\underline{s}^2 h \sim \underline{\nu}$:

$$p(h) = 2^{-\underline{\nu}/2} \Gamma(\underline{\nu}/2)^{-1} (\underline{s}^2)^{\underline{\nu}/2} h^{(\underline{\nu}-2)/2} \exp(-\underline{s}^2 h/2).$$

Sampling Algorithm

See Example 3.4.1 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at $http://www.cirano.qc.ca/\sim bacc/bacc2003/resources.html$

2.10 The Dichotomous Choice Model (with normally distributed disturbances)

2.10.1 Dimension parameters

There are k covariate coefficients and T observations of each variable.

2.10.2 Unknown Quantities

Unknown Parameters

There is a $k \times 1$ coefficient parameter β , a scalar precision parameter h, and a $T \times 1$ vector \tilde{y} of latent outcomes.

2.10.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a $k \times k$ positive definite coefficient matrix \underline{H}_{β} , a precision degrees of freedom parameter $\underline{\nu}$, and a positive definite precision inverse scale parameter \underline{S} .

Data

There is a $T \times 1$ vector of observations of dependent variables y taking values in $\{0,1\}$.

There is a $T \times k$ matrix X of observations of ancillary (with respect to unknown quantities) variables.

2.10.4 Data Generating Process

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.10.5 Priors

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.10.6 Creating a Model Instance

The mnemonic label identifying the model is udcht.

Supply the names you wish to give the unknown quantities in the following order: first the name of β ("beta" for example), then the name of h ("hHomo" for example), and finally the name of the latent variable \tilde{y} ("yTilde" for example).

Supply the known quantities in the following order: β , \underline{H}_{β} , \underline{S} , $\underline{\nu}$, X, y.

2.10.7 Sampling Algorithms

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html.

2.11 The Censored Linear Model (with normally distributed disturbances)

2.11.1 Dimension parameters

There are k covariate coefficients and T observations of each variable.

2.11.2 Unknown Quantities

Unknown Parameters

There is a $k \times 1$ coefficient parameter β , a scalar precision parameter h, and a $T \times 1$ vector \tilde{y} of (possibly) latent outcomes.

2.11.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a $k \times k$ positive definite coefficient matrix \underline{H}_{β} , a precision degrees of freedom parameter $\underline{\nu}$, a positive definite precision inverse scale parameter \underline{S} , and a censoring parameter \underline{c} .

Data

There is a $T \times 1$ vector of observations of dependent variables y.

There is a $T \times k$ matrix X of observations of ancillary (with respect to unknown quantities) variables.

2.11.4 Data Generating Process

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.11.5 Priors

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.11.6 Creating a Model Instance

The mnemonic label identifying the model is ucensor.

Supply the names you wish to give the unknown quantities in the following order: first the name of β ("beta" for example), then the name of h ("hHomo" for example), and finally the name of the latent variable \tilde{y} ("yTilde" for example).

Supply the known quantities in the following order: β , \underline{H}_{β} , \underline{S} , $\underline{\nu}$, \underline{c} , X, y.

2.11.7 Sampling Algorithms

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.12 The Univariate Latent Linear Model (with normally distributed disturbances)

2.12.1 Dimension parameters

There are k covariate coefficients and T observations of each variable.

2.12.2 Unknown Quantities

Unknown Parameters

There is a $k \times 1$ coefficient parameter β , a scalar precision parameter h, and a $T \times 1$ vector \tilde{y} of (possibly) latent outcomes.

2.12.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a $k \times k$ positive definite coefficient matrix \underline{H}_{β} , a precision degrees of freedom parameter $\underline{\nu}$, and a positive definite precision inverse scale parameter \underline{S} .

Data

Corresponding to the (possibly) latent outcome \tilde{y} , there are two $T \times 1$ vectors c and d, $c \ge d$, which describe the observed, set-valued outcome.

There is a $T \times k$ matrix X of observations of ancillary (with respect to unknown quantities) variables.

2.12.4 Data Generating Process

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html .

2.12.5 Priors

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html.

2.12.6 Creating a Model Instance

The mnemonic label identifying the model is ullm.

Supply the names you wish to give the unknown quantities in the following order: first the name of β ("beta" for example), then the name of h ("hHomo" for example), and finally the name of the latent variable \tilde{y} ("yTilde" for example).

Supply the known quantities in the following order: β , \underline{H}_{β} , \underline{S} , $\underline{\nu}$, X, c, d.

2.12.7 Sampling Algorithms

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html.

2.13 A Univariate Linear Model with Student t Disturbances

The mnemonic label identifying the model is t_ulm.

Dimension Parameters

T number of observations

K number of covariates

Unknown Quantities

 β $(K \times 1)$ vector of covariate coefficients

 $h = (1 \times 1)$ precision of Student t distribution

 \tilde{h} $(T \times 1)$ time varying latent precision variable

 λ (1 × 1) degrees of freedom of Student t distribution

Known Quantities

 β $(K \times 1)$ prior mean of β

 \underline{H}_{β} $(K \times K)$ prior precision of β

 \underline{s}^2 (1 × 1) prior inverse scale of h

 $\underline{\nu}$ (1 × 1) prior degrees of freedom of h

 $\underline{\lambda}$ (1 × 1) prior mean of λ

 $X (T \times K)$ covariates

 $y = (T \times 1)$ dependant variable

Data Generating Process

The observables y are given by

$$y = X\beta + u$$
,

where u is a $T \times 1$ vector of independent Student t disturbances, with $u_t | h, X \sim t(0, h^{-1}, \lambda)$. Conditioning on the latent \tilde{h} gives $u_t | h, \tilde{h} \sim N(0, (h\tilde{h}_t)^{-1})$:

$$p(u|X,\beta,\tilde{h},h) = (2\pi)^{-T/2} h^{T/2} \prod_{t=1}^{T} \tilde{h}_t^{1/2} \exp(-h\tilde{h}_t u_t^2/2).$$

See Section 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html for details.

Prior Distribution

The vectors β , h, and (\tilde{h}, λ) , together with X, are mutually independent. The covariate coefficient vector β has distribution $N(\beta, \underline{H}_{\beta})$:

$$p(\beta) = (2\pi)^{-K/2} |\underline{H}_{\beta}|^{1/2} \exp[-(\beta - \beta)' \underline{H}_{\beta}(\beta - \beta)/2].$$

The precision parameter h has a scaled chi-squared distribution, with $\underline{s}^2 h \sim \underline{\nu}$:

$$p(h) = 2^{-\underline{\nu}/2} \Gamma(\underline{\nu}/2)^{-1} (\underline{s}^2)^{\underline{\nu}/2} h^{(\underline{\nu}-2)/2} \exp(-\underline{s}^2 h/2).$$

The time varying latent precision parameters \tilde{h} are i.i.d. scaled chi-squared variates, with $\lambda \tilde{h}_t \sim \chi^2(\lambda)$:

$$p(\tilde{h}|\lambda) = [2^{\lambda/2}\Gamma(\lambda/2)]^{-T}\lambda^{T\lambda/2} \prod_{t=1}^{T} \tilde{h}_t^{(\lambda-2)/2} \exp(-\lambda \tilde{h}/2)$$

The degrees of freedom parameter λ is distributed $\exp(\underline{\lambda})$:

$$p(\lambda) = \underline{\lambda}^{-1} \exp(-\lambda/\underline{\lambda}).$$

Sampling Algorithm

2.14 The Dichotomous Choice Model (with Student t distributed disturbances)

2.14.1 Dimension parameters

There are k covariate coefficients and T observations of each variable.

2.14.2 Unknown Quantities

Unknown Parameters

There is a $k \times 1$ coefficient parameter β , a scalar precision parameter h, a $T \times 1$ vector of precision parameters h_t , a $T \times 1$ vector \tilde{y} of latent outcomes, and a scalar degrees of freedom parameter λ .

2.14.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a $k \times k$ positive definite coefficient matrix \underline{H}_{β} , a precision degrees of freedom parameter $\underline{\nu}$, a positive definite precision inverse scale parameter \underline{S} , and a degrees of freedom parameter $\underline{\lambda}$.

Data

There is a $T \times 1$ vector of observations of dependent variables y taking values in $\{0, 1\}$. There is a $T \times k$ matrix X of observations of ancillary (with respect to unknown quantities) variables.

2.14.4 Data Generating Process

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.14.5 **Priors**

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.14.6 Creating a Model Instance

The mnemonic label identifying the model is t_udcht.

Supply the names you wish to give the unknown quantities in the following order: first the name of β ("beta" for example), then the name of h ("hHomo" for example), then the name of h_t ("hHetero" for example), then the name of the latent variable \tilde{y} ("yTilde" for example), and finally the name of the degrees of freedom parameter λ ("lambda" for example).

Supply the known quantities in the following order: β , \underline{H}_{β} , \underline{S} , $\underline{\nu}$, $\underline{\lambda}$, X, y.

2.14.7 Sampling Algorithms

2.15 The Censored Linear Model (with Student t distributed disturbances)

2.15.1 Dimension parameters

There are k covariate coefficients and T observations of each variable.

2.15.2 Unknown Quantities

Unknown Parameters

There is a $k \times 1$ coefficient parameter β , a scalar precision parameter h, a $T \times 1$ vector of precision parameters h_t , a $T \times 1$ vector \tilde{y} of (possibly) latent outcomes, and a scalar degrees of freedom parameter λ .

