Generalized Linear Models (ST425A) (Advanced level course, 7.5 hec, Aut. 2019)

Examnation (Part 1)

Gebrenegus Ghilagaber (Professor & Head) Department of Statistics, Stockholm University

- Date and time: Monday 30 September 2019, 16:00 19:00
- Permitted facilities: Pocket calculator and sample of formula attached at the end of this exam.
- Return of exam: Not yet decided (information will be sent via E-mail or Athena).
- Instructions:
 - The exam consists of 4 questions and a sample of formula is given at the end
 - The total amount of points for this part of the exam is 30.
 - The minimum requirement to pass this part of examination is 20 points.
 - Solutions to each question should be detailed enough and wellmotivated in order to get full points.

1 Question 1

Define a Generalized Linear Model and describe its "components".

2 Question 2

Consider the density function

$$f(y; \theta) = \theta \exp(-\theta y), \quad 0 < y < \infty, \ \theta > 0$$

- a) Show that the function belongs to the exponential family and indicate the canonical parameter
- b) Derive the maximum likelihood estimator of θ
- c) Suppose now we have 4 observations from the above density function with values $y_1 = 0.06$, $y_2 = 0.09$, $y_3 = 0.1$, and $y_4 = 0.2$. Use these values to compute a numerical value of the maximum likelihood estimator of θ
- d) Use your result in (c) to compute the value of the corresponding likelihood function
- e) Does your result in (d) look strange (somehow)? If yes, in what way and what lesson can one learn from the result?

3 Question 3

The Tables below contains results from analysis of effects of *Education* (with secondary-level education as a baseline) and *Age* on some demographic outcome among a sample of women.

Parameter	Levels	Symbol	Estimate	Std. Eroor	t-ratio
Constant		μ	-5.954	7.166	-0.83
Education	None	α_1	19.448	3.729	5.21
	Primary	$lpha_2$	4.144	3.191	1.30
Age	(linear)	β	0.1693	0.1056	1.60

Source of	Degrees of	Sum of	Mean	F-
variation	freedom	squares	Square	Ratio
Age (linear)	1	1201.1	1201.1	36.5
Education Age	2	923.4	461.7	14.1
Residual	16	525.7	32.9	
Total	19	2650.2		

- a) What type of analyis is likely to have given rise to the above tables.
- b) Interpret the effect of Age on the outcome of interest.
- c) How large of the total variation in the outcome variable is due to variability in Age?
- d) Do the results in the table support the hypothesis of no education-effect (i.e. $H_0: \alpha_2 = \alpha_3 = 0$)?

4 Question 4

The Table below presents results of analysis of count data across some models:

	Fitted models				
Estimates of interest	Poisson	Overdispersed Poisson	Negative Binomial	Zero-inflated	
Coefficient $(\widehat{\beta})$	-0.187	-0.187	-0.306	-0.187	
Z-value	-5.12	-1.44	-3.10	-5.00	
# param. estimated	p	p+1	p+1	2p	
Log-likelihood	-18373	-18373	-9829	-15957	

- a) Based on the results above, which of the fitted models provides the best description of the data? Don't forget to justify your answer
- b) Does the table indicate the original data is overdispersed?
- c) Does the table indicate the original data contains excess zeroes than would be expected?
- d) What is your conclusion concerning the explanatory variable of interest (whose coefficient is denoted by β)

(A sample) Formulas for Generalized Linear Models

Exponential family

$$p(x;\theta) = \exp[\alpha(y) \, b(\theta) + \alpha(\theta) \, b(\theta) + \alpha(\theta) \, b(\theta)]^{3}$$

$$p(y;\theta) = -\frac{b''(\theta)}{b''(\theta)} \, c''(\theta) \, b''(\theta)$$

$$p(y;\theta) = -\frac{b''(\theta)}{b''(\theta)} \, c''(\theta) \, b''(\theta)$$

Score statistic

$$U = \alpha(y) b'(\theta) + c'(\theta)$$

$$\sum_{i=i}^{N} \left[\left(\frac{y_i - \mu_i}{v_i r} \right) \sum_{i \neq i} (\theta) h'(\theta) \right]$$

GLM weights

$$u_{ii} = \frac{1}{nar\left(X_i\right)} \frac{1}{\left(\frac{N_i}{i}\right) nav} = u_{ii}$$

Deviance

$$\left[\left(\psi\,;\widehat{\boldsymbol{k}}\right)\boldsymbol{L}\operatorname{gol}-\left(\psi\,;_{\operatorname{xent}}\widehat{\boldsymbol{k}}\right)\boldsymbol{L}\operatorname{gol}\right]\boldsymbol{L}$$

