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Financial Statistics Exam 20210322 
 
Part 1: Time series 
 
I will analyze International Flavors & Fragrances Inc. (IFF) weekly data from the past five 
years, from 22 mars 2016 to 22 mars 2021. I choose to analyze the adjusted close price since 
it takes into account the corporation's actions.  
 
a. Data Description  

 
Table 1. ​Summarize of the IFF stock 

From the summarize we can see that we will have 262 observations (or weeks) and that the 
lowest adjusted close price is 96.99 and the highest is 146.07 so we can assume that the time 
series will change quite a lot  during these five years.  
 

 
Diagram 1: ​Adjusted close price for IFF  
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From diagram 1 we can see that the stock seems to move quite a lot as assumed. The lowest 
adjusted price happens in the first weeks of 2020 which can be an effect of the coronavirus. 
At the end of each year we see an increase in the stock price and also an decrease at the end 
of the year (see the beginning of 2017). There is also a little upward trend and highest price 
of 2018 is higher than 2017.  I am still assuming the corona had an effect and causes a higher 
difference between the highest and lowest value in 2020. 
 
b. Stationarity  

In diagram 1 we clearly can see that the time series is not stationary, so instead we try the 
natural log of the return. 

 
Diagram 2: ​Logreturn of IFF 

 
The logged return of the IFF stock seems to be stationary from the diagram 2 compared to 
earlier since it fluctuates around zero. By using a Dickey fuller test to test for stationarity we 
can see if the data is stationary.  
Start by formulating the hypothesis:  

H0: ​The series is a random walk and therefore nonstationary  
HA​: The series is stationary  
Significance level: 5% 
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Table 2: ​Output from Dickey fuller test for the logretun of IFF 

We reject the null hypothesis since we have a p-value equal to zero and the test statistics 
-16.936< -3.459<-2.880< -2.570, so we reject the null at all significance levels.  
 
Therefore we can conclude  the logreturn of IFF is stationary.  
 
c. ACF and PACF  
The ACF and PACF plots are used to see the correlation of the data with previous values and 
we can use these plots to easier plot models for the time series. We need to perform the ACF 
and PACF plots on the logreturn since it is a stationary process. The first bar in the ACF 
shows if the data is correlated with the first lagged variable (previous value). ACF plot can be 
used to decide the moving average of an ARMA model. In our case we can not see that the 
first bars are significant and therefore we assume that our model is a 0 moving average 
process.  
 

  
Diagram 3: ​ACF for the logreturn for IFF  
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Diagram 4: P​ACF for the logreturn for IFF  

Since we cannot see a clear correlation with the first lagged variables we will test for (0,1,0) 
model but also (1,1,0) , (0,1,1) ,(1,1,1), (1,1,2), 2,1,1), (2,1,2).  
 
d. ARIMA  
The test will be the first difference of the logclose price since this is equivalent to the 
logreturn with a difference of zero. By choosing the logclose with the first difference we will 
estimate our model from a stationary process which we conclude in section b.  
 
We will leave out the three last variables and perform a dynamic forecasting.  

 
Table 3. ​Arima (2,1,2)  
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Table 4. ​Arima (2,1,1) 

 
Table 5: ​Arima (1,1,1) 
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Table 6: ​Arima (1,1,0)  

 
Table 7: ​Arima (0,1,0)  

 

 
Table 8: ​Arima (0,1,1) 

By starting with the model with largest AR and MA and there after testing the next model by 
excluding the lag with the highest p-value and we can from the outputs already disregard 
ARIMA (2,1,2) (2,1,1) and (1,1,1) since the coefficients are not significant. The Arima 
(0,1,0) seems just from the output most promising but we can compare the AIC and BIC for 
the different models and by using the rule “smallest value will be the best model” we can 
have more evidence and thereafter decide which model is the most promising.  
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Table 9: ​Output of AIC and BIC for the estimated ARIMA models.  

 
The ARIMA ( 1,1,1) has the smallest AIC and thereafter we have the ARIMA (2,1,2) but we 
have already excluded these models because of the coefficients not being significant. The 
ARIMA (0,1,0) have the smallest BIC and the smallest AIC of those models we still are 
considering.  
 