2.15.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a $k \times k$ positive definite coefficient matrix \underline{H}_{β} , a precision degrees of freedom parameter $\underline{\nu}$, a positive definite precision inverse scale parameter \underline{S} , a degrees of freedom parameter $\underline{\lambda}$, and a censoring parameter \underline{c} .

Data

There is a $T \times 1$ vector of observations of dependent variables y.

There is a $T \times k$ matrix X of observations of ancillary (with respect to unknown quantities) variables.

2.15.4 Data Generating Process

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.15.5 **Priors**

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.15.6 Creating a Model Instance

The mnemonic label identifying the model is t_ucensor.

Supply the names you wish to give the unknown quantities in the following order: first the name of β ("beta" for example), then the name of h ("hHomo" for example), then the name of h_t ("hHetero" for example), then the name of the latent variable \tilde{y} ("yTilde" for example), and finally the name of the degrees of freedom parameter λ ("lambda" for example).

Supply the known quantities in the following order: β , \underline{H}_{β} , \underline{S} , $\underline{\nu}$, $\underline{\lambda}$, \underline{c} , X, y.

2.15.7 Sampling Algorithms

2.16 The Univariate Latent Linear Model (with Student t distributed disturbances)

2.16.1 Dimension parameters

There are k covariate coefficients and T observations of each variable.

2.16.2 Unknown Quantities

Unknown Parameters

There is a $k \times 1$ coefficient parameter β , a scalar precision parameter h, a $T \times 1$ vector of precision parameters h_t , a $T \times 1$ vector \tilde{y} of (possibly) latent outcomes, and a scalar degrees of freedom parameter λ .

2.16.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a $k \times k$ positive definite coefficient matrix \underline{H}_{β} , a precision degrees of freedom parameter $\underline{\nu}$, a positive definite precision inverse scale parameter \underline{S} , and a degrees of freedom parameter $\underline{\lambda}$.

Data

Corresponding to the (possibly) latent outcome \tilde{y} , there are two $T \times 1$ vectors c and d, $c \geq d$, which describe the observed, set-valued outcome.

There is a $T \times k$ matrix X of observations of ancillary (with respect to unknown quantities) variables.

2.16.4 Data Generating Process

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.16.5 Priors

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.16.6 Creating a Model Instance

The mnemonic label identifying the model is t_ullm.

Supply the names you wish to give the unknown quantities in the following order: first the name of β ("beta" for example), then the name of h ("hHomo" for example), then the name of h_t ("hHetero" for example), then the name of the latent variable \tilde{y} ("yTilde" for example), and finally the name of the degrees of freedom parameter λ ("lambda" for example).

Supply the known quantities in the following order: $\underline{\beta}, \underline{H}_{\beta}, \underline{S}, \underline{\nu}, \underline{\lambda}, X, c, d.$

2.16.7 Sampling Algorithms

2.17 A Univariate Linear Model with Finite Mixtures of Normals Disturbances

The mnemonic label identifying the model is fmn_ulm.

Dimension Parameters

T number of observations

K number of covariates

m number of mixture components (or states)

Unknown Quantities

 $\gamma \quad ((m+K)\times 1)$ vector of state means and covariate coefficients

h (1 × 1) constant multiplicative precision component

 \mathbf{h} $(m \times 1)$ state dependant multiplicative precision component

 \tilde{s} $(T \times 1)$ time varying latent discrete state

 π (1 × m) state probabilities

Known Quantities

 \underline{h}_{α} (1 × 1) prior precision parameter for state means

 β $(K \times 1)$ prior mean of covariate coefficients

 \underline{H}_{β} $(K \times K)$ prior precision of covariate coefficients

 s^2 (1 × 1) prior inverse scale of h

 $\underline{\nu}$ (1 × 1) prior degrees of freedom of h

 $m (1 \times 1)$ number of states

 $\underline{\nu}$. (1 × 1) degrees of freedom parameter for state precisions

r (1 × 1) Dirichlet parameter for state probabilities

 $X (T \times K)$ covariates

 $y (T \times 1)$ dependant variable

Data Generating Process

The observables y are given by

$$y = X\beta + u$$
,

where u is a $T \times 1$ vector of independent discrete normal mixture disturbances, with $u_t|h, \pi, \alpha, \mathbf{h}, X$ given by:

$$p(u_t|h, \pi, \alpha, \mathbf{h}, X) = (2\pi)^{-1/2} h^{1/2} \sum_{j=1}^{m} \pi_j h_j^{1/2} \exp[-h \cdot h_j (u_t - \alpha_j)^2 / 2]$$

Conditioning on the latent states gives

$$p(u_t|h, \alpha, \mathbf{h}, X) = (2\pi)^{-1/2} h^{1/2} h_{\tilde{s}_t}^{1/2} \exp[-h \cdot h_{\tilde{s}_t} (u_t - \alpha_{\tilde{s}_t})^2 / 2].$$

See Section 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.gc.ca/~bacc/bacc2003/resources.html for details.

Prior Distribution

The vectors (γ, h) , \mathbf{h} , and (\tilde{s}, π) , together with X, are mutually independent. The γ parameter vertically stacks the parameters α and β , where α is the $m \times 1$ vector of state dependent means and β is the $K \times 1$ vector of covariate coefficients. They are independent, with $\alpha | h \sim N(0, (\underline{h}_{\alpha}h)^{-1})$ and $\beta \sim N(\beta, \underline{H}_{\beta})$:

$$\begin{split} p(\gamma|h) &= p(\alpha|h) \cdot p(\beta) &= (2\pi)^{-m/2} (\underline{h}_{\alpha}h)^{m/2} \exp(-\underline{h}_{\alpha}h\alpha'\alpha/2) \\ &\cdot (2\pi)^{-K/2} |\underline{H}_{\beta}|^{1/2} \exp[-(\beta-\underline{\beta})'\underline{H}_{\beta}(\beta-\underline{\beta})/2]. \end{split}$$

The precision parameter h has a scaled chi-squared distribution, with $\underline{s}^2 h \sim \underline{\nu}$:

$$p(h) = 2^{-\underline{\nu}/2} \Gamma(\underline{\nu}/2)^{-1} (\underline{s}^2)^{\underline{\nu}/2} h^{(\underline{\nu}-2)/2} \exp(-\underline{s}^2 h/2).$$

The state dependant precisions h_j are i.i.d., with $\underline{\nu}.h_j \sim \chi^2(\underline{\nu}.)$:

$$p(\mathbf{h}) = 2^{m\underline{\nu}} \Gamma(\underline{\nu}./2) (\underline{\nu}.)^{m\underline{\nu}./2} \prod_{j=1}^{m} h_j^{(-\underline{\nu}.-2)/2} \exp(-\underline{\nu}.h_j/2).$$

The latent states are i.i.d., with the probability $\Pr[s_t = j]$ given by π_j , for $j = 1, \dots, m$:

$$p(\tilde{s}|\pi) = \prod_{t=1}^{T} \pi_{\tilde{s}_t}$$

The vector π of probabilities is distributed Dirichlet (r, \ldots, r) :

$$p(\pi) = \Gamma(mr)\Gamma(r)^{-m} \prod_{j=1}^{m} \pi_j^{r-1}.$$

Sampling Algorithm

2.18 The Dichotomous Choice Model (with a scale mixture of normals distribution for the disturbances)

2.18.1 Dimension parameters

There are k covariate coefficients, T observations of each variable, and m components for the mixture of normals (i.e., m states).

2.18.2 Unknown Quantities

Unknown Parameters

There is a $k \times 1$ coefficient parameter γ , a scalar precision parameter h, a $T \times 1$ vector of state indices, a $1 \times m$ vector of probabilities, an $m \times 1$ vector of precision parameters h_j , and a $T \times 1$ vector \tilde{y} of latent outcomes.

2.18.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a positive scalar precision parameter \underline{H}_{α} , a $k \times k$ positive definite coefficient matrix \underline{H}_{β} , a precision degrees of freedom parameter $\underline{\nu}$, a positive definite precision inverse scale parameter \underline{S} , an $m \times 1$ vector of precision degrees of freedom parameters $\underline{\nu}_j$, an $m \times 1$ vector of positive definite precision inverse scale parameter \underline{S}_i , and a $1 \times m$ vector of hyperparameters \underline{r} .

Data

There is a $T \times 1$ vector of observations of dependent variables y taking values in $\{0, 1\}$. There is a $T \times k$ matrix X of observations of ancillary (with respect to unknown quan-

tities) variables.

2.18.4 Data Generating Process

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.18.5 Priors

2.18.6 Creating a Model Instance

The mnemonic label identifying the model is fmn_udcht.

Supply the names you wish to give the unknown quantities in the following order: first the name of γ ("gamma" for example), then the name of s, then the name of p, then the name of h_j ("hState" for example), and finally the name of the latent outcome variable \tilde{y} ("yTilde" for example).

Supply the known quantities in the following order: $\underline{\beta}$, \underline{H}_{α} , \underline{H}_{β} , \underline{S} , $\underline{\nu}$, \underline{S}_{j} , $\underline{\nu}_{j}$, \underline{r} , X, y.

2.18.7 Sampling Algorithms

2.19 The Censored Linear Model (with a scale mixture of normals distribution for the disturbances)

2.19.1 Dimension parameters

There are k covariate coefficients, T observations of each variable, and m components for the mixture of normals (i.e., m states).

