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Financial Statistics Exam 20210322

Part 1: Time series

I will analyze International Flavors & Fragrances Inc. (IFF) weekly data from the past five
years, from 22 mars 2016 to 22 mars 2021. I choose to analyze the adjusted close price since
it takes into account the corporation's actions.

a. Data Description

Variable

130.7944 18.97712 33 156.84
133.9803 18.54881 157.4
127.5085 11.46718 152.82
130.8987 11.81651 8 156.87

adjclose 2 123.7372 10.10694 96.99049 146.8787
volume 26 5054609 8061881 687200 1.82e+08

Table 1. Summarize of the IFF stock
From the summarize we can see that we will have 262 observations (or weeks) and that the
lowest adjusted close price is 96.99 and the highest is 146.07 so we can assume that the time
series will change quite a lot during these five years.
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Diagram 1: Adjusted close price for IFF
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From diagram 1 we can see that the stock seems to move quite a lot as assumed. The lowest
adjusted price happens in the first weeks of 2020 which can be an effect of the coronavirus.
At the end of each year we see an increase in the stock price and also an decrease at the end
of the year (see the beginning of 2017). There is also a little upward trend and highest price
of 2018 is higher than 2017. I am still assuming the corona had an effect and causes a higher
difference between the highest and lowest value in 2020.

b. Stationarity
In diagram 1 we clearly can see that the time series is not stationary, so instead we try the
natural log of the return.

Return of IFF

logretum
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Diagram 2: Logreturn of IFF

The logged return of the IFF stock seems to be stationary from the diagram 2 compared to
earlier since it fluctuates around zero. By using a Dickey fuller test to test for stationarity we
can see if the data is stationary.
Start by formulating the hypothesis:

HO: The series is a random walk and therefore nonstationary

HA: The series is stationary

Significance level: 5%
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Dickey-Fuller test for unit root Mumber of obs =
Interpolated Dickey-=Fuller
Test 1% Critical 5% Critical 18% Critical

Statistic Value Value Value

Zit) -16.936 -3.459 -2.880 -2.578

MacKinnon approximate p-value for Z(t) = @0.0000

Table 2: Output from Dickey fuller test for the logretun of IFF
We reject the null hypothesis since we have a p-value equal to zero and the test statistics
-16.936< -3.459<-2.880< -2.570, so we reject the null at all significance levels.

Therefore we can conclude the logreturn of IFF is stationary.

¢. ACF and PACF

The ACF and PACF plots are used to see the correlation of the data with previous values and
we can use these plots to easier plot models for the time series. We need to perform the ACF
and PACF plots on the logreturn since it is a stationary process. The first bar in the ACF
shows if the data is correlated with the first lagged variable (previous value). ACF plot can be
used to decide the moving average of an ARMA model. In our case we can not see that the
first bars are significant and therefore we assume that our model is a 0 moving average
process.
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Diagram 3: ACF for the logreturn for IFF
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Diagram 4: PACF for the logreturn for IFF
Since we cannot see a clear correlation with the first lagged variables we will test for (0,1,0)
model but also (1,1,0) , (0,1,1) ,(1,1,1), (1,1,2), 2,1,1), (2,1,2).

d. ARIMA

The test will be the first difference of the logclose price since this is equivalent to the
logreturn with a difference of zero. By choosing the logclose with the first difference we will
estimate our model from a stationary process which we conclude in section b.

We will leave out the three last variables and perform a dynamic forecasting.

OPG
D.legclose Std. Err. [95% Conf. Intervall

. 0082851 .0a03402 . . -. 0003817 . 008952

-. 053066 1220907 -.2923594 1862273
8546514 .1158229 6292187 1.080092

-.@652855 1126.409 -0.028 1.000 -2207.786 2207.656
-.9347147 1852.813 -0.088 @.999 -2064.409 2062.54

.8384573 21.65894 B.08 f.499 42.48919

Note: The test of the variance against zero is one sided, and the two-sided

Table 3. Arima (2,1,2)
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0PG
D.logclose Std. Err. P>|z| [95% Conf. Intervall
ogclose
_cons 0010617 -B026258 B.686 -. 0040847 006208
RMA

-.5041941 8B702B7 8.578 -2.242738 1.23435
0194174 0894549 B.828 -.1559189 .1947457

4558774 8748552 -1.258887 2.170562
0394167 .20107089 08415155
0 . he O 0 O '. " ..'. - o ! i 0ne i O O " i O
Table 4. Arima (2,1,1)
W L ] r #] 84

Wald chi2(2) 1819.19
Log likelihood = 472.7874 Prob » chi2 = f.0000

D.logclose & : P>|z| [95% Conf. Intervall
logclose
_cons . 0002825 . 0083293 8 ®.391 -.0003629 . 0009279

