Written Exam in Probability Theory, 7.5 ECTS credits<br>Wednesday, $30^{\text {th }}$ of November 2022, 14:00-19:00<br>Examination: On-campus Exam

You are asked to answer below stated questions and motivate your solutions. Grades are assigned as follows: A (91+), B (75-90), C (66-74), D (58-65), E (50-57), Fx (30-49), and F (0-29)

You are allowed to use any calculator. Other supplementary material is attached to your exam questions.
The teacher reserves the right to further examine the students on the answers provided.

1. (12 points) Let continuous random vector ( $X, Y$ ) have a joint pdf: $f(x, y)=e^{-y}, 0<x<y<\infty$. Compute the following:
a) $f_{X}(x)$ and write explicitly $f(x, y)$ as one formula that contains both domain and function expression of the pdf
b) $f(y \mid x)=(Y \mid X=x) ; E[Y \mid X=x] ; \operatorname{Var}(Y \mid X=x)$
c) $P(X+Y>1)$
2. (12 points) Let $f(x, y)=\left\{\begin{array}{cc}x+y, & 0<x<1, \quad 0<y<1 \\ 0, & \text { otherwise }\end{array}\right.$
a) Find the probability density function of $X+Y$
b) Calculate $P(X+Y \leq 1.5)$
3. (12 points) One tosses two dice: the outcomes are the numbers from 1 to 6 . Let $X$ be the "outcome" on the first dice and $Y$ is the max of the two. Find the joint distribution of $(X, Y)$ and calculate $E[X], E[Y], \operatorname{Var}(X), \operatorname{Var}(Y)$, and $\operatorname{Cov}(X, Y)$
4. (12 points) Let $X$ and $Y$ be i.i.d standard normal random variables, and $U:=X+Y ; V:=X-Y$
a) Calculate the joint pdf: $f_{U, V}(u, v)$
b) Calculate the $\operatorname{Corr}(U, V)$
c) Are the r.v. $U$ and $V$ independent? Support your statement by probabilistic argument.
5. (12 points) Let the joint pdf of $(X, Y)$ be $f(x, y)=1,0<y<1, y<x<y+1$
a) Find pdf's of $2 X$ and $Y$ explicitly and calculate their means and variances
b) Further, find $\operatorname{Corr}(2 X, Y)$
6. (10 points)
a) Let r.v. $X$ have a pdf $f(x)=\left\{\begin{array}{c}\frac{x+1}{2},-1<x<1 \\ 0, \quad \text { otherwise }\end{array}\right.$

Find a monotone function $u(x)$ such that the random variable $Y=u(X)$ has a uniform $(0,1)$
distribution
b) Derive a moment generating function of random variable $X:=\operatorname{Gamma}(\alpha, \beta)$ as defined in appendix. Use derived mgf to calculate $\operatorname{Var}[X]$
7. ( 15 points) ) Let $n=4$ and

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\{\begin{array}{r}
\frac{3}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right), \quad 0<x_{i}<1, i=1,2,3,4 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Show that the above function is a joint pdf. Calculate
a) $P\left(X_{1}<\frac{1}{2}, X_{2}<\frac{3}{4}, X_{4}>\frac{1}{2}\right)$
b) Marginal $f\left(x_{1}, x_{2}\right)$ and $E\left(\left[X_{1} * X_{2}\right]\right)$
c) Find $f\left(x_{3}, x_{4} \left\lvert\, x_{1}=\frac{1}{3}\right., x_{2}=\frac{2}{3}\right)$ and $P\left(X_{3}>\frac{3}{4}, \left.X_{4}>\frac{1}{2} \right\rvert\, X_{1}=\frac{1}{3}, X_{2}=\frac{2}{3}\right)$
8. (12 points) Let $f(x, y)= \begin{cases}c * x y\left(1-x^{2}\right), & 0<x<1,0<y<1 \\ 0, \quad \text { otherwise }\end{cases}$

When you have found the right constant "c" for the above function to be a bivariate pdf, find a probability density function of $X^{*} Y$.
9. (10 points) (Weak Law of Large Numbers) Let $X_{1}, X_{2}, \ldots$ be iid random variables with mean $\mu$ and finite variance $\sigma^{2}$. Prove, that sample mean of the sample converges in probability: $\overline{X_{n}} \stackrel{p}{\Rightarrow} \mu$.