2.19.2 Unknown Quantities

Unknown Parameters

There is a $k \times 1$ coefficient parameter γ , a scalar precision parameter h, a $T \times 1$ vector of state indices, a $1 \times m$ vector of probabilities, an $m \times 1$ vector of precision parameters h_j , and a $T \times 1$ vector \tilde{y} of (possibly) latent outcomes.

2.19.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a positive scalar precision parameter \underline{H}_{α} , a $k \times k$ positive definite coefficient matrix \underline{H}_{β} , a precision degrees of freedom parameter $\underline{\nu}$, a positive definite precision inverse scale parameter \underline{S} , an $m \times 1$ vector of precision degrees of freedom parameters $\underline{\nu}_j$, an $m \times 1$ vector of positive definite precision inverse scale parameter \underline{S}_j , a $1 \times m$ vector of hyperparameters \underline{r}_j , and a censoring parameter \underline{c}_j .

Data

There is a $T \times 1$ vector of observations of dependent variables y.

There is a $T \times k$ matrix X of observations of ancillary (with respect to unknown quantities) variables.

2.19.4 Data Generating Process

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.qc.ca/~bacc/bacc2003/resources.html

2.19.5 Priors

2.19.6 Creating a Model Instance

The mnemonic label identifying the model is fmn_ucensor.

Supply the names you wish to give the unknown quantities in the following order: first the name of γ ("gamma" for example), then the name of s, then the name of p, then the name of h_j ("hState" for example), and finally the name of the outcome variable \tilde{y} ("yTilde" for example).

Supply the known quantities in the following order: $\underline{\beta}$, \underline{H}_{α} , \underline{H}_{β} , \underline{S} , $\underline{\nu}$, \underline{S}_{j} , $\underline{\nu}_{j}$, \underline{r} , \underline{c} , X, y.

2.19.7 Sampling Algorithms

2.20 The Univariate Latent Linear Model (with a scale mixture of normals distribution for the disturbances)

2.20.1 Dimension parameters

There are k covariate coefficients, T observations of each variable, and m components for the mixture of normals (i.e., m states).

2.20.2 Unknown Quantities

Unknown Parameters

There is a $(m+k) \times 1$ coefficient parameter γ , a scalar precision parameter h, a $T \times 1$ vector of state indices, a $1 \times m$ vector of probabilities, an $m \times 1$ vector of precision parameters h_j , and a $T \times 1$ vector \tilde{y} of (possibly) latent outcomes.

2.20.3 Known Quantities

Prior Parameters

There is a $k \times 1$ coefficient mean vector $\underline{\beta}$, a positive scalar precision parameter \underline{H}_{α} , a $k \times k$ positive definite coefficient matrix \underline{H}_{β} , a precision degrees of freedom parameter $\underline{\nu}$, a positive definite precision inverse scale parameter \underline{S} , an $m \times 1$ vector of precision degrees of freedom parameters $\underline{\nu}_j$, an $m \times 1$ vector of positive definite precision inverse scale parameter \underline{S}_i , and a $1 \times m$ vector of hyperparameters \underline{r} .

Data

Corresponding to the (possibly) latent outcome \tilde{y} , there are two $T \times 1$ vectors c and d, $c \ge d$, which describe the observed, set-valued outcome.

There is a $T \times k$ matrix X of observations of ancillary (with respect to unknown quantities) variables.

2.20.4 Data Generating Process

See Sections 4.5 and 4.8 in "Contemporary Bayesian Econometrics and Statistics," by John Geweke, at http://www.cirano.gc.ca/~bacc/bacc2003/resources.html

2.20.5 Priors

2.20.6 Creating a Model Instance

The mnemonic label identifying the model is fmn_ullm.

Supply the names you wish to give the unknown quantities in the following order: first the name of γ ("gamma" for example), then the name of s, then the name of p, then the name of h_j ("hState" for example), and finally the name of the outcome variable \tilde{y} ("yTilde" for example).

Supply the known quantities in the following order: $\underline{\gamma}$, \underline{H}_{α} , \underline{H}_{β} , \underline{S} , $\underline{\nu}$, \underline{S}_{j} , $\underline{\nu}_{j}$, \underline{r} , X, c, d.

2.20.7 Sampling Algorithms

2.21 An Autoregression Model

2.21.1 Dimension Parameters

The model features the following dimension parameters.

Dimension Parameter	Description
T	number of observations
K	number of covariates
p	autoregressive order

2.21.2 Unknown Quantities

The model features the following unknown quantities.

Unknown Quantity	Dimensions	Description
β	$K \times 1$	covariate coefficient vector
h	1×1	residual precision
ϕ	$p \times 1$	vector of autoregression coefficients

2.21.3 Known Quantities

The model features the following known quantities.

Known Quantity	Dimensions	Description
$ar{eta}$	$K \times 1$	prior mean of β
$ar{H}_eta$	$K \times K$	prior precision of β
$ar{ u}$	1×1	prior degrees of freedom of h
$ar{s}^2$	1×1	prior inverse scale of h
$ar{\phi}$	$p \times 1$	prior mean of ϕ before truncation
$ar{H}_{\phi}$	$p \times p$	prior precision of ϕ before truncation
X	$T\times K$	covariates
y	$T \times 1$	dependant variable

2.21.4 Data Generating Process

The data generating process is given by

$$y_t = \beta' x_t + \epsilon_t$$

where x_t is the t'th row of X, as a column vector,

$$\epsilon_t = \sum_{i=1}^p \phi_i \epsilon_{t-i} + u_t,$$

and

$$u_t \sim \text{i.i.d. N}(0, h^{-1})$$

2.21.5 Prior Distribution

The unknowns are a-priori independent and have the following distributions.

$$\beta \sim \mathcal{N}(\bar{\beta}, \bar{H}_{\beta}^{-1})$$

$$\bar{s}^2 h \sim \chi^2(\bar{\nu})$$

The prior for ϕ is obtained by truncating the following density to the region for which y is stationary.

$$\phi \sim N(\bar{\phi}, \bar{H}_{\phi}^{-1})$$

2.21.6 Creating a Model Instance

The mnemonic label identifying the model is AR.

Supply the names you wish to give the unknown quantities in the same order as they appear in the table of unknown quantities. Supply the known quantities in the same order as they appear in the table of known quantities.

2.21.7 Sampling Algorithm

The sampling algorithm for prior simulation features three blocks, each making independent draws from the prior distribution of one of the unknown quantities. The sampling algorithm for posterior simulation features three blocks, each making draws from the conditional posterior distribution of one of the unknown quantities.

2.22 An Autoregression Model with State Dependant Means

2.22.1 Dimension Parameters

The model features the following dimension parameters.

Dimension Parameter	Description
T	number of observations
K	number of covariates
p	autoregressive order
m	number of states

2.22.2 Unknown Quantities

The model features the following unknown quantities.

Unknown Quantity	Dimensions	Description
γ	$(m+K)\times 1$	vertical stack of alpha and beta
h	1×1	residual precision
ϕ	$p \times 1$	vector of autoregression coefficients
P	$m \times m$	state transition probability matrix
s	$T \times 1$	latent states
f	$T\times m$	filter probabilities

2.22.3 Known Quantities

The model features the following known quantities.

Known Quantity	Dimensions	Description
$ar{\gamma}$	$(m+K)\times 1$	prior mean of γ
$ar{H_{\gamma}}$	$(m+K)\times(m+K)$	prior precision of γ
$ar{ u}$	1×1	prior degrees of freedom of h
$ar{s}^2$	1×1	prior inverse scale of h
$ar{\phi}$	$p \times 1$	prior mean of ϕ before truncation
$ar{H}_{\phi}$	p imes p	prior precision of ϕ before truncation
$ar{A}$	$m \times m$	parameters of prior for P
X	$T \times K$	covariates
y	$T \times 1$	dependant variable

2.22.4 Data Generating Process

The data generating process is given by

$$y_t = \alpha_{s_t} + \beta' x_t + \epsilon_t$$

where x_t is the t'th row of X, as a column vector, and α $(m \times 1)$ and β $(K \times 1)$ are obtained by partitioning γ ,

$$\epsilon_t = \sum_{i=1}^p \phi_i \epsilon_{t-i} + u_t,$$

and

$$u_t \sim i.i.d. N(0, h^{-1})$$

2.22.5 Prior Distribution

The unknowns are a-priori independent and have the following distributions.

$$\gamma \sim \mathcal{N}(\bar{\gamma}, \bar{H_{\gamma}}^{-1})$$
$$\bar{s}^2 h \sim \chi^2(\bar{\nu})$$

The prior for ϕ is obtained by truncating the following density to the region for which y is stationary.

$$\phi \sim N(\bar{\phi}, \bar{H}_{\phi}^{-1})$$

$$(P_{i1}, \dots, P_{im}) \sim \text{i.i.d. Di}(\bar{A}_{i1}, \dots, \bar{A}_{im})$$

$$\Pr[s_t = j | s_{t-1} = i] = P_{ij}$$

The unknown quantity f gives, for each observation time t, the state probabilities at t given previous states, previous values of the observed variables, and the other unknown quantities. It is not a primitive unknown quantity, and it is included to give the user access to filtered probabilities.

2.22.6 Creating a Model Instance

The mnemonic label identifying the model is Hamilton.

Supply the names you wish to give the unknown quantities in the same order as they appear in the table of unknown quantities. Supply the known quantities in the same order as they appear in the table of known quantities.

2.22.7 Sampling Algorithm

The sampling algorithm for prior simulation features five blocks. Four blocks make independent draws from the prior distributions of γ , h, ϕ and P. The fifth makes draws from the distribution s|P. The sampling algorithm for posterior simulation features five blocks, each making draws from the conditional posterior distribution of one of the unknown quantities.