: ($q = \theta$ to back of π in place of $\theta = p$)

• Binomial distribution

Probit model

$$\partial_{i}^{T} \mathbf{x} = (i\pi) \Phi \longleftarrow (\partial_{i}^{T} \mathbf{x}) \Phi = i\pi$$

- Logit model

$$\partial_{i}^{T}\mathbf{x} = \left(\frac{i^{T}}{i^{T}-1}\right) \text{nl} \Longleftrightarrow \frac{\left(\partial_{i}^{T}\mathbf{x}\right) \text{qx9}}{\partial_{i}^{T}\mathbf{x}+1} = i^{T}$$

- Complementary log-log link

$$\boldsymbol{\delta}_{\:\:i}^{T}\mathbf{x} = \left[\left(\boldsymbol{\imath}\boldsymbol{\pi} - \boldsymbol{1}\right)\boldsymbol{n}\boldsymbol{l} - \right]\boldsymbol{n}\boldsymbol{l} \longleftarrow \left[\left(\boldsymbol{\delta}_{\:\:i}^{T}\mathbf{x}\right)\boldsymbol{q}\boldsymbol{x} - \right]\boldsymbol{q}\boldsymbol{x} - \boldsymbol{1} = \boldsymbol{\imath}\boldsymbol{n}$$

Multinomial distribution

. Probability function (again using π_i in place of $\theta_i = p_i$)

$$, {}^{\iota}_{\iota}{}^{\varrho}_{1} \dots {}^{\iota}_{2}{}^{\varrho}_{n}{}^{\iota}_{1}{}^{\varrho}_{n} \left(\begin{array}{c} n \\ \iota \psi \dots \iota \psi \end{array} \right) = (; \iota \pi \dots, \iota \pi ; \iota \pi \dots, \iota \pi ; \iota \psi \dots, \iota \psi) t$$

$$n = i y \sum_{l=i}^{l} \text{bas} ; l, \dots, l = l; n \dots, 0 = i y \text{ rol}$$

- Normal logistic model

$$\lambda, \dots, \Delta = \ell, \quad \lambda_{i}^{T} \mathbf{x} = \left(\frac{i^{T}}{i^{T}}\right)$$
ní

- Ordinal response:
- * Cummulative logit model

$$.\mathbf{I} - \mathbf{I}, \dots, \mathbf{I} = \mathbf{i} \quad , \mathbf{i} \boldsymbol{\delta}_{\ \mathbf{i}}^{\mathbf{T}} \mathbf{x} = \left(\frac{\mathbf{i}^{\pi} + \dots + \mathbf{I}^{\pi}}{\mathbf{i}^{\pi} + \dots + \mathbf{I} + \mathbf{i}^{\pi}} \right) \mathbf{n} \mathbf{I}$$

* Proportional odds model

$$I_{\dots,1} = i_{\dots,1-q} x_{1-q} \partial_{+\dots+1} x_1 \partial_{+_{i_0}} \partial_{=} \left(\frac{\iota^{\pi} + \dots + \iota^{\pi}}{\iota^{\pi} + \dots + \iota_{+_i \pi}} \right) \text{nl}$$

* Adjacent categories model

$$.\mathbf{1} - \mathbf{1}, \dots, \mathbf{1} = \mathbf{i} \quad ,_{\mathbf{i}} \boldsymbol{\lambda}_{\mathbf{i}}^{\mathrm{T}} \mathbf{x} = \left(\frac{\mathbf{i}^{\mathrm{T}}}{\mathbf{i} + \mathbf{i}^{\mathrm{T}}}\right) \mathbf{n} \mathbf{i}$$

* Continuation ratio logit model

$$.\mathbf{I} - \mathbf{I}, \dots, \mathbf{I} = \mathbf{i} \quad {}_{\iota_{\mathbf{i}}} \boldsymbol{\delta}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x} = \left(\frac{\iota^{\pi}}{\iota^{\pi} + \dots + \iota_{\mathbf{i} + \iota^{\pi}}}\right) \mathbf{n} \mathbf{I}$$

• Poisson distribution

 \bullet Normal distribution

- Probability function (using λ in place of $\theta)$:

$$f(y;\lambda) = \frac{\lambda^y}{y!} e^{-\lambda}, \quad y = 0, 1, \dots$$

- log link function $T_{T,r}$ (a) $\pi l = l(n)$ πl

$\ln \left(y_i \right) = \ln \left(n_i \right) + \mathbf{x} + \left(n_i \right)$

– Probability function (using μ and σ^2 in place of θ_1 and $\theta_2)$:

 $I = (2\pi i) \int_{\mathbb{R}^2} \int_{\mathbb{R}^2$