« 8960557

-.99990958 30.04451 -59.88616 57.88616
.B3B5146 .5784056 1.172169

able 5: Arima (1,1,1)
Fample: 2816wl3 - 2821wl@ Number of obs 258
Wald chi2(1) 1.04
o0g likelihood = 467.8671 Prob > chi2 = B.3087

OPG
D.logclose Coef. Ztd. Err. [95% Conf. Interval
ogclose
_cons .0P10668 0825447 ; -. 0039207 .0BEB542
RMA

ar
L1. -.08516455 8507339 -1.82 2.309 -.15108821 8477912

8394631 . 8009343 42.24 2.000 8376319 8412942

ote: The test of the wvariance against zero is one sided, and the two-sided
confidence interval is truncated at zero.
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Table 6: Arima (1,1,0)

Sample: 2816wl3 - 2821wl@d Number of obs
Wald chi2(.)
Log likelihood = 467.5217 Prob > chil

D.logclose 3 P>|z]| [95% Conf. Intervall

001068 0025032 00859741

/sigma .8395165 .0R0B206 . 8379808 .0411249

: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

Table 7: Arima (0,1,0)

ample: 2816wl3 - 2021wl@ Number of obs
Wald chi2(1)
og likelihood = . Prob > chi2

D.logclose : & > [95% Conf. Intervall
ogclose
_cans 2010651 .0025582 i ¥. . Q060634
ma
L1. -.049561 B513797 -8.96 8.335 -.1582633 8511413

/sigma 8394661 . 0009282 42.89 0.000 8376626 0412696

ote: The test of the variance against zero is one sided, and the two-sided

Table 8: Arima (0,1,1)
By starting with the model with largest AR and MA and there after testing the next model by
excluding the lag with the highest p-value and we can from the outputs already disregard
ARIMA (2,1,2) (2,1,1) and (1,1,1) since the coefficients are not significant. The Arima
(0,1,0) seems just from the output most promising but we can compare the AIC and BIC for
the different models and by using the rule “smallest value will be the best model” we can
have more evidence and thereafter decide which model is the most promising.
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Akaike's infermation criterion and Bayesian information criterion

11(null) 1l{model)

logarima@1e@ i i @434
logarima@ll c . 7826

logarimall@ ] . 467. 7341
logarimalll ; - 5747
logarima2l ] - : 3353

logarima2l2 . . 3421

Mote: BIC uses N = number of observations. See [R] BIC note.

Table 9: Output of AIC and BIC for the estimated ARIMA models.

The ARIMA ( 1,1,1) has the smallest AIC and thereafter we have the ARIMA (2,1,2) but we
have already excluded these models because of the coefficients not being significant. The
ARIMA (0,1,0) have the smallest BIC and the smallest AIC of those models we still are
considering.

The ARIMA (0,1,0) is the most promising model when considering all of our tests. The ACF
plot showed a zero moving average process, the other models coefficients were not
significant on a 5% level and it has the smallest BIC and AIC (only focusing on the models
we have not disregarded already).

e. RMSE
The two “best models” are ARIMA (0,1,0) and (1,1,0) and by calculating the RMSE we can
which model forecast better. But first we need to transform the predicted value since there are

logged adjusted prices.
adjclose real~B1e@

135.7957
135.9448
136.8981

Table 10: Forecast against adjusted close ARIMA (0,1,0)

adjclose real~118

135.9997
136.1453
136.2906

Table 11: Forecast against adjusted close ARIMA (1,1,0)
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ARIMA 010

Adjusted close price forecast value difference sqr differenci
134,84 135,7997 -0,9597 | 0,92102409
137,31 135,0448 1,3652 1,B6377104
137,31 136,0001 1,2199 148815601

MSE 1,42431705

RMSE 1,19344755

ARIMA 110

Adjusted close price forecast value difference sqr differenci
134,84 135,9997 -1,1597 | 1,34490400
137,31 136,1453 1,1647 1,35652600
137,31 135,2906 1,0194 1,03917636

MSE 1, 24686885

RMSE 1,11663282

Table 12: Calculation of RMSE
The arima model (1,1,0) has a better forecast of the last observation than the (0,1,0) model
but the difference in RMSE is only 0.0768. In diagram 1 we can see a clear upward going
trend so it can be an advantage for ARIMA (1,1,0) since it has a lagged moving average and
especially since we just tested the RMSE for the last three weeks. I still think ARIMA (0,1,0)
is the model with the best fit if we take everything else into calculation .

f. GARCH

Testing for GARCH effect in stata on ARIMA (0,1,0) with the hypothesis:
HO: No arch effect
HA: There is arch effects

LM test for autoregressive conditional heteroskedasticity (ARCH)
Prob > chiz

@.0000
@.0000
@.0000
@.0000
@.0000
@.0000
@.0000
o.o000
0.e000
o.0000
o.o000
o.o000
0.0000
8.0000
@.0000