Chapter 3

BACC Commands

3.1 Overview of BACC Commands

The following is a list of BACC commands with brief descriptions.

dirichletSim Generates a sample from a multiple Dirichlet distribution.

expect1 Calculates, for a weighted random sample, the sample mean and stan-

dard deviation, estimates of the numerical standard error for the mean,

and estimates of the relative numerical efficiency.

expectN Calculates combined sample means, with numerical standard errors, for

a set of different weighted random samples, and tests for the equality of

their individual population means.

extract Returns simulation matrices for a model instance.

gammaSim Generates a sample from a gamma distribution.

gaussianSim Generates a sample from a Gaussian distribution.

listModelSpecs Lists all available model specifications (e.g. nlm, poisson).

listModels Lists all open model instances.

miDelete Closes without saving a (or all) model instances.

miLoad Loads a model instance stored in a binary file.

miLoadAscii Loads a model instance stored in a text file.

miSave Saves a model instance in a binary file.

miSaveAscii Saves a model instance in a text file.

minst Creates an instance of a particular model specification.

mlike	Computes various estimates of the marginal likelihood for a model instance, with numerical standard errors.
paretoSim	Generates a sample from a Pareto distribution.
postfilter	Filters out previously generated draws from the posterior simulation matrix of a given model instance.
postsim	Generates or appends to the posterior simulation matrix of a given model instance. $$
postsimHM	Generates or appends to the posterior HM simulation matrix of a given model instance.
priorRobust	Calculates upper and lower bounds on the mean of a posterior function of interest, as the prior distribution is varied from its original specification.
priorfilter	Filters out previously generated draws from the prior simulation matrix of a given model instance.
priorsim	Generates or appends to the prior simulation matrix of a given model instance.
setseedconstant	Sets the seeds of the random number generators to a constant value.
setseedtime	Sets the seeds of the random number generators to the number of seconds since the beginning of 1970 .
weightedSmooth	Estimates a univariate density function for a weighted random sample, using a kernel smoothing algorithm adapted to weighted samples.
wishartSim	Generates a sample from a Wishart distribution.

3.2 Matlab Issues

Help is available within Matlab for BACC commands. Type help <code>commandName</code> at the Matlab prompt, or help BACC for a list of BACC commands.

3.3 Detailed Description of Commands

Each BACC command is described in detail in one of the following sections.

3.3.1 The dirichletSim Command

Description

Generates a sample from a multiple Dirichlet distribution.

Usage

```
sample <- dirichletSim(A, n);</pre>
```

Inputs

A m by K matrix: Dirichlet parameters

n Integer: number of draws to generate

Outputs

sample n by nK matrix: sample generated from multiple Dirichlet dis-

tribution

See Also

paretoSim, gaussianSim, gammaSim, wishartSim.

Example

```
A = array(c(1.0,2.0,3.0,4.0,5.0,6.0),dim=c(2,3))
sample <- dirichletSim(A, 1000);</pre>
```

Details

The sample consists of n draws. Each of the n draws of the sample is an m by K matrix with independent rows. Each row has a Dirichlet distribution with parameters given by the corresponding row of A.

The result is given as a n by mK matrix, and each column gives a draw in column major order. See Appendix A for the parameterization of the Dirichlet distribution.

3.3.2 The expect1 Command

Description

Calculates, for a weighted random sample, the sample mean and standard deviation, estimates of the numerical standard error for the mean, and estimates of the relative numerical efficiency.

Usage

```
out <- expect1(logWeight, sample, taper = c(4.0 8.0 15.0));
```

Inputs

```
    logWeight Vector of length M: log sample weights
    sample Vector of length M: sample of scalar draws
    taper Vector of length K: taper half-widths (optional)
```

Outputs

mean	Real scalar: weighted sample mean
std	Real scalar: weighted sample standard deviation
nse	Vector of length $K+1$: estimated numerical standard errors
rne	Vector of length $K + 1$: estimated relative numerical efficiency

See Also

```
\verb"expect" N, \verb"prior" Robust.
```

Example

```
# Use default taper values
out <- expect1(lw, z);
# Use alternate taper values
taper = array(c(4.0,8.0),dim=c(1,2))
out <- expectN(lw, z, taper);</pre>
```

Details

Let $z=(z_1,\ldots,z_M)$ be the sample and $(\log w_1,\ldots,\log w_M)$ be the vector of log weights. Let $\lambda=(\lambda_1,\ldots,\lambda_K)$ be the vector of half-widths. The sample is broken into T groups of size $J\equiv M\operatorname{div} T$ and the last $M\operatorname{mod} T$ elements are ignored. Thus $M_{\mathrm{use}}\equiv JT$ elements are used.

The sample mean and standard deviation are calculated as follows:

$$\bar{z} = \sum_{m=1}^{M_{\text{use}}} w_m z_m / \sum_{m=1}^{M_{\text{use}}} w_m$$

$$\sigma_z = \left[\sum_{m=1}^{M_{\text{use}}} w_m (z_m - \bar{z})^2 / \sum_{m=1}^{M_{\text{use}}} w_m\right]^{\frac{1}{2}}$$

For the calculation of the first numerical standard error τ_0 , we assume no serial correlation in (z_1, \ldots, z_M) . This is appropriate for independence or importance sampling. Following Geweke (1989) [3], this leads to

$$au pprox au_0 \equiv \left[\sum_{m=1}^{M_{use}} w_m^2 (z_m - \bar{z})^2 \middle/ (\sum_{m=1}^{M_{use}} w_m)^2 \right]^{\frac{1}{2}}$$

For the calculation of τ_1 through τ_K , the remaining K estimates of the numerical standard error, the following method is used. First, expect1 calculates group and sample means of the numerator quantity $w_m z_m$ and the denominator quantity w_m :

$$n(t) = \frac{1}{J} \sum_{m=(t-1)J+1}^{tJ} w_m z_m \qquad d(t) = \frac{1}{J} \sum_{m=(t-1)J+1}^{tJ} w_m \qquad t = 1, \dots, T$$
$$\bar{n} = \frac{1}{M_{use}} \sum_{m=1}^{M_{use}} w_m z_m \qquad \bar{d} = \frac{1}{M_{use}} \sum_{m=1}^{M_{use}} w_m$$

Then it calculates the following sample autocorellation and autovariance functions:

$$\gamma_{nn}(t) = \frac{1}{T} \sum_{s=t+1}^{T} (n(s) - \bar{n})(n(s-t) - \bar{n}) \qquad t = 0, \dots, T - 1$$

$$\gamma_{dd}(t) = \frac{1}{T} \sum_{s=t+1}^{T} (d(s) - \bar{d})(d(s-t) - \bar{d}) \qquad t = 0, \dots, T - 1$$

$$\gamma_{nd}(t) = \frac{1}{T} \sum_{s=t+1}^{T} (n(s) - \bar{n})(d(s-t) - \bar{d}) \qquad t = 0, \dots, T - 1$$

$$\gamma_{dn}(t) = \frac{1}{T} \sum_{s=t+1}^{T} (d(s) - \bar{d})(n(s-t) - \bar{n}) \qquad t = 0, \dots, T - 1$$

Then it calculates, for each $k \in \{1, ..., K\}$, estimates $\sigma_{n(k)}^2$, $\sigma_{d(k)}^2$, and $\sigma_{nd(k)}$ of $\sigma_n^2 \equiv \operatorname{Var}[n(t)]$, $\sigma_d^2 \equiv \operatorname{Var}[d(t)]$ and $\sigma_{nd} \equiv \operatorname{Cov}[n(t), d(t)]$, based on the taper half-width λ_k :

$$\sigma_{nn(k)}^2 = \gamma_{nn}(0) + 2\sum_{s=1}^{\lambda_k - 1} \frac{\lambda_k - s}{\lambda_k} \gamma_{nn}(s)$$

$$\sigma_{dd(k)}^2 = \gamma_{dd}(0) + 2\sum_{s=1}^{\lambda_k - 1} \frac{\lambda_k - s}{\lambda_k} \gamma_{dd}(s)$$

$$\sigma_{nd(k)}^2 = \gamma_{nd}(0) + \sum_{s=1}^{\lambda_k - 1} \frac{\lambda_k - s}{\lambda_k} \left[\gamma_{nd}(s) + \gamma_{dn}(s) \right]$$

These calculations are based on conventional time series methods for a wide sense stationary process, described in Geweke (1992) [4].

By the conventional asymptotic expansion, the square of the numerical standard error is approximated by

$$\tau^2 = \operatorname{Var}(\frac{n}{d}) \approx \begin{bmatrix} \frac{1}{d} & -\frac{1}{d^2} \end{bmatrix} \begin{bmatrix} \sigma_n^2 & \sigma_{nd} \\ \sigma_{nd} & \sigma_d^2 \end{bmatrix} \begin{bmatrix} \frac{1}{d} \\ -\frac{1}{d^2} \end{bmatrix}$$

For each $k \in \{1, ..., K\}$ it calculates the approximation τ_k using $\sigma_{nn(k)}^2$, $\sigma_{dd(k)}^2$ and $\sigma_{nd(k)}^2$ defined above.

Relative numerical efficiencies (ν_0, \ldots, ν_K) are calculated using

$$\nu_k \equiv \left(\frac{\tau_0}{\tau_k}\right)^2 \qquad k = 0, \dots, K$$

3.3.3 The expectN Command

Description

Calculates combined sample means, with numerical standard errors, for a set of different weighted random samples, and tests for the equality of their individual population means.

