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Part I (Time Series)
Assigned weekly data set: XEL - Xcel Energy Inc

A) Data Description
to describe the time series we can use the summarize function in Stata.
To visualize the time series the variable was used to represent the prices of the stock for each week.
We use then those values to plot them against time, as shown in the figure below.

We can see a positive trend until around 2020Q2 when a big crash happens (most likely due to the 
pandemic), then the positive trend continues so that by the middle of 2020Q4 we reach an all time 
high. At the beginning of 2021 there is a a significant drop that recovers to around pre-pandemic 
levels as of today.
Also the time series follows the multiplicative model

b) Stationarity
To formally test stationarity we can use the DICKEY-FULLER UNIT ROOT TEST.
The null hypothesis (H0) assumes that we don’t have a stationary time series, therefore if the test 
statistic for our time series is more negative (smaller)  than the critical value for our test then we can 
reject our null hypthesis and assume that the alternative hypothesis (H1) is true for our significance 
level ie. the time series is stationary.
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We can clearly see that our original timeseries is non stationary because the expected value of the 
series increases with time ie. dependent on it.
To make the the time series stationary, we apply a logtransform on the data so that our 
multiplicative model becomes an additive model. Let us call the new variable from this 
transformation logprice. After doing the test we can see that, by applying the decision criterion 
described above, that our time series is still not stationary. 

Stata output:
Dickey-Fuller test for unit root                   Number of obs   =       258

                               ---------- Interpolated Dickey-Fuller ---------
                  Test         1% Critical       5% Critical      10% Critical
               Statistic           Value             Value             Value
------------------------------------------------------------------------------
 Z(t)             -1.506            -3.459            -2.880            -2.570
------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.5305

We create another variable, logreturn, that is the difference between two logprices. Doing the test 
again we come to the conclusion that this time series is now stationary. 

Stata output:

Dickey-Fuller test for unit root                   Number of obs   =       257

                               ---------- Interpolated Dickey-Fuller ---------
                  Test         1% Critical       5% Critical      10% Critical
               Statistic           Value             Value             Value
------------------------------------------------------------------------------
 Z(t)            -18.134            -3.459            -2.880            -2.570
------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.0000

c) ACF, PACF plots
ACF:  on the figure below we can see that 1st, 4th and 20th   are significant.
The Auto Correlation Function (ACF) shows us how the series autocorrelates with its lagged values. 
The fires plot point shows how the current value is correlated with the previous value in the time 
series.

It is quite improbable that we have a process that its values so far back as the 20th  would contribute 
to our current values, therefore we can assume that we have an MA(4) by looking at it. Also the 20th 

value is just outside the significance level which also confirms our suspicions. 
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PACF:
PACF shows us how the current value correlates with the ones before it after only the residuals 
remain.
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We can see on the figure that the lags are similar as for ACF figure which suggest that by looking 
this figure alone we can identify an AR(4) process (the significant lag above 20 is ignored since it 
seems unrealistic).

Based on the two figures above we can guess an ARMA(4,4) process.

d) ARIMA models
The value for d was chosen to be 1 since by differenceing the time-series once is enough to get a 
stationary time-series that can be then used for ARMA-processes. 
The chosen models (with their Stata outputs) are the following: 

ARIMA (0,1,0)

Sample:  2016w18 - 2021w15                      Number of obs     =        258
                                                Wald chi2(.)      =          .
Log likelihood =  534.0997                      Prob > chi2       =          .

------------------------------------------------------------------------------
             |                 OPG
  D.logprice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
logprice     |
       _cons |   .0021012   .0019364     1.09   0.278     -.001694    .0058964
-------------+----------------------------------------------------------------
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      /sigma |   .0305286   .0005615    54.37   0.000      .029428    .0316292
------------------------------------------------------------------------------

We do The Box-Ljung test to be sure that there are non-zero lags.
Stata gives the folloing answer:

Portmanteau test for white noise

---------------------------------------

 Portmanteau (Q) statistic =    64.3565

 Prob > chi2(40)           =     0.0086

The null hypothesis can be rejected, ie.e we have autocorrelation in our sample.