The ARIMA (0,1,0) is the most promising model when considering all of our tests. The  ACF 
plot showed a zero moving average process, the other models coefficients were not 
significant on a 5% level and it has the smallest BIC and AIC (only focusing on the models 
we have not disregarded already).  
 
e. RMSE  
The two “best models” are ARIMA (0,1,0) and (1,1,0) and by calculating the RMSE we can 
which model forecast better. But first we need to transform the predicted value since there are 
logged adjusted prices.  

 
Table 10: ​Forecast against adjusted close ARIMA (0,1,0)  

 
Table 11: ​Forecast against adjusted close ARIMA (1,1,0)  
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Table 12: ​Calculation of RMSE  

The arima model (1,1,0) has a better forecast of the last observation than the (0,1,0) model 
but the difference in RMSE is only 0.0768. In diagram 1 we can see a clear upward going 
trend so it can be an advantage for ARIMA (1,1,0) since it has a lagged moving average and 
especially since we just tested the RMSE for the last three weeks. I still think ARIMA (0,1,0) 
is the model with the best fit if we take everything else into calculation .  
 
f. GARCH  
Testing for GARCH effect in stata on ARIMA (0,1,0) with the hypothesis:  

H0: No arch effect  
HA: There is arch effects  

 

 
Table 13: ​Testing for arch effects  

We test if there is an arch disturbance in 15 lags and since the p-values of all the lags is zero 
we reject the null and find clear evidence of arch effects.  The presence of arch effects would 
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help us pick the best model in (d) since we can by comparing the variance between the 
models find the model that fits my preference best. If the variance is large in a model that we 
think is a great estimation for our time series we maybe will find it hard to forecast our 
results. In financial forecasting variance is important since financial time series are affected 
by more things than just the previous value and therefore it is hard to estimate financial data. 
The variance gives us a chance to use our model based on what we can risk and also give us 
an answer on how much the predictions from the model can vary.  
 
g. Residual analysis  
I will continue to analyze the ARIMA (0,1,0) model and by plotting the residuals we can see 
if there is any strange pattern or something consering.  
 
 

 
Diagram 5: ​Scatter of residuals over time  

From the scatter plot we can see that the residuals seem to grow with time which is a sign of 
heteroscedasticity so we need to test for heteroscedasticity with a Breusch Pagan test.  

H0: Homoscedastic error term  
HA: Heteroscedastic error term  
Significance level: 5%  

The critical value is 3.841.  
By regressing the squared residuals and the predicted values we get an R^2 of 0.0121, so the 
test statistics is 3.1701(262*0.0.121), we cannot reject the null since 3.1701<3.841.  
 
Stata output for the Time series part.  
/* Part 1 of exam 20210322*/ 

/* I will analyze the IFF stock weekly data for the past five 

years*/ 

clear  
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import delimited "/Users/Johanna/Downloads/IFF.csv", 

delimiter(comma) 

summarize 

/*Since we will just analuze the adjusted close price we will 

drop the rest variables*/ 

drop volume high low close open 

gen time=tw(2016W12)+_n-1 

format %tw time 

tsset time 

 

tsline adjclose, xtitle(weeks) ytitle(adjclose) title(IFF) 

 

/*stationary*/  

gen logclose=ln(adjclose) 

gen logreturn= D1.logclose  

tsline logreturn, xtitle(weeks) ytitle(logreturn) title(Return 

of IFF) 

dfuller logreturn, lags(0) 

 

/*ACF and PACF*/  

ac logreturn  

pac logreturn  

 

/*ARIMA*/ 

arima logclose in 1/259, arima(2,1,2) 

estimates store logarima212 

predict arima212, y dynamic(tw(2021w10)) 

 

arima logclose in 1/259, arima(2,1,1) 

 estimates store logarima211 

predict arima211, y dynamic(tw(2021w10)) 

 

arima logclose in 1/259, arima(1,1,1) 

estimates store logarima111 

predict arima111, y dynamic(tw(2021w10)) 

 

arima logclose in 1/259, arima(1,1,0) 

estimates store logarima110 

predict arima110, y dynamic(tw(2021w10)) 

 

arima logclose in 1/259, arima(0,1,0) 

estimates store logarima010 

predict arima010, y dynamic(tw(2021w10)) 
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arima logclose in 1/259, arima(0,1,1) 

estimates store logarima011 

predict arima011, y dynamic(tw(2021w10)) 

 

estimates stats logarima010 logarima011 logarima110 

logarima111 logarima211 logarima212 

 

gen realarima010=exp(arima010) 

gen realarima110=exp(arima110) 