Usage

```
out <- expectN(logWeight1, sample1, logWeight2, sample2, taper = c(4.0
8.0 15.0));</pre>
```

Inputs

logWeight1	Vector of length M_1 : log sample weights for first sample
sample1	Vector of length M_1 : first sample of scalar draws
logWeight2	Vector of length M_2 : log sample weights for second sample
sample2	Vector of length M_2 : second sample of scalar draws
taper	Vector of length K : taper half-widths (optional)

Outputs

mean	Vector of length $K + 1$: estimated combined weighted sample means
nse	Vector of length $K+1$: estimated numerical standard errors
equal	Vector of length $K+1$: marginal significance levels for a chi- squared test of the equality of the population means

See Also

expect1.

```
# Use default taper values
out <- expectN(lw1, z1, lw2, z2);
# Use alternate taper values
taper = array(c(4.0,8.0),dim=c(1,2))
out <- expectN(lw1, z1, lw2, z2, taper);</pre>
```

Details

In general, there are N pairs of weighted samples, not just two. For each sample $z^{(i)}$, expectN calculates individual sample moments $\bar{z}^{(i)}$ and estimates of numerical standard errors $(\tau_0^{(i)},\ldots,\tau_K^{(i)})$ from the samples $(z_1^{(i)},\ldots,z_{M_i}^{(i)})$, the log weights $(\log z_1^{(i)},\ldots,\log z_{M_i}^{(i)})$, and the half-taper values $(\lambda_1,\ldots,\lambda_K)$, in the same way that expect1 calculates \bar{z} and (τ_0,\ldots,τ_K) from (z_1,\ldots,z_M) , $(\log z_1,\ldots,\log z_M)$, and $(\lambda_1,\ldots,\lambda_K)$.

The estimated sample means \bar{z}_k are given by

$$\bar{z}_k = \sum_{i=1}^N \frac{\bar{z}^{(i)}}{\tau_k^{2(i)}} / \sum_{i=1}^N \frac{1}{\tau_k^{2(i)}} \qquad k = 1, \dots, K$$

The estimated numerical standard errors τ_k are given by

$$\frac{1}{\tau_k^2} = \sum_{i=1}^N \frac{1}{\tau_k^{2(i)}}$$

For each k, the marginal significance level is the value of p_k such that

$$\left[\begin{array}{ccc} \bar{z}_{k}^{(2)} - \bar{z}_{k}^{(1)} & \cdots & \bar{z}_{k}^{(N)} - \bar{z}_{k}^{(N-1)} \end{array} \right] \cdot \Sigma^{-1} \cdot \left[\begin{array}{ccc} \bar{z}_{k}^{(2)} - \bar{z}_{k}^{(1)} \\ \bar{z}_{k}^{(3)} - \bar{z}_{k}^{(2)} \\ \vdots \\ \bar{z}_{k}^{(N)} - \bar{z}_{k}^{(N-1)} \end{array} \right] = \chi_{1-p_{k}}^{2}(N-1)$$

where Σ is the following matrix

$$\begin{bmatrix} \tau_k^{2(1)} + \tau_k^{2(2)} & -\tau_k^{2(2)} & 0 & \cdots & 0 & 0 \\ -\tau_k^{2(2)} & \tau_k^{2(2)} + \tau_k^{2(3)} & -\tau_k^{2(3)} & \cdots & 0 & 0 \\ 0 & -\tau_k^{2(3)} & \tau_k^{2(3)} + \tau_k^{2(4)} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \tau_k^{2(N-2)} + \tau_k^{2(N-1)} & -\tau_k^{2(N-1)} \\ 0 & 0 & 0 & \cdots & -\tau_k^{2(N-1)} & \tau_k^{2(N-2)} + \tau_k^{2(N-1)} \end{bmatrix}$$

3.3.4 The extract Command

Description

Returns simulation matrices for a model instance.

Usage

```
sim <- extract(modelInst);</pre>
```

Inputs

modelInst Integer: model instance identifier.

Outputs

sim Structure: simulation matrices

Example

```
sim <- extract(mi);</pre>
```

Details

The return value is a structure (named list in S-PLUS and R) with the following fields (components in S-PLUS and R):

id Model instance identifier.

logWeightPost Log weights for posterior draws.

logPrior Value of log prior for posterior draws.

logXPrior Value of transformed log prior values for posterior draws

logLike Value of log likelihood for posterior draws.

logPriorHM Value of log prior for posterior HM draws.

logLikeHM Value of log likelihood for posterior HM draws.

logWeightPrior Log weights for prior draws.

logPriorPrior Value of log prior for prior draws.

logLikePrior Value of log likelihood for prior draws.

- * Posterior simulation matrix of unknown quantity named *.
- *Prior Prior simulation matrix of unknown quantity named *.
- *HM Posterior HM simulation matrix of unknown quantity named *.

All simulation matrices have three dimensions. The first two dimensions give the row and column of the unknown quantity. The third dimension is the simulation dimension. Each value of the third index gives a different draw of the unknown quantity.

3.3.5 The gammaSim Command

Description

Generates a sample from a gamma distribution.

Usage

```
sample <- gammaSim(alpha, beta, n);</pre>
```

Inputs

alpha Real scalar: shape parameter of gamma distribution

Real scalar: inverse scale parameter of gamma distribution

n Integer: number of draws to generate

Outputs

beta

n by 1 matrix: sample generated from gamma distribution

See Also

paretoSim, gaussianSim, dirichletSim, wishartSim.

Example

```
alpha <- 3.0
beta <- 5.0
sample <- gammaSim(alpha, beta, 1000);</pre>
```

Details

Each of the n draws of the sample is a scalar with a gamma distribution. The result is given as a n by 1 matrix.

See Appendix A for the parametrization of the gamma distribution.

3.3.6 The gaussianSim Command

Description

Generates a sample from a Gaussian distribution.

Usage

```
sample <- gaussianSim(mean, precision, n);</pre>
```

Inputs

mean Vector of length K: mean of Gaussian distribution precision K by K matrix: precision of Gaussian distribution

n Integer: number of draws to generate

Outputs

n by K matrix: sample generated from Gaussian distribution

See Also

```
paretoSim, dirichletSim, gammaSim, wishartSim.
```

Example

```
mean = array(c(1.0,2.0),dim=c(2,1))
precision = array(c(1.0,0.0,0.0,1.0),dim=c(2,2))
sample <- gaussianSim(mean, precision, 1000);</pre>
```

Details

Each of the n draws of the sample is a vector of length K with a Gaussian distribution. The result is given as a n by K matrix.

See Appendix A for the parametrization of the Gaussian distribution.

3.3.7 The listModelSpecs Command

Description

Lists all available model specifications (e.g. nlm, poisson).

Usage

```
listModelSpecs();
```

Inputs

None.

Outputs

None.

See Also

minst, listModels.

Example

listModelSpecs();

Details

A printed message gives a list of model specifications.

3.3.8 The listModels Command

Description

Lists all open model instances.

Usage

```
listModels();
```

Inputs

None.

Outputs

None.

See Also

minst, miDelete, listModelSpecs.

Example

```
listModels();
```

Details

A printed message gives the model instance identification number, the name of the model specification (e.g. nlm, poisson), and the number of prior, posterior, and posterior HM draws.

3.3.9 The miDelete Command

Description

```
Closes without saving a (or all) model instances.
```

Usage

```
miDelete(modelInst);
```

Inputs

```
modelInst Integer: model instance identifier.
```

Outputs

None.

See Also

```
\verb|minst|, \verb|listModels|.
```

```
miDelete(mi);
```

3.3.10 The miLoad Command

Description

Loads a model instance stored in a binary file.

Usage

```
modelInst <- miLoad(filename);</pre>
```

Inputs

filename String: name of binary file storing the model instance

Outputs

```
modelInst Integer: model instance identifier.
```

See Also

```
{\tt miSave,\,minst,\,miLoadAscii.}
```

```
mi <- miLoad("miFile");</pre>
```

3.3.11 The miLoadAscii Command

Description

Loads a model instance stored in a text file.

Usage

```
modelInst <- miLoadAscii(filename);</pre>
```

Inputs

filename String: name of text file storing the model instance

Outputs

 ${\tt modelInst} \qquad {\tt Integer: model instance identifier.}$

See Also

 ${\tt miSaveAscii}, {\tt minst}, {\tt miLoad}.$

```
mi <- miLoadAscii("miFile.txt");</pre>
```

3.3.12 The miSave Command

Description

Saves a model instance in a binary file.

Usage

```
miSave(modelInst, filename);
```

Inputs

modelInst Integer: model instance identifier.

filename String: name of binary file in which to store the model instance

Outputs

None.

See Also

```
miLoad, minst, miSaveAscii.
```

Example

```
miSave(mi, "miFile");
```

Details

If the file already exists, it is written over.

3.3.13 The miSaveAscii Command

Description

Saves a model instance in a text file.

Usage

```
miSaveAscii(modelInst, filename);
```

Inputs

modelInst Integer: model instance identifier.

filename String: name of text file in which to store the model instance

Outputs

None.

See Also

```
miLoadAscii, minst, miSave.
```

Example

```
miSaveAscii(mi, "miFile.txt");
```

Details

If the file already exists, it is written over. The ascii version of a model instance is platform independent and human readable, but long and inefficient.

