Written re-exam in Probability Theory, 7.5 ECTS credits
Tuesday, ${ }^{\text {st }}$ of December 2020, 13:00-18:30
Time allowed: FIVE hours +30 minutes for upload
Examination: Home Exam

You are asked to answer below stated questions as well as motivate your solutions. The total amount of points is 100. Grades are assigned as follows: $\mathbf{A}(91+), \mathbf{B}(75-90), \mathbf{C}(66-74), \mathbf{D}(58-65), \mathbf{E}(50-57), \mathbf{F x}(30-49)$, and $\mathbf{F}(0-$ 29)

You are allowed to use ALL available material but do it individually: no help from other person.
The teacher reserves the right to examine the students orally/ZOOM-based on the answers provided.

1. (15 points)) Let the distribution of Y conditional on $X=x$ be $N\left(x, x^{2}\right)[Y \mid X=x] \sim N\left(x, x^{2}\right)$ and the marginal distribution of X be $U(0,2)$
a) Find $E[Y], \operatorname{Var}(Y)$ and $\operatorname{Cov}(X, Y)$
b) Prove that $\frac{Y}{X}$ and X are independent

Note: Solutions manual contains a very short answer to part b) and part of it is miss-leading. Please, attempt to do better than that. Grading will be done on how well you explain your answer.
2. (12 points)
a) (8 points) One tosses two dice: the outcomes are numbes from 1 to 6 . Let X be the "outcome" on the first dice and Y is the max of the two. Find joint distribution of (X, Y) as calculate $E[X], E[Y], \operatorname{Var}(X), \operatorname{Var}(Y)$, and $\operatorname{Cov}(X, Y)$.
b) (4 points) Let \bar{X}_{1} and \bar{X}_{2} be respective means of two independent samples of size n drawn from a population having variance σ^{2}. Find the value of n such that $P\left(\left|\bar{X}_{1}-\bar{X}_{2}\right|<\sigma\right) \approx 0.9$. Please, justify your calculations. How your calculation of the above probability would change if both samples were quadrupled (4 times larger $=$ " $4 n$ "). Provide calculation and give intuitive explanation for your answer.
3. (12 points) Let $f(x, y)=\left\{\begin{array}{cc}x+y, & 0<x<1, \quad 0<y<1 \\ 0, & \text { otherwise }\end{array}\right.$
a) Find the probability density function of $X+Y$
b) Calculate $P(X+Y \leq 1)$
4. (15 points) Let the joint pdf of (X, Y) be $f(x, y)=1,0<y<1, y<x<y+1$. Find
a) marginals of $2^{*} X$ and Y and their first two moments;
b) $\operatorname{Corr}(2 * X, Y)$
5. (12 points)
a) Let random variable X have a pdf $f(x)=\left\{\begin{array}{c}\frac{x+1}{2}, \quad-1<x<1 \\ 0, \text { otherwise }\end{array}\right.$

Find a monotone function $u(x)$ such that the random variable $Y=u(X)$ has a uniform $(0,1)$ distribution.
b) Show that $F_{X}(x)=\left\{\begin{array}{cl}\frac{e^{x}}{4}, & x<0 \\ 1-\frac{e^{-x}}{4}, & x \geq 0\end{array}\right.$ is a cdf and find $F_{X}^{-1}(y)$
6. (12 points) A and B are hiking and agree to meet at a certain place on a certain day (24 hours). Let us suppose they arrive at the meeting place independently and randomly during these 24 hours. Find the distribution of the length of time that A waits for B. (If B arrives before A , define A's waiting time as zero).
7. (12 points)) Let $f(x, y)=\left\{\begin{aligned} & 24 x y\left(1-x^{2}\right), 0<x<1,0<y<1 \\ & 0, \quad \text { otherwise }\end{aligned}\right.$

Find the probability density function of $X^{*} Y$.
8. (10 points) Let us assume that sequence of random variable X_{n} converges in distribution to a constant c. Show that it also converges in probability to the same constant c. In other words, converges in probability and convergence in distribution are equivalent in this particular case. (Hint: start with writing the limiting distribution explicitly as a cdf).

Good Luck

