EXAM IN MULTIVARIATE METHODS
 March 222021

Time: 6 hours

The exam is for individual solving. It is an open-book exam, but you are not allowed to use the help of other students, friends, family, or similar. In case you need clarification, the teacher is available at Zoom. Time for Zoom meetings is 14:00-14:30 and 16:00:16:30.

Join Zoom Meeting from
https://stockholmuniversity.zoom.us/j/9255236581
Meeting ID: 9255236581
The exam consists of five questions. To score maximum points on a question solutions need to be clear, detailed and well-motivated.

Question. $1(6+2+3+2+3=16$ Points)
For a data set with observations on two variables x_{1} and x_{2} the sample covariance matrix was found to be

$$
S=\left[\begin{array}{cc}
10 & 5 \\
5 & 4
\end{array}\right]
$$

a) Using S, construct two principal components that are orthogonal to each other.
b) What proportion of variance is accounted by these principal components?
c) Using the constructed principal components in part (a) show that $\operatorname{var}(\mathrm{PC} 1)=\lambda_{1}$ and $\operatorname{var}(\mathrm{PC} 2)=\lambda_{2}$, where λ_{1} and λ_{2} are eigenvalues.
d) Using the constructed principal components in part (a) compute the $\operatorname{cov}(\mathrm{PC} 1, \mathrm{PC} 2)$
e) Compute the correlation of PC 1 and PC 2 with x_{1} and x_{2}.

Question. $2(2+2+4+4+4=16$ Points)
Given the following data

Observation	X_{1}	X_{2}	X_{3}
1	7	8	6
2	3	1	4
3	9	8	2
4	2	6	8

(a) Find the Euclidean distance between observation 2 and 4.
(b) Compute the sum of squared and cross products matrix for the variables X_{1} and X_{3} $\left(\mathrm{SSCP}_{13}\right)$.
(c) Find the var-cov matrix from the data.
(d) Compute the statistical distance between observation 1 and 4.
(e) Compute the Mahalanobis distance between observation 2 and 3 .

Question. 3 (10+6=16 Points)
(a) For the following data

Observation	Y_{1}	Y_{2}	Gender
1	2	6	Male
2	2	6	Female
3	4	2	Male
4	4	3	Female
5	6	10	Male
6	8	5	Female
7	6	4	Female
8	5	6	Male
9	10	8	Male

a) Compute the $\mathbf{S S C P}_{\mathbf{b}}, \mathbf{S S C P}_{\mathbf{w}}$ and $\mathbf{S S C P}_{\mathbf{t}}$ matrices.
b) Suppose $\mathrm{n}_{1}=7$ and $\mathrm{n}_{2}=8$ are observations in group- 1 and group- 2 , respectively and

Within-group covariance matrix for group- $\mathrm{I}=S_{1}=\left[\begin{array}{cc}20 & -5 \\ -5 & 8\end{array}\right]$

Within-group SSCP matrix for group-II $=$ SSCP $_{2}=\left[\begin{array}{cc}100 & -5 \\ -5 & 10\end{array}\right]$

$$
\bar{X}_{1}=\left[\begin{array}{l}
10 \\
12
\end{array}\right] \text { and } \bar{X}_{2}=\left[\begin{array}{c}
15 \\
8
\end{array}\right]
$$

Calculate Fisher's linear discriminant function for this data set.

Question. 4 ($4+4+4+4=16$ Points)
Observations on two variables were made for five subjects according to the following table.

Subject	Variable-1	Variable-2
1	5	4
2	6	8
3	5	3
4	2	6
5	4	10

a) Construct a similarity matrix containing squared Euclidean distances
b) Use the similarity matrix in part (a) and perform a cluster analysis with the following method

1) Single-linkage method.
2) Complete-linkage method.
3) Average linkage method.

Question. 5 ($4+3+3+3+3=16$ Points)
We have data sets with following variables:
Age: Age of the patient
Acid: Level of serum acid phosphate
X-ray: Result of x-ray examination ($0=$ negative, $1=$ positive)
Size: Tumour size ($0=$ small, $1=$ large $)$
Grade: Tumour grade ($0=$ less serious, $1=$ more serious)
Involvement: Nodal involvement ($0=$ no, $1=$ yes)

The data analytic task is to explore whether the independent variables can be used to predict the probability of nodal involvement in prostatic cancer. The following logistic models are fitted

Model-1

```
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.1994 0.7162 -1.675 0.09400 .
Size 1.7638 0.7483 2.357 0.01842 *
Xray 2.0550 0.7976 2.576 0.00998 **
log(Acid) 2.2922 1.1387 2.013 0.04412 *
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 70.252 on 52 degrees of freedom
Residual deviance: 48.986 on 49 degrees of freedom
```


Model-2

Coefficients:

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-0.3308	0.5819	-0.569	0.56964	
Xray	2.1020	0.7226	2.909	0.00363	**
log(Acid)	2.0363	1.1128	1.830	0.06728	.

Signif. codes: 0 `***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 70.252 on 52 degrees of freedom
Residual deviance: 55.272 on 50 degrees of freedom

Model-3

```
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.1701 0.3816 -3.066 0.00217 **
Xray 2.1817 0.6975 3.128 0.00176 **
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 70.252 on 52 degrees of freedom
```

a) Formulate the null and alternative hypothesis and perform testing of hypothesis using deviance statistic to compare the fitted model-1 with the model-2. Use $\alpha=0.05$.
b) Formulate the null and alternative hypothesis and perform a test if model-3 is significantly better than the null model using deviance statistic. Use $\alpha=0.10$.
c) What is the probability of nodal involvement in prostatic cancer for small tumour size with negative result of x-ray examination and 0.56 level of serum acid phosphate.
d) What is the odd of nodal involvement in prostatic cancer for large size of tumour with positive result of x-ray examination and 0.48 level of serum acid phosphate.
e) Classify the observations given in the table and compute the sensitivity and specificity.

Observation	Involvement	P-hat	Observation	Involvement	P-hat
1	0	0.05	16	0	0.26
2	0	0.07	17	0	0.26
3	0	0.44	18	0	0.18
4	1	0.07	19	0	0.31
5	0	0.12	20	0	0.34
6	0	0.10	21	1	0.72
7	1	0.48	22	1	0.26
8	0	0.16	23	0	0.83
9	0	0.22	24	0	0.40
10	0	0.06	25	1	0.90
11	0	0.13	26	1	0.41
12	0	0.56	27	1	0.41
13	1	0.83	28	1	0.87
14	1	0.16	29	1	0.91
15	0	0.18	30	1	0.96