3.3.14 The minst Command

Description

Creates an instance of a particular model specification.

Usage

```
modelInst <- minst(modelSpecName, unknownNames, knowns);</pre>
```

Inputs

```
modelSpecName String: name of model specification
unknownNames List of strings: user provided names for unknown quantities
knowns List of matrices: user provided matrices of known quantities
```

Outputs

```
modelInst Integer: model instance identifier.
```

Example

```
a = array(c(1,1,2),dim=c(1,3))
s = array(c(1,1,2,3,3,3),dim=c(3,2))
myMI <- minst('iidfs', 'pi', a, s);</pre>
```

Details

The available model specifications are described in Chapter 2. For each model specification, there is a section "Creating a Model Instance" with the relevant information, namely

- The name of the model specification.
- The order in which the user specifies the names for the unknown quantities of the model.
- The order in which the user provides the matrices giving the values of the known quantities of the model.

3.3.15 The mlike Command

Description

Computes various estimates of the marginal likelihood for a model instance, with numerical standard errors.

Usage

```
out <- mlike(modelInst, p = c(0.1 \ 0.5 \ 0.9), taper = c(4.0 \ 8.0 \ 15.0));
```

Inputs

modelInst Integer: model instance identifier.

p Vector of length L: truncation parameters (optional)taperVector of length K: taper half-widths (optional)

Outputs

ml Vector of length L: marginal likelihood estimates

mlnse L by K+1 matrix: numerical standard error estimates

See Also

postsim, postsimHM.

Example

```
# Use default truncation and taper values
out <- mlike(mi);
# Use alternate truncation values
p = array(c(0.1,0.3,0.5,0.7,0.9),dim=c(1,5))
out <- mlike(mi, p);
# Use alternate truncation and taper values
taper = array(c(4.0,8.0),dim=c(1,2))
out <- mlike(mi, p, taper);</pre>
```

Details

The method used is a modification described in Geweke [5] of the method proposed in Gelfand and Dey [2].

The truncation parameters $p_l \in [0,1]$ index the truncated multivariate normal distribution $f(\cdot)$ discussed in Geweke [5]. For each p_l , mlike generates (internally) an unweighted vector (z_1^l, \ldots, z_M^l) , where M is the number of posterior samples in the given model instance.

For each l, mlike calculates the sample mean \bar{z}_l and numerical standard errors $(\tilde{\tau}_1^l,\ldots,\tilde{\tau}_M^l)$ from (z_1^l,\ldots,z_M^l) and $(\lambda_1,\ldots,\lambda_K)$ in the same way that expect1 calculates (τ_0,\ldots,τ_K) from (z_1,\ldots,z_M) , a vector of equal log weights, and $(\lambda_1,\ldots,\lambda_K)$. Then for all l, the estimate of the log marginal likelihood is given by

$$\mu_l = -\log \bar{z}_l$$

and for all l and k, the estimate of the numerical standard error for the log marginal likelihood is given by

$$\tau_{kl} = \frac{\tilde{\tau}_{kl}}{\bar{z}_l}$$

When numerical standard error is small, results are not sensitive to the choice of p. In these cases L=1 and $p_1=0.5$ will suffice. However the additional computational burden of increasing L is negligible. If you are concerned about standard errors, it is best to use several values of p_l , for example, $p=(0.1,0.2,\ldots,0.9)$.

3.3.16 The paretoSim Command

Description

Generates a sample from a Pareto distribution.

Usage

```
sample <- paretoSim(alpha, beta, n);</pre>
```

Inputs

alpha Real scalar: tail parameter of Pareto distribution

beta Real scalar: location parameter of Pareto distribution

n Integer: number of draws to generate

Outputs

sample n by 1 matrix: sample generated from Pareto distribution

See Also

dirichletSim, gaussianSim, gammaSim, wishartSim.

Example

```
alpha <- 1.0
beta <- 4.0
sample <- gammaSim(alpha, beta, 1000);</pre>
```

Details

Each of the n draws of the sample is a scalar with a pareto distribution. The result is given as a n by 1 matrix.

See Appendix A for the parametrization of the Pareto distribution.

3.3.17 The postfilter Command

Description

Filters out previously generated draws from the posterior simulation matrix of a given model instance.

Usage

```
postfilter(modelInst, filter);
```

Inputs

modelInst Integer: model instance identifier.

filter Vector of integers of length n: indices of existing draws to keep

Outputs

None.

Example

```
filter = seq(101,1000)
postfilter(mi, filter);
```

Details

The *i*th draw of the posterior simulation matrix is kept if and only if $i = f_j$ for some j from 1 to n.

3.3.18 The postsim Command

Description

Generates or appends to the posterior simulation matrix of a given model instance.

Usage

```
postsim(modelInst, m, n);
```

Inputs

modelInst Integer: model instance identifier.

m Integer: number of posterior draws to record

n Integer: number of posterior draws to generate for each one

recorded

Outputs

None.

See Also

```
minst, postfilter, mlike, priorsim, postsimHM, extract.
```

Example

```
postsim(mi, 1000, 1);
```

Details

Generates draws of unknown quantities from their posterior distribution. Generates mn new posterior draws, and appends every nth draw to the posterior simulation matrix. If there are any draws from a previous invocation of postsim, the first new draw comes from the transition kernel of the Markov chain used for posterior simulation. Otherwise, it comes from the initial distribution of the Markov chain.

Use the extract command to obtain the posterior draws.

3.3.19 The postsimHM Command

Description

Generates or appends to the posterior HM simulation matrix of a given model instance.

Usage

```
postsimHM(modelInst, m, n, scalePrecision);
```

Inputs

modelInst Integer: model instance identifier.

m Integer: number of posterior draws to record

n Integer: number of posterior draws to generate for each one

recorded

scalePrecision Real scalar: factor used to rescale the precision matrix of the random walk innovation

Outputs

None.

See Also

```
minst, mlike, postsim, extract.
```

Example

```
postsimHM(mi, 1000, 1, 10.0);
```

Details

Generates draws of unknown quantities from their posterior distribution using a Gaussian random walk Metropolis chain with proposal covariance proportional to the sample covariance of draws from the posterior simulation matrix. Generates mn new posterior draws, and appends every nth draw to the posterior simulation matrix. If there are any draws from a previous invocation of postsimHM, the first new draw comes from the transition kernel of the Markov chain used for posterior simulation. Otherwise, it comes from the initial distribution of the Markov chain.

Use the extract command to obtain the posterior HM draws.

3.3.20 The priorRobust Command

Description

Calculates upper and lower bounds on the mean of a posterior function of interest, as the prior distribution is varied from its original specification.

Usage

```
out <- priorRobust(logWeight, sample, factors);</pre>
```

Inputs

 ${\tt logWeight} \qquad {\tt Vector\ of\ length}\ m{:}\ \log {\tt weights}$

sample Vector of length m: posterior sample of some scalar function of

interest

factors Vector of length n: bound factors for robustness analysis

Outputs

mean	Real scalar: posterior sample mean for original prior specification		
std	Real scalar: posterior sample standard deviation for original prior specification		
U	Vector of length n : exact upper bounds		
L	Vector of length n : exact lower bounds		
Ut	Vector of length n : asymptotic upper bounds		
Lt	Vector of length n : asymptotic lower bounds		

Example

```
K = array(c(5.0,10.0,20.0),dim=c(1,3))
out <- priorRobust(lw, beta, K);</pre>
```

Details

For each bound factor, calculates exact lower and upper bounds and asymptotic lower and upper bounds for the posterior mean. For each bound parameter k_i , priorRobust calculates exact lower and upper bounds L_i and U_i for the posterior mean of the function of interest g, for the following set of prior density kernels.

$$\left\{ p^*(\cdot) : \frac{1}{k_i} p(\theta) \le p^*(\theta) \le k_i p(\theta) \quad \forall \theta \in \Theta \right\}$$

where $p(\cdot)$ is the actual prior density. It uses the algorithm described in Geweke and Petrella [6]. Also for each k_i , priorRobust calculates asymptotically valid

lower and upper bounds \tilde{L}_i and \tilde{U}_i , using the results of DeRobertis and Hartigan [1].

3.3.21 The priorfilter Command

Description

Filters out previously generated draws from the prior simulation matrix of a given model instance.

Usage

```
priorfilter(modelInst, filter);
```

Inputs

modelInst Integer: model instance identifier.

filter Vector of integers of length n: indices of existing draws to keep

Outputs

None.

Example

```
filter = seq(101,1000)
priorfilter(mi, filter);
```

Details

The *i*th draw of the prior simulation matrix is kept if and only if $i=f_j$ for some j from 1 to n.

3.3.22 The priorsim Command

Description

Generates or appends to the prior simulation matrix of a given model instance.

Usage

```
priorsim(modelInst, m, n);
```

Inputs

modelInst Integer: model instance identifier.

m Integer: number of prior draws to record

n Integer: number of prior draws to generate for each one recorded

Outputs

None.

See Also

```
minst, priorfilter, postsim, extract.
```

Example

```
priorsim(mi, 1000, 1);
```

Details

Generates draws of unknown quantities from their prior distribution. Generates mn new prior draws, and appends every nth draw to the prior simulation matrix. If there are any draws from a previous invocation of priorsim, the first new draw comes from the transition kernel of the Markov chain used for prior simulation. Otherwise, it comes from the initial distribution of the Markov chain.

Use the extract command to obtain the prior draws.

