
STOCKHOLM UNIVERSITY

Department of Statistics

Parfait Munezero

R PROGRAMMING EXAM

October 25, 2023

Time : 14:00 - 19:00

Results will be announced no later than November 9, 2023.

The exam should be submitted no later than 19.00 (7PM), please carefully read the

provided instructions to digital exams in Safe Exam Browser (SEB). The system does not

allow submission after deadline. Therefore, start the submission well in advance.

The exam is to be written as a R Markdown report. You need to submit the R
markdown file (.Rmd) as well as an output file either in .pdf or .html format. Failure
to do so will result in point reductions.

Task 1: Working with factors (5 points)

Suppose we have the following data

 Voted_for_last_time Will_vote_for
1 No Yes
2 Yes Yes
3 No No
4 No No
5 Yes Not sure

which consist of election-polling data for candidate X who is running for re-election. In this
task you are going to analyze the above data.

1. Write you own code to create the polling data for candidate X. Present your data in a
data frame. (2 points)

2. Create the contingency table for the above data. Arrange your output such that the
rows represent frequencies for the variable “Voted_for_last_time". (1 point)

3. Report the row and column sums of the contingency table (Hint: Use the apply
function). (1 point)

4. Turn the contingency table into proportions by dividing the table in question 2 by
the total count (the sum of the marginal counts computed in question 3). Then,
print a message presenting the cell with the highest proportion. An example of the
message is: “The highest proportion is --- % and is observed in the category of
individuals who previously voted --- (Yes/No) and will vote --- (Yes/No/Not sure) for
candidate X”. Use the function paste to create the message; the values to fill in the
blanks (---) should be passed as arguments. (1 point)

Task 2: Monte Carlo Simulation (15 points)

Use Monte Carlo simulation to estimate the expected value of the following game in which
when you roll a fair die:

 - You lose one dollar, if the outcome is a one or two spots.
 - You win three dollars, if six spots are obtained.
 - Otherwise, you earn nothing.

1. Compute and plot the probability mass function of the dice game (use the base R
plot function with the appropriate “type” argument). (3 points)

 Note that for a fair die:

– All the six outcome events have equal probabilities.

– The probability of observing event A or B is 𝑝(𝐴𝑈𝐵) = 𝑝(𝐴) + 𝑝(𝐵).

2. Use R to calculate the theoretical expected value of the game. Note that the expected
value of a discrete random variable 𝑋 is 𝐸(𝑋) = ∑𝑥𝑝(𝑋 = 𝑥). (2 points)

3. Use Monte Carlo simulation to estimate the expected value of the game. Write a
function called dice_game with the following input argument reps: the number of
times to repeat the simulation. The function should return an estimate of the
expected value of the game i.e. how much money you can expect to win per play of
the game, on average. Use set.seed(535) inside the function. (3 points)

4. Run the function dice_game with 10 repetitions of the game and then increase the
number of repetitions to 10000. Compare the two values with each other and the
theoretical value. Comment on your result. (2 points)

5. Do a convergence analysis of the dice_game. This analysis can be done in R by
computing the cumulative mean of the output from dice_game over a sequence of
iterations.

Hint:

a. Create a sequence of iteration numbers from 1 to 10000 with an
increment step of 10.

b. For each iteration value, run the dice_game with the argument reps set
to the iteration value.

c. Compute the cumulative mean of the series of expected values computed
in (b). The final output should be a vector of the same length as the
iteration sequence.

Plot the cumulative means (should be a line plot) and provide appropriate labels
and title. Then add a horizontal line representing the theoretical expected value
computed in Question 2. Differentiate the cumulative mean’s curve and the
horizontal line by setting different line colors. Comment on your results. (5 points)

Task 3: String Manipulation (15 points)

Consider the following text

txt <- c("The", "license", "for", "most", "software", "is","designed", "to",
"take", "away", "your", "freedom", "to", "share", "and", "change", "it","By",
"contrast", "the", "GNU", "General", "Public", "License", "is", "intended",
"to", "guarantee", "your", "freedom", "to", "share", "and", "change", "free",
"software", "to", "make", "sure", "the", "software", "is", "free", "for",
"all", "its", "user")

Notice that every word in txt has been transformed to its singular form.