ARIMA (4,1,4)

Sample:  2016w18 - 2021w15                      Number of obs     =        258
                                                Wald chi2(8)      =      96.11
Log likelihood =  548.9265                      Prob > chi2       =     0.0000

------------------------------------------------------------------------------
             |                 OPG
  D.logprice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
logprice     |
       _cons |   .0019574   .0013622     1.44   0.151    -.0007124    .0046272
-------------+----------------------------------------------------------------
ARMA         |
          ar |
         L1. |   .1875266   .3388256     0.55   0.580    -.4765593    .8516125
         L2. |    .349967   .1815143     1.93   0.054    -.0057945    .7057285
         L3. |  -.0839643   .2394052    -0.35   0.726    -.5531899    .3852612
         L4. |  -.2500396   .1790949    -1.40   0.163    -.6010592      .10098
             |
          ma |
         L1. |  -.2889113   .3516323    -0.82   0.411    -.9780979    .4002753
         L2. |  -.4348548   .1970665    -2.21   0.027     -.821098   -.0486117
         L3. |   .2465757   .2847424     0.87   0.387     -.311509    .8046605
         L4. |  -.0253647   .1877675    -0.14   0.893    -.3933823    .3426528
-------------+----------------------------------------------------------------
      /sigma |   .0287974   .0009707    29.67   0.000     .0268949    .0306999
------------------------------------------------------------------------------

ARIMA (3,1,3)

Sample:  2016w18 - 2021w15                      Number of obs     =        258
                                                Wald chi2(5)      =    1593.37
Log likelihood =  549.8504                      Prob > chi2       =     0.0000
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------------------------------------------------------------------------------
             |                 OPG
  D.logprice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
logprice     |
       _cons |   .0022334   .0002412     9.26   0.000     .0017607    .0027061
-------------+----------------------------------------------------------------
ARMA         |
          ar |
         L1. |  -.7791105   .0814294    -9.57   0.000    -.9387091   -.6195119
         L2. |   .6600674   .0464092    14.22   0.000     .5691072    .7510277
         L3. |   .8029925   .0624968    12.85   0.000      .680501     .925484
             |
          ma |
         L1. |   .7213404   .0781426     9.23   0.000     .5681837     .874497
         L2. |   -.872652          .        .       .            .           .
         L3. |   -.848688   .0855309    -9.92   0.000    -1.016326   -.6810504
-------------+----------------------------------------------------------------
      /sigma |   .0285433   .0008598    33.20   0.000     .0268581    .0302285
------------------------------------------------------------------------------

ARIMA (0,1,3)

Sample:  2016w18 - 2021w15                      Number of obs     =        258
                                                Wald chi2(3)      =      40.97
Log likelihood =   537.436                      Prob > chi2       =     0.0000

------------------------------------------------------------------------------
             |                 OPG
  D.logprice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
logprice     |
       _cons |   .0020968   .0020133     1.04   0.298    -.0018491    .0060427
-------------+----------------------------------------------------------------
ARMA         |
          ma |
         L1. |  -.0751418   .0338398    -2.22   0.026    -.1414667    -.008817
         L2. |  -.1059497   .0432263    -2.45   0.014    -.1906716   -.0212277
         L3. |   .0965491   .0375781     2.57   0.010     .0228973    .1702008
-------------+----------------------------------------------------------------
      /sigma |   .0301332   .0006227    48.39   0.000     .0289128    .0313537

ARIMA (2,1,3)

Sample:  2016w18 - 2021w15                      Number of obs     =        258
                                                Wald chi2(5)      =    3644.45
Log likelihood =  546.4048                      Prob > chi2       =     0.0000

------------------------------------------------------------------------------
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             |                 OPG
  D.logprice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
logprice     |
       _cons |   .0021047   .0019734     1.07   0.286    -.0017631    .0059726
-------------+----------------------------------------------------------------
ARMA         |
          ar |
         L1. |  -1.686648   .0713662   -23.63   0.000    -1.826523   -1.546773
         L2. |  -.8612466   .0642386   -13.41   0.000     -.987152   -.7353412
             |
          ma |
         L1. |   1.630913   .0707995    23.04   0.000     1.492149    1.769678
         L2. |   .6459686   .0820831     7.87   0.000     .4850887    .8068485
         L3. |  -.1137654    .041935    -2.71   0.007    -.1959565   -.0315743
-------------+----------------------------------------------------------------
      /sigma |   .0290714   .0008452    34.40   0.000     .0274149     .030728
------------------------------------------------------------------------------
Note: The test of the variance against zero is one sided, and the two-sided
      confidence interval is truncated at zero.