3.3.23 The setseedconstant Command

Description

Sets the seeds of the random number generators to a constant value.

Usage setseedconstant();

Inputs

None.

Outputs

None.

See Also

setseedtime.

Example

setseedconstant();

Details

This is useful for ensuring that repeated invocations of a command generating random values lead to the same results.

3.3.24 The setseedtime Command

Description

Sets the seeds of the random number generators to the number of seconds since the beginning of 1970.

Usage setseedtime(); Inputs None. Outputs None. See Also setseedconstant.

Details

setseedtime();

This is useful for ensuring that repeated invocations of a command generating random values lead to different results.

3.3.25 The weightedSmooth Command

Description

Estimates a univariate density function for a weighted random sample, using a kernel smoothing algorithm adapted to weighted samples.

Usage

```
out <- weightedSmooth(logWeight, sample, ktype = uniform, krange = quantile,
wwf = 0.5, nplot = 1000, range_a1 = 0.001, range_a2 = 0.009);
```

Inputs

logWeight Vector of length M: log weights

sample Vector of length M: a posterior sample of some function of in-

terest

ktype String: kernel type (optional)

krange String: kernel range type (optional)

wwf Real scalar: window width fraction (optional)

nplot Integer: number of ordered pairs to generate (optional)
range_a1 Real scalar: left bound range parameter (optional)
range_a2 Real scalar: right bound range parameter (optional)

Outputs

 \mathbf{x} Vector of length N: ordinate values \mathbf{y} Vector of length N: abscissa values

Example

```
out <- weightedSmooth(lw, z);
nplot <- 2000
ktype <- triangular
out <- weightedSmooth(lw, z);</pre>
```

Details

The estimated density at a point z is

$$f(z) = \frac{\sum_{m=1}^{M} w_m K\left(\frac{z-z_m}{h}\right)}{h \sum_{m=1}^{M} w_m}$$

The functional form of the kernel function K depends on the value of ktype according to Table 3.1.

Table 3.1: Values of Ktype

Ktype	K
uniform	$K(t) = \frac{1}{2}\chi_{(-1,1)}(t)$
triangle	$K(t) = (1 - t)\chi_{(-1,1)}(t)$
biweight	$K(t) = \frac{15}{16}(1 - z^2)^2 \chi_{(-1,1)}(t)$

For any set S, the function $\chi_S(\cdot)$ is a set membership indicator function.

The value h is given by

$$h = \lambda (q_{\frac{3}{4}} - q_{\frac{1}{4}})$$

where q_{α} denotes the α 'th sample quantile of z.

The weightedSmooth command generates N ordered pairs (x_i, y_i) . The values x_i are evenly spaced between x_{min} and x_{max} , determined by Krange according to Table 3.2. The values y_i satisfy $y_i = f(x_i)$.

Table 3.2: Values of Krange

Krange	x_{min}	x_{max}
quantile	q_{a_1}	q_{a_2}
absolute	a_1	a_2

For most plotting routines, N should be in the range of 200 to 400. The choice of λ depends on how smooth the resulting plot is desired to be. As with all kernel smoothing methods, some experimentation will probably be necessary. The greater the number of simulations available, the smaller λ can be and still retain visual smoothness. It is generally easier to use the Krange=quantile option and specify a_1 in the range .001 to .01 and a_2 in the range .99 to .999; this will include the important part of the estimated density while not wasting space on the plot for points where the density is small.

3.3.26 The wishartSim Command

Description

Generates a sample from a Wishart distribution.

Usage

```
sample <- wishartSim(A, nu, n);</pre>
```

Inputs

A m by m matrix: inverse scale parameter of Wishart distribution nu Real scalar: degrees of freedom parameter of Wishart distribution

n Integer: number of draws to generate

Outputs

sample n by m^2 matrix: sample generated from Wishart distribution

See Also

paretoSim, gaussianSim, gammaSim, dirichletSim.

Example

```
A = array(c(1.0,0.0,0.0,1.0),dim=c(2,2))
nu <- 100
sample <- wishartSim(A, nu, 1000);</pre>
```

Details

Each of the n draws of the sample is an m by m matrix with a Wishart distribution. The result is given as a m by m^2 matrix.

See Appendix A for the parametrization of the Wishart distribution.

Chapter 4

A BACC Tutorial

In order to answer commonly asked questions, this chapter contains a step-by-step tutorial with explanations of what each step is doing and what each term means.

4.1 Working through a model instance

Before creating a model instance, you need to load all the know quantities. These quantities can be either vector or matrix data objects.

The following code demonstrates how a normal linear model called sim is created and manipulated.

```
# Specify the names for the unknown quantities
unknownNames <- c("beta", "h")
# Specify the known quantities of the model instance.
# Only the name of the data objects are accepted. These data
# objects must be preloaded.
knowns <- list(betahd, Hhd, nuhd, shd, Xhd, yhd)</pre>
# Creat an instance of the normal linear model
modelInst <- minst("nlm",unknownNames,knowns)</pre>
# Simulate 5000 prior samples
setseedconstant()
priorsim(modelInst,5000,1)
# Simulate 1000 posterior samples
setseedconstant()
postsim(modelInst,1000,1)
# Filter out the first 100 posterior samples
f<-101:1000
postfilter(model,f)
# Add 4100 new posterior samples
setseedconstant()
postsim(modelInst,4100,1)
# Simulate 10000 new HM posterior samples
setseedconstant()
postsimhm(modelInst,10000,1,1)
# extract all the quantities related to the model created
out<-extract(modelInst)</pre>
# Get the vector of posterior samples of the first element
# of beta
beta1<-out$beta[1,1,]
```

```
# Get the vector of log weight evaluations
lw<-out$logweightPost</pre>
# Get the vector of prior samples of the first element
betap1<-out$betaPrior[1,1,]</pre>
# Find the posterior mean and standard deviation of beta1
# using the default value of taper
exp1<-expect1(lw,beta1)</pre>
# The following four operations are only to demonstrate
# what are included in exp1. exp1$... is good enough for use
postmean <- exp1 $mean
poststd<-exp1$std
postnse<-exp1$nse
postrne<-exp1$rne
# Specify truncation parameters for marginal likelihood computation
p <- 1:9*0.1
                # A short way to write p < -c(0.1, 0.2, ..., 0.9)
mlike.out <- mlike(modelInst,p)</pre>
# As exp1, it is sufficient to use mlike.out$... to get the
# components. Replace ... by ml, mlNSE, mlHM, mlNSEHM as desired
# Specify the logweight and function of interest variables
# for expectN. These variables must be preloaded
mlist<-list(lw,beta1,lw,betap1)</pre>
expN<-expectN(mlist)</pre>
# Again, it is sufficient to use expN$... to get the components
# mean, nse, p of expN
# Find the minimum and maximum values of the posterior mean
# of beta1 as the prior is changed from its original specification
robust.out <- priorRobust(lw,beta1)</pre>
# The components of robust.out would be mean, std, exactUP, exactDown,
# DeRHUp, and DeRHDown
# Generate (x,y) paris tracing an estimated posterior marginal
# density of beta1
smooth.out <- weightedSmooth(lw,beta1)</pre>
# plot the estimated posterior marginal density of beta1
plot(smooth.out) # Or equivalently, plot(smooth.out$y~smooth.out$x)
# Save the current model instance in the test file "baccSim"
# under the current working directory
miSaveAscii(modelInst, "baccSim")
```

4.2 Simulating from various distributions

1. Dirichlet

```
a<-matrix(1:6,2,3,byrow=T)</pre>
   sample<-dirichletSim(a,1000)</pre>
  cat("dirichlet mean:\n",mean(sample), "\n")
2. Gamma
  sample<-gammaSim(3,5,1000)</pre>
  cat("gamma mean:\n",mean(sample), "\n")
3. Gaussian(Multivariate Normal)
  mean < -c(1,2)
  precision < -matrix(c(1,0,0,1),2,2)
  sample<-gaussianSim(mean,precision,1000)</pre>
  cat("gaussian mean:\n",apply(sample,2,mean), "\n")
4. Pareto
   sample<-paretoSim(3,5,1000)</pre>
  cat("pareto mean:\n", mean(sample), "\n")
5. Wishart
  scale < -matrix(c(1,0,0,1),2,2)
  sample<-wishartSim(scale,10,1000)</pre>
```

cat("wishart mean:\n",apply(sample,2,mean), "\n")

Appendix A

Distributions

This appendix gives the density and mass functions for the distributions used in this document.