1. Write an R code that returns all words that contain at least one upper case letter. (2
points)

2. Write an R code to turn all words in txt to lower case. Save your results in the
variable txt_lower and print it. (1 point)

3. Use grep to report all words in txt_lower that have at least two consecutive vowels.
(3 points)

4. Consider the following part of speech classifications of the words in txt_lower.

prepositions <- c("for", "by")
pronouns <- c("it", "the", "its", "your")
adverbs <- c("all", "most", "away")
nouns <- c("license", "software", "freedom", "user")
verbs <- c("is", "designed", "take", "share", "change", "guarantee",
"make")

Not all are correctly classified, therefore, any word which is not classified will be put
in the category of others.

Write a function called speech_class_count with the input argument word_class:
One of the classes such as preposition, pronoun, etc. The function should return the
frequency of the input class; i.e, the sum of the number of times each individual
word belonging to the class appeared in txt_lower. (3 points)

Hint: you may use grep and you may need a for loop to get the counts of all words in
the class.

5. Create a data frame with two columns: word_class and count representing,
respectively, the word class and its frequency. Remember to include the category of
others which includes all words in txt_lower that do not appear in any of the five
classes. Comment on your results. (3 points)

6. Use ggplot2 to create a horizontal bar chart of the different word classes. Reorder
the bars and add appropriate title and axes labels. (3 points)

Task 4: Linear Algebra (15 points)

1. Use R to solve the following system of equations:

x1 + 2x2 + 3x3 + 4x4 + 5x5 = 7

2x1 + x2 + 2x3 + 3x4 + 4x5 = −1

3x1 + 2x2 + x3 + 2x4 + 3x5 = −3

4x1 + 3x2 + 2x3 + x4 + 2x5 = 5

5x1 + 4x2 + 3x3 + 2x4 + x5 = 17

by considering an appropriate matrix equation Ax = b. (3 points)

2. Calculate (2 points)

∑∑
𝑖4

3 + 𝑗

5

𝑗=1

20

𝑖=1

3. Find the number of entries in each row which are greater than 4 in the following
matrix. (2 points)

set.seed(75)
my_mat <- matrix(sample(10, size=60, replace=T), nrow = 6)
print(my_mat)

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 8 8 8 7 7 5 2 2 6 5
 [2,] 9 5 2 6 6 1 6 6 3 7
 [3,] 5 1 10 2 5 6 8 9 10 8
 [4,] 9 3 1 1 6 10 10 7 9 10
 [5,] 7 3 3 3 6 4 4 6 10 2
 [6,] 9 3 3 4 1 2 1 10 6 1

4. Consider the following matrix:

A <- matrix(c(1,1,3,5,2,6,-2,-1,-3), nrow = 3, byrow = T)

Check that 𝐴3 is a 3 × 3 matrix with every entry equal to zero. (2 points)

5. Consider the following iterative equation:

𝑥𝑛 = 𝑟𝑥𝑛−1(1 − 𝑥𝑛−1),

 with starting value 𝑥1.

a. Write a function quad_function(x1, r, n) which returns the vector (𝑥1, . . . ,
𝑥𝑛) computed recursively according to the above equation. Hint: use a loop and
notice that 𝑥𝑛 depends on the previous computed value. (2 points)

b. Try out the function you have written with 𝑟=2 and 0<𝑥1<1 and 𝑛=15 (Hint:
Choose 𝑥1 randomly within the accepted limits). Comment on your results. (1
point)

c. Run your quad_function with 𝑥1 = 0.95 and 𝑟 = 2.97 and 𝑛 = 500. Then plot
the function’s curve for the last 200 values (use R base plot function with
type=”l”). Add a horizontal line representing the mean value of your vector.
Label the y axis to “xn” and the x axis to “iterations”. Comment on your plot. (3
points)

Good luck!