116.218
116.29@
113.812
112.478
113.770
112.373
119.783
112.125
113.259
113.380
112.952
113.159
113.983
114.557
114.171

1
2
3
4
5
6
7
8
9

e el el el el =
W B W R e &

Table 13: Testing for arch effects
We test if there is an arch disturbance in 15 lags and since the p-values of all the lags is zero
we reject the null and find clear evidence of arch effects. The presence of arch effects would
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help us pick the best model in (d) since we can by comparing the variance between the
models find the model that fits my preference best. If the variance is large in a model that we
think is a great estimation for our time series we maybe will find it hard to forecast our
results. In financial forecasting variance is important since financial time series are affected
by more things than just the previous value and therefore it is hard to estimate financial data.
The variance gives us a chance to use our model based on what we can risk and also give us
an answer on how much the predictions from the model can vary.

g. Residual analysis
I will continue to analyze the ARIMA (0,1,0) model and by plotting the residuals we can see
if there is any strange pattern or something consering.
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Diagram 5: Scatter of residuals over time

From the scatter plot we can see that the residuals seem to grow with time which is a sign of
heteroscedasticity so we need to test for heteroscedasticity with a Breusch Pagan test.

HO: Homoscedastic error term

HA: Heteroscedastic error term

Significance level: 5%
The critical value is 3.841.
By regressing the squared residuals and the predicted values we get an R*2 of 0.0121, so the
test statistics is 3.1701(262*0.0.121), we cannot reject the null since 3.1701<3.841.

Stata output for the Time series part.

/* Part 1 of exam 20210322*/

/* I will analyze the IFF stock weekly data for the past five
years*/

clear
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import delimited "/Users/Johanna/Downloads/IFF.csv",
delimiter (comma)

summarize

/*Since we will just analuze the adjusted close price we will
drop the rest variables*/

drop volume high low close open

gen time=tw(2016W12)+ n-1

format %$tw time

tsset time

tsline adjclose, xtitle(weeks) ytitle(adjclose) title (IFF)

/*stationary*/

gen logclose=1n(adjclose)

gen logreturn= Dl.logclose

tsline logreturn, xtitle (weeks) ytitle(logreturn) title (Return
of IFF)

dfuller logreturn, lags(0)

/*ACF and PACF*/
ac logreturn
pac logreturn

/*ARIMA* /

arima logclose in 1/259, arima(2,1,2)
estimates store logarima2l?2

predict arima?2l2, y dynamic(tw(2021wl0))

arima logclose in 1/259, arima(2,1,1)
estimates store logarimaZ2ll
predict arima2ll, y dynamic(tw(2021wl0))

arima logclose in 1/259, arima(1l,1,1)
estimates store logarimalll
predict arimalll, y dynamic(tw(2021wl0))

arima logclose in 1/259, arima(1,1,0)
estimates store logarimallO
predict arimall(O, y dynamic(tw(2021wl0))

arima logclose in 1/259, arima(0,1,0)

estimates store logarimaOl0
predict arima0l0, y dynamic(tw(2021wl0))

10
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arima logclose in 1/259, arima(0,1,1)
estimates store logarimalOll
predict arimal0ll, y dynamic(tw(2021wl0))

estimates stats logarima0l0 logarimaOll logarimallO
logarimalll logarima2ll logarima2l?2

gen realarima0lO0=exp (arima010)
gen realarimallO=exp (arimallO0)

/*RMSE*/
list adjclose realarima0l0 in 260/262
list adjclose realarimallO in 260/262

/*GARCH*/
regress arimall0
estat archlm, lags(1/15)

/*Residual analysis*/
gen residuals= adjclose-realarima010
scatter residuals time

gen residuals sgr=residuals”2
regress residuals sqr realarimaOl0

Part 2. Regression.

Price: estimated in USD

Carat: Weights in carats (1 carat =200 mg)

Color_def: Dummy variable. 1= belongs to category d,e,f
Color gh: Dummy variable. 1= belongs to category g or h
clarity if: Dummy variable . 1=internally flawless
Clarity_vvs: Dummy variable. 1= Very very slightly included
Clarity vs: Dummy variable. 1=very slightly included

a) Summarize

11
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Variable

price
carat
color_def
color_gh
clarity_if

clarity_vs
clarity_vvs

3519.14
« 7246
42

« 34

3700.692
4276142
4985694
4785181
« 2398979

Table 1: Summarize of diamonds

The price range of the round cut diamonds is between 479 and 15 841 USD.

b. Price compared to carat

price compared to carat
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Diagram 1. Scatterplot of Price compared to carat
We can see a linear relationship between the weight of the diamond and the price of the
diamond. A higher carat indicates a higher price and we can see that the highest price is

reached when we have the highest carat in the sample. But we also need to consider that this
is a small sample and most of the observations seem to be on a lower carat.