A.1 The Dirichlet Distribution

A random vector π of length n has the Dirichlet distribution with parameter vector $\alpha \in \mathbb{R}^n_+$, denoted $\pi \sim \text{Di}(\alpha)$, if its probability density function is

$$p(\pi|\alpha) = \begin{cases} m^{-1/2} \frac{\Gamma(\sum_{i=1}^{m} \alpha_i)}{\prod_{i=1}^{m} \Gamma(\alpha_i)} \prod_{i=1}^{m} \pi_i^{\alpha_i - 1} & \pi \in \Delta_n \equiv \{ p \in \Re_+^n : \sum_{i=1}^n p_i = 1 \} \\ 0 & \text{otherwise} \end{cases}$$

The mean and variance are given by

$$E[\pi_i | \alpha] = \frac{\alpha_i}{\sum_{j=1}^n \alpha_j}$$

$$Var[\pi_i | \alpha] = \frac{E[\pi_i | \alpha](1 - E[\pi_i | \alpha])}{1 + \sum_{j=1}^n \alpha_j}$$

$$Cov[\pi_i, \pi_j | \alpha] = \frac{-E[\pi_i | \alpha]E[\pi_j | \alpha]}{1 + \sum_{k=1}^n \alpha_k}$$

A.2 The Gamma Distribution

A random scalar λ has the Gamma distribution with shape parameter $\alpha > 0$ and scale parameter $\beta > 0$, denoted $\lambda \sim \text{Ga}(\underline{\alpha}, \beta)$, if its probability density function is

$$p(\lambda|\alpha,\beta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda} & \lambda > 0\\ 0 & \text{otherwise} \end{cases}$$

The mean and variance are given by

$$E[\lambda|\alpha,\beta] = \frac{\alpha}{\beta}$$
$$Var[\lambda|\alpha,\beta] = \frac{\alpha}{\beta^2}$$

A.3 The Normal Distribution

A random vector x has the Normal Distribution with mean parameter vector $\mu \in \mathbb{R}^k$ and positive definite $k \times k$ variance parameter matrix Σ , denoted $x \sim \mathcal{N}(\mu, \Sigma)$, if its probability density function is

$$p(x|\mu,\Sigma) = |\Sigma|^{-\frac{1}{2}} (2\pi)^{-\frac{k}{2}} \exp\left[-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right] \qquad \forall x \in \Re^n$$

The mean and variane are given by

$$\mathrm{E}[x|\mu,\Sigma] = \mu$$

$$\mathrm{Var}[x|\mu,\Sigma] = \Sigma$$

A.4 The Pareto Distribution

A random scalar x has the Pareto Distribution with parameters $\alpha > 0$ and $\beta \ge 0$, denoted $\theta \sim \text{Pa}(\alpha, \beta)$, if its probability density function is

$$p(\theta|\alpha,\beta) = \begin{cases} \alpha\beta^{\alpha}\theta^{-(\alpha+1)} & \theta \ge \beta \\ 0 & \text{otherwise} \end{cases}$$

The mean and variance are given by

$$E[\theta|\alpha,\beta] = \frac{\alpha\beta}{\alpha - 1}$$
$$Var[\theta|\alpha,\beta] = \frac{\alpha\beta^2}{(\alpha - 1)^2(\alpha - 2)}$$

A.5 The Poisson Distribution

A discrete random variable x has the Poisson distribution with mean parameter $\lambda > 0$, denoted $x \sim \text{Po}(\lambda)$, if its probability mass function is

$$p(x) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!} & x \in \{0, 1, \ldots\} \\ 0 & \text{otherwise} \end{cases}$$

The mean and variance are given by

$$E[x|\lambda] = \lambda$$
$$Var[x|\lambda] = \lambda$$

A.6 The Wishart Distribution

An $m \times m$ random matrix H has the Wishart distribution with positive definite $m \times m$ scale parameter matrix A and degrees of freedom parameter $\nu > m$, denoted $H \sim \text{W}i(A, \nu)$, if its probability density function is

$$p(H|A,\nu) = \begin{cases} \frac{\pi^{-m(m-1)/4}|A|^{-\nu/2}}{2^{m\nu/2}\prod_{i=1}^{m}\Gamma(\frac{\nu-i+1}{2})} \cdot |H|^{(\nu-m-1)/2} \exp\left[-\frac{1}{2}\mathrm{tr}(A^{-1}H)\right] & H \text{ p.d.} \\ 0 & \text{otherwise} \end{cases}$$

The mean, and mean of the matrix H^{-1} are given by

$$\mathbf{E}[H|A,\nu] = \nu A$$

$$\mathbf{E}[H^{-1}|A,\nu] = \frac{1}{\nu-m-1}A^{-1}$$

Appendix B

A Brief S-PLUS/R Tutorial

This section gives a brief overview of S-PLUS and R commands, and their data types. It is not intended to be a complete tutorial. Consult the S-PLUS and R manuals for further information. You can find S-PLUS manuals at URL:

```
http://www.splus.mathsoft.com/splus/resources/doc and R manuals at URL:
```

http://lib.stat.cmu.edu/R/CRAN/contents.html#doc

B.1 Basic syntax of expressions

Variable names in S-PLUS and R are case sensitive, so that x and X are different. A function call consists of a function name followed by an argument list (which may be empty) in parentheses:

```
setseedconstant()
plot(smooth.out)
gaussianSim(mean,precision,1000)
```

One of the most frequently used operators is the *assignment* operator <- (or _). If the value of a function is not assigned to an object using <- or _, it is automatically printed and stored as .Last.value. When values returned by BACC functions are complicated objects, it is a good idea to use an assignment statement to store them.

B.2 Data objects

Data in S-PLUS and R are organized into data objects. Each data object has a name, consisting of alphanumeric characters and periods (.). Names cannot start with a number. Four basic S-PLUS/R data objects are used in BACC commands:

• Vectors:

1. Creating a vector:

The following examples show some useful functions for creating vectors

```
\# A vector with elements 1, 2, 3, 4, 5
     x1<-1:5
     # A vector with elements 1, 3, 4, 6, 10, 5
     x2<-c(1,3,4,6,10,5)
     # A vector of strings
     y<-c("Obs", "Age")
     \# A vector with elements from 0.1 to 0.6 with step size 0.05
     z < -seq(0.1, 0.6, 0.05)
     # A zero vector of length 6
     z < -rep(0,6)
2. Attributes of a vector
    - length The length of the vector.
          length(x1)
          # Returns 5
          length(y)
          # Returns 2
    - mode One of numeric, character, logical, or complex.
         mode(x1)
         # Returns "numeric"
         mode(y)
         # Returns "character"
    - names Label associated with values.
3. Concatenating vectors
     z < -c(x1, x2)
```

z is the vector obtained by vertically stacking x1 and x2

- Matrices:
 - 1. Creating a matrix

```
\# Create a 6 by 2 matrix using the values of z. The first
     \# column of z1 is equal to x1 and the second column is
     # equal to x2.
     z1 < -matrix(z,6,2)
     z1[,1] # First column of z1, equal to x1
     \mbox{\tt\#} Create a 2 by 6 matrix using the values of z. The first
     \# row of z2 is equal to x1 and the second row is equal to x2
     z2<-matrix(z,2,6,byrow=T)</pre>
     z2[1,] # First row of z2, equal to x1
2. Attributes of a matrix
    - length The total number of element
         length(z1)
         # Returns 12
         length(z2)
         # Returns 12
    - mode As above.
    - dim The number of rows and columns of a matrix
         dim(z1)
         # Return the vector (6, 2)
         nrow(z1)
         # Returns the number of rows of z1, i.e. 6
         ncol(z1)
         # Returns the number of columns of z1, i.e. 2
    - dimnames The row and column names
3. some other manipulations of matrices
    \# z3 is z2, reshaped to have dimensions 3 by 4
    z3 < -matrix(z2,3,4)
    \# z4 is the transpose of z2
    z4 < -t(z2)
    # Indexing the elements of a matrix
    z1[,1] # First column of z1
    z2[1,] # First row of z2
```

• arrays

Arrays are like matrices, but with an arbitrary number of dimensions. The examples for matrices above can be generalized for arrays.

- lists Unlike vectors, matrices, and arrays, lists may contain data objects with different data types (or modes).
 - 1. Create a list

```
# Create a list with components x1, x2 (numeric vectors),
# y (character vector), and z1 (matrix)
mylist<-list(x1,x2,y,z1)</pre>
```

- 2. Attributes of a list
 - length The number of components in the list

```
length(mylist)
```

- # Returns 4
- mode The mode of a list is alway "list"
- names The names of the components
 - # Check names of the components in the list 'mylist'
 names(mylist)
 - # Returns a vector with elements "x1", "x2", "y", "z1"
- 3. To access list components
 - (a) To access list components by name
 - # Show the value of component z1 of mylist mylist $\mbox{\tt mylist}$
 - # Show the dimensions of compoonent z1 of mylist
 dim(mylist\$z1)
 - (b) To access list components by index Indexes must be enclosed in double barckets([[]])
 - # Display the value of component z1 of mylist mylist[[4]]

Bibliography

- [1] DeRobertis, L., and J. A. Hartigan, 1981, "Bayesian Inference Using Intervals of Measures," *The Annals of Statistics* 9: 235-244.
- [2] Gelfand, A.E. and D.K. Dey, 1994, "Bayesian Model Choice: Asymptotics and Exact Calculations," *Journal of the Royal Statistical Society Series B* **56**: 501-514.
- [3] Geweke, J., 1989, "Bayesian Inference in Econometric Models Using Monte Carlo Integration" *Econometrica*, 57, 1317-1340.
- [4] Geweke, J., 1992, "Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments," in J.O. Berger, J.M. Bernardo, A.P. Dawid, and A.F.M. Smith (eds.), Proceedings of the Fourth Valencia International Meeting on Bayesian Statistics, 169-194. Oxford: Oxford University Press.
- [5] Geweke, J. 1999, "Simulation-Based Bayesian Inference for Economic Time Series," in R.S. Mariano, T. Schuermann and M. Weeks (eds.), Simulation-Based Inference in Econometrics: Methods and Applications. Cambridge: Cambridge University Press, forthcoming.
- [6] Geweke, J. and L. Petrella, 1999, "Prior Density Ratio Class Robustness in Econometrics," Journal of Business and Economic Statistics, forthcoming.
- [7] Raftery, A.E., 1995, "Hypothesis testing and model selection via posterior simulation," University of Washington working paper.