 

/*RMSE*/ 

list adjclose realarima010 in 260/262 

list adjclose realarima110 in 260/262 

 

/*GARCH*/ 

regress arima010 

estat archlm, lags(1/15) 

 

/*Residual analysis*/ 

gen residuals= adjclose-realarima010 

scatter residuals time 

 

gen residuals_sqr=residuals^2 

regress residuals_sqr realarima010 

 
 
Part 2. Regression.  
Price: estimated in USD  
Carat: Weights in carats (1 carat =200 mg)  
Color_def: Dummy variable. 1= belongs to category d,e,f 
Color_gh: Dummy variable. 1= belongs to category g or h 
clarity_if: Dummy variable . 1=internally flawless 
Clarity_vvs: Dummy variable. 1= Very very slightly included 
Clarity _vs: Dummy variable. 1=very slightly included  
 

a) Summarize 
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Table 1: ​Summarize of diamonds  

The price range of the round cut diamonds is between 479 and 15 841 USD.  
b. Price compared to carat  
 

  
Diagram 1. ​Scatterplot of Price compared to carat 

We can see a linear relationship between the weight of the diamond and the price of the 
diamond. A higher carat indicates a higher price and we can see that the highest price is 
reached when we have the highest carat in the sample.  But we also need to consider that this 
is a small sample and most of the observations seem to be on a lower carat.  
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c. Regression of natural log of price 

 
Table 2​: Regression with Natural log as dependent variable 

The regression model has a high R^2 of 0.92 but this is not a good test, we can also see that 
the clarity_vs and color_gh are not significant at a 5% model, their confidence intervals 
contain zero so these should be taken out from the model. The RMSE is 0.28758.  
 

 
Diagram 2: ​Scatter of natural log compared to carat 

We can still see a linear relationship between the carat and price (in this case natural log of 
price) but now it is easier that there is a larger change in price as the weight increases. On the 
lower weights we can now also see the different observations and their prices.  
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d. Residuals model 1 

 
Diagram 3:​ Residuals model 1 

From the scatterplot we can see that there is a pattern between the residuals and we can 
therefore assume that there are heteroscedastic this because the residuals seems to be larger 
with the fitted values.  
 
e. Regression Model 2 
Now we will estimate another regression model, so we add two variables ( carat squared and 
carat cubed) . 

  
Table 3: ​Regression model 2.  
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We can see that all coefficients except the carat_cub is significant at a 5% level and that the 
RMSE now is 0.14658< 0.28758 (model 1) 

 
Diagram 4: ​Residuals model 2 

Now the residuals seem to be the same and not change with the predicted value.  
 
f. Breusch Pagan test model 2 
 
Doing a Breusch Pagan test for model 2 to test if the error term is heteroscedastic or not.  

H0: Homoscedastic error term  
HA: Heteroscedastic error term.  
Significance level of 5% 

Then we have a critical value of 3.841.  
 

 
Table 4: ​Breusch Pagan test for model 2 

Since the p-value is larger than 0,05 and the test statistics 0.12< 3.841 we cannot reject the 
null and therefore the error term is homoscedastic for model 2.  
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g.  Estimation  
Here is my calculations:  
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Stata output for regression part :  
/*regression part of exam*/ 

clear 

 use 

"/Users/Johanna/Library/Containers/com.apple.mail/Data/Library

/Mail 

Downloads/99BBB6AB-EA8B-40A6-B40D-388B5F463C16/diamonds.dta" 

summarize 

scatter price carat, title( price compared to carat) 

 

/* regression on natural log of price*/ 

gen logprice=ln(price) 

regress logprice carat color_def color_gh clarity_if 

clarity_vvs clarity_vs 

scatter logprice carat, xtitle(carat) ytitle(natural log of 

price) 

 

predict price_hat_m1 

predict residual_m1,residual  

scatter residual_m1 price_hat_m1,title(residuals model 1) 

 

/*regression model 2*/ 

gen carat_sqr=carat^2 

gen carat_cub=carat^3 

 

regress logprice carat color_def color_gh clarity_if 

clarity_vvs clarity_vs carat_cub carat_sqr 

 

predict price_hat_m2 

predict residual_m2,residual  

scatter residual_m2 price_hat_m2,title(residuals model 2) 

 

hettest  
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