We can see that all lags are significant (p <= 0.05) for the models apart from ARIMA (4,1,4) model, 
which can be discarded because of that.

The AIC scores of the models above can be summarized by the following table using Stata’s output:

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
    arima010 |        258          .   534.0997       2  -1064.199  -1057.093
    arima414 |        258          .   548.9265      10  -1077.853  -1042.323
    arima313 |        258          .   549.8504       7  -1085.701   -1060.83
    arima013 |        258          .    537.436       5  -1064.872  -1047.107
    arima213 |        258          .   546.4048       7   -1078.81  -1053.939
-----------------------------------------------------------------------------

e) choosing 2 best ARIMA, RMSE calculation
Based on the AIC scores, the lower the score (more negative) the better thus the ARIMA (3,1,3) and 
ARIMA (2,1,3) models are chosen.

The RMSE values are really close and show how “accurate” the prediction is compared to our test 
data. The lower the RMSE the better.

The formula for calculating RMSE can be found in the formula sheet therefore only the table and 
calculations will be provided, as shown below
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(Obs-
predicted)^2

forecast313 forecast213

0.02897484
84

0.03198732
2499999

10.4336752
144

10.5458016
049001

14.0600251
089001

14.2559860
041

RMSE 8.17422505
723335

8.27792497
716669

ARIMA (3,1,3) has lower RMSE thus is more accurate for prediction, therefore it is chosen as our 
best model.

f) GARCH effect of the “best” model
We will now test the GARCH effects for our ARIMA (3,1,3)  model.
Using Stata for LM test for autoregressive conditional heteroskedasticity (ARCH) we can come to 
the conclusion that there are garch effects present in our model.
H0: no ARCH effects
H1: there are ARCH effects

In part d it would mean that the error terms are not constant over time and  therefore certain effects 
in the time series such as volatility clustering for example could not be modelled thus the models’ 
predictive value (accuracy) is greatly diminished.

g) Residual analysis of the best ARIMA  and Conclusion
By analyzing the residuals we want to know about the normality, independence and constant 
variance (time independent) of the residuals.

QQ-plot for the residuals:
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We see that the residuals have fatter tails than the normal distribution.
A more formal test:
Skewness and kurtosis tests for normality
                                                         ----- Joint test -----
    Variable |       Obs   Pr(skewness)   Pr(kurtosis)   Adj chi2(2)  Prob>chi2
-------------+-----------------------------------------------------------------
 residual313 |       261         0.0000         0.0000         51.55     0.0000

The p value is significant therefore we can reject the null hypothesis.

Independence: we use the Ljung box test test.

Portmanteau test for white noise
---------------------------------------
 Portmanteau (Q) statistic =    31.2342
 Prob > chi2(40)           =     0.8380

We see that the residuals are independent (null hypothesis cannot be rejected).

We know from previous part that there are garch effects therefore the variance is not constant.
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Conclusion

We can conclude that Garch effects are present in our model, therefore our predictions would be 
more accurate if those were implemented.
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Part II (Regression)

A) Data summary

    Variable |        Obs        Mean    Std. Dev.       Min        Max
-------------+---------------------------------------------------------
       price |        100     2925.09    3402.705        448      17029
       carat |        100       .6312    .3828476        .23        1.7
   color_def |        100          .5    .5025189          0          1
    color_gh |        100         .44    .4988877          0          1
  clarity_if |        100         .11     .314466          0          1
-------------+---------------------------------------------------------
  clarity_vs |        100         .32    .4688262          0          1
 clarity_vvs |        100         .24    .4292347          0          1
By looking at the table above we can see that the price range of the diamond is between 448 USD 
(min) and 17029 USD (max).
The price varies a lot depending on the carat, color and clarity. This we can see that the std. Dev is 
greater than the mean for the price variable. Since the the mean is not in the arithmetic middle of the 
range we can assume that the price distribution is non-symmetric.

b) Scatter plot
The scatter plot between the price and carat is given in the figure below.
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We can see that the relationship is non-linear since with higher carats the price seems to increase 
quadratically or exponentially. Also the prices are mucm more together for lower carats wheres for 
higher carats they are more apart.