12
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c. Regression of natural log of price

Source

Model
Residual

IIIHHHHIHHHI

carat
calar_def
color_gh
clarity_if
clarity_vvs
clarity_vs
_cons

44.5328789
3.55621108

48.08909

2.37B479
« 2506085
.B983266
+5594052
3426804
0846128
5.722215

10897621
»1132199

«122126

.1999006

.123849

.1838431
1614332

7.42214649
.BB2702583

Number of obs
F(6, 43)

Prob > F
R-squared

Adj R-squared
Root MSE

[95% Conf.

2.157122
0222708
« 3446172
«1562672
.0929151
-.1248068
5.396654

Table 2: Regression with Natural log as dependent variable
The regression model has a high R*2 of 0.92 but this is not a good test, we can also see that
the clarity vs and color_gh are not significant at a 5% model, their confidence intervals
contain zero so these should be taken out from the model. The RMSE is 0.28758.

50
89.75
B.0eoe
0.9260
B.9157
«2B758

Intervall
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Diagram 2: Scatter of natural log compared to carat
We can still see a linear relationship between the carat and price (in this case natural log of
price) but now it is easier that there is a larger change in price as the weight increases. On the
lower weights we can now also see the different observations and their prices.

13
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d. Residuals model 1
residuals model 1
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Diagram 3: Residuals model 1

From the scatterplot we can see that there is a pattern between the residuals and we can
therefore assume that there are heteroscedastic this because the residuals seems to be larger

with the fitted values.

e. Regression Model 2

Now we will estimate another regression model, so we add two variables ( carat squared and

carat cubed) .

Source

Mode 1
Residual

Total

carat
color_def
color_qgh
clarity_1ifv
clarity_vvs
clarity_vs
carat_cub
carat_sqr
_cons

47.2081226
. 880967412

48.08909

Coef.

5.544972
3655274
.1785186
6063287
« 387057
214462
.2933828
-2.139552
4.481534

df M5 50
274.63
@.0000
@.9817
2.9781

.14658

Number of obs
F(8, 41)
Prob > F
R-squared

Adj R-squared
Root MSE

8
41

5.90101533
02148701

49 98141

Std. Err. P>|t| [95% Conf. Intervall
. 83458597
.@598745
0687702
1865493
B644202
B564176
. 25890825
8623078
. 2561306

6.64
6.10
2.60
5.69
6.081
3.80
1.13
-2.48
17.58

0.0080
@.0080
8.013
0.000
@.000
@.000
2.264
2.017
@.000

3.858737
. 2446083
8396344
.391148
. 2569578
1005244
-.2294813
-3.881018
3.964268

7.231208
4864464
.3174028
-B2150894
«5171562
3283997
.Bl6247
-.3980865
4.9988

Table 3: Regression model 2.

14
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We can see that all coefficients except the carat cub is significant at a 5% level and that the

RMSE now is 0.14658< 0.28758 (model 1)

residuals model 2
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Diagram 4: Residuals model 2
Now the residuals seem to be the same and not change with the predicted value.

f. Breusch Pagan test model 2

Doing a Breusch Pagan test for model 2 to test if the error term is heteroscedastic or not.
HO: Homoscedastic error term
HA: Heteroscedastic error term.
Significance level of 5%

Then we have a critical value of 3.841.

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho:
Variables:

Constant variance
fitted values of logprice

@.12
@.7254

chi2(1)
Prob = chi2

Table 4: Breusch Pagan test for model 2
Since the p-value is larger than 0,05 and the test statistics 0.12< 3.841 we cannot reject the
null and therefore the error term is homoscedastic for model 2.

15
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g. Estimation

Here is my calculations:

16
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Stata output for regression part :
/*regression part of exam*/
clear

use

"/Users/Johanna/Library/Containers/com.apple.mail/Data/Library

/Mail
Downloads/99BBB6AB-EA8B-40A6-B40D-388B5F463Cl6/diamonds.dta"
summarize

scatter price carat, title( price compared to carat)

/* regression on natural log of price*/

gen logprice=ln(price)

regress logprice carat color def color gh clarity if
clarity vvs clarity vs

scatter logprice carat, xtitle(carat) ytitle(natural log of
price)

predict price hat ml
predict residual ml,residual
scatter residual ml price hat ml,title(residuals model 1)

/*regression model 2*/
gen carat sgr=carat”?2
gen carat cub=carat”3

regress logprice carat color def color gh clarity if
clarity vvs clarity vs carat cub carat sqr

predict price hat m2
predict residual m2,residual

scatter residual m2 price hat m2,title(residuals model 2)

hettest

17



