Written Exam in Probability Theory, 7.5 ECTS credits
 Tuesday, $07^{\text {th }}$ of March 2023, 08:00-13:00
 Examination: On-campus Exam

You are asked to answer below stated questions as well as motivate your solutions. Grades are assigned as follows: $\mathbf{A}(91+), \mathbf{B}(75-90), \mathbf{C}(66-74), \mathbf{D}(58-65), \mathbf{E}(50-57), \mathbf{F x}(30-49)$, and $\mathbf{F}(0-29)$

You are allowed to use any calculator. Other supplementary material is attached to your exam questions.
The teacher reserves the right to further examine the students on the answers provided.

1. (12 points) A and B are hiking and agree to meet at a certain place on a certain day (12 hours). Let us suppose they arrive at the meeting place independently and randomly during these 12 hours. Find the distribution of the length of time that A waits for B. (If B arrives before A , define A's waiting time as zero)
2. (12 points) Let $f(x, y)=\left\{\begin{array}{cc}x+y, & 0<x<1, \quad 0<y<1 \\ 0, & \text { otherwise }\end{array}\right.$
a) Find the probability density function of $X+Y$
b) Calculate $P(X+Y>1)$
3. (15 points) Let the distribution of Y conditional on $X=x$ be $N\left(x, x^{2}\right)[Y \mid X=x] \sim N\left(x, x^{2}\right)$ and the marginal distribution of X be $U(0,3)$. Find $E[Y], \operatorname{Var}(Y)$ and $\operatorname{Cov}(X, Y)$.
4. (15 points) Show that the following function is a joint pdf and calculate

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\{\begin{array}{r}
\frac{3}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right), \quad 0<x_{i}<1, i=1,2,3,4 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

a) $P\left(X_{1}<\frac{1}{2}, X_{2}<\frac{3}{4}, X_{4}>\frac{1}{2}\right)$
b) Marginal $f\left(x_{1}, x_{2}\right)$ and $E\left(\left[X_{1} * X_{2}\right]\right)$
c) Find $f\left(x_{3}, x_{4} \left\lvert\, x_{1}=\frac{1}{3}\right., x_{2}=\frac{2}{3}\right)$ and $P\left(X_{3}>\frac{3}{4}, \left.X_{4}>\frac{1}{2} \right\rvert\, X_{1}=\frac{1}{3}, X_{2}=\frac{2}{3}\right)$
5. (12 points) Let the joint pdf of (X, Y) be $f(x, y)=1,0<y<1, y<x<y+1$
a) Find pdf's of $-2 X$ and Y explicitly and calculate their means and variances
b) Further, find $\operatorname{Corr}(-2 X, Y)$
6. (10 points) (Weak Law of Large Numbers) Let X_{1}, X_{2}, \ldots be iid random variables with mean μ and finite variance σ^{2}. Prove, that sample mean of the sample converges in probability: $\overline{X_{n}} \stackrel{p}{\Rightarrow} \mu$.
7. (12 points)
a) Let random variable X have a pdf $f(x)=\left\{\begin{array}{cc}\frac{x+1}{2}, & -1<x<1 \\ 0, \text { otherwise }\end{array}\right.$

Find a monotone function $u(x)$ such that the random variable $Y=u(X)$ has a uniform $(0,1)$ distribution
b) Derive moment generating function of random variable $X:=\operatorname{Gamma}(\alpha, \beta)$ as defined in appendix. Use derived mgf to calculate $E[X]$
8. (12 points) Let $f(x, y)=\left\{\begin{array}{cc}6 x y^{2}, & 0<x<1, \quad 0<y<1 \\ 0, & \text { otherwise }\end{array}\right.$
a) Show that $f(x, y)$ defines a proper density function
b) Calculate $P(X+Y \geq 1.1)$
c) Calculate $[P(0.6<X<1)$ - $P(0<X<0.6)]$