c) Model 1
The scatter plot  required in the question is given below
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We can see that there is a curvature even after the log transformation on the price is applied 

To analyze the residuals we have to check for the three following things:
the residuals are independent (Runs test)
the residuals are normally distributed (Jarque-Bera test)
The normal distribution has constant variance (Breusch Pagan test)

Independence

The run tests checks whether the smaples are independt from each other. The null hypothesis 
assumes this to be true.
Checking with Stata gives the output:

N(residual_m1 <= -87.03524017333984) = 50
 N(residual_m1 >  -87.03524017333984) = 50
                 obs = 100
             N(runs) = 45
                  z  = -1.21
            Prob>|z| = .23

Since the probablity is greater than 0.05 the null hypotheisis cannot be rejected at the 5% 
significance level, thus they are independent.

Normality
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First we check the QQ-plot:

We can see that the residuals do not lie on the line. 

In a more formal way we can use the  Jarque-Bera test with the Stata output:

Skewness and kurtosis tests for normality
                                                         ----- Joint test -----
    Variable |       Obs   Pr(skewness)   Pr(kurtosis)   Adj chi2(2)  Prob>chi2
-------------+-----------------------------------------------------------------
 residual_m1 |       100         0.0000         0.0000         41.52     0.0000

With p=0.000 our visual interpretation of the QQ-plot is confirmed.

Breusch Pagan test checks if the error terms have constant variance 
(homoscedistic)

If the null hypothesis is true then the error terms have constant variance.
H0: error term is constant
H1: error term is not constant
test variable is nR2 and it is chi-squared distributed with one degree of freedem. We use the 5% 
significance level.

We get from Stata:
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 
         Ho: Constant variance
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         Variables: fitted values of price

         chi2(1)      =    83.16
         Prob > chi2  =   0.0000

The null hypothesis can be rejected, ie. we don’t have a contant variance.

d) Finding a better model
We could see that alla assumptions apart from indpendence were violated for the residuals. We have 
to then look for ways to transform the dependent variable. We canstart by taking the logarithm. We 
could see in the scatter plot figure in c) that it clearly isn’4t enoug. There is a curvature that is not 
accomodated for in the model. Therefore we introduce a squared term and cubed term in our 
regression model so that we transform I further.

We creathe therefore the variables carat_cubed and carat_squared that are besed on the independent 
variable carat but in cubed respectively squared form.

To test our model we have to do the same procedure as for part c) residual analysis but for model 
2’s residuals.
We get from Stata

Run test

Running the test in Stata gives:

 N(residual_m2 <= -.0266800262033939) = 50

 N(residual_m2 >  -.0266800262033939) = 50

                 obs = 100

             N(runs) = 45

                  z  = -1.21

            Prob>|z| = .23

We conclude that the residuals are independent.

Breusch Pagan

The stata output is the following:

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 

         Ho: Constant variance

         Variables: fitted values of logprice

         chi2(1)      =     0.00

         Prob > chi2  =   0.9800
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From the p-value we can conclude that we have constant variance.

Jarque-Bera

The QQ-plot looks better but we still have one outlier.

Skewness and kurtosis tests for normality

                                                         ----- Joint test -----

    Variable |       Obs   Pr(skewness)   Pr(kurtosis)   Adj chi2(2)  Prob>chi2

-------------+-----------------------------------------------------------------

 residual_m2 |       100         0.0558         0.1603          5.47     0.0650

According to the test we cannot reject the null hypothesis, ie. the residuals are normally distributed

We conclude that all three requirements are fulfilled by model 2.

e) Other tests, conclusion
We came to the conclusion that model 2 is better in part d since it fullfills all the requirements of the 
residuals to have a meaningful regression model. We can also look at the following values of the 
models: adjusted R2, RMSE and AIC
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The AIC of the models are given below where the lower the value the better.

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
      model1 |        100  -954.6239  -830.7651       7    1675.53   1693.766
      model2 |        100  -134.6569   53.36367       9  -88.72734  -65.28081
-----------------------------------------------------------------------------
Model 2 wins clearly

The adjusted R2 is better for model 2 (0.9747 vs 0.9106) as well as the RMSE ( 0.14876 vs. 1017.4).
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