FINAL EXAM, ECONOMETRICS II 2023-05-31

Time for examination: 08:00-13:00
Allowed tools: Pocket calculator, own formula sheet (1 double-sided A4 page), Course textbooks (any edition): Wooldridge, J.M. Introductory Econometrics - a Modern Approach and Montgomery, Jennings and Kulachi - Introduction to Time Series and Forecasting.

The exam consists of 6 problems. The problems are not sorted by their degree of difficulty. Write well motivated worked solutions, preferably on a single side of the paper. State any necessary assumptions or conditions where needed. Answers may be given in English or Swedish.

Passing rate: 50% of the total 100 marks. See the course description for a detailed grading criteria.

```
Good luck!
```

Problem 1. (15 marks)
Without motivation, indicate which single alternative is correct for each of the following sub-questions. Answering more than one alternative in a sub-question results in 0 marks for the sub-question.
(a.) The time series model

$$
y_{t}=10+0.7 y_{t-1}+0.2 y_{t-2}+\epsilon_{t}
$$

where ϵ_{t} is iid with $\epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$:
(i.) has $\mathrm{E}\left(y_{t}\right)=10$.
(ii.) is covariance stationary.
(iii.) has $\mathrm{V}\left(y_{t}\right)=\sigma^{2}\left(1+0.7^{2}+0.2^{2}\right)$.
(iv.) is non-stationary.
(b.) Suppose that the true model is

$$
y_{t}=0.4 x_{t}+z_{t}+u_{t},
$$

where x_{t} and z_{t} are weakly dependent and stationary processes, and u_{t} is a white noise process with $\mathrm{E}\left(u_{t}\right)=0$. Assume that

$$
z_{t}=0.95 z_{t-1}+v_{t},
$$

where v_{t} is white noise with $\mathrm{E}\left(v_{t}\right)=0$. Suppose that we regress y_{t} against x_{t} and obtain the fitted values

$$
\begin{equation*}
\hat{y}_{t}=\hat{\beta} x_{t}, \tag{1}
\end{equation*}
$$

where $\hat{\beta}$ is obtained via OLS. Then:
(i.) The proposed model underlying (1), i.e.

$$
y_{t}=\beta x_{t}+\eta_{t}
$$

where η_{t} is a white noise process with $\mathrm{E}\left(\eta_{t}\right)=0$, is dynamically complete.
(ii.) We can expect that the residuals obtained from (1) are independent.
(iii.) We can expect that the residuals obtained from (1) have a unit root.
(iv.) We can expect that the residuals obtained from (1) are serially correlated.
(c.) Which of the following four is the most suitable model for the time series in Figure 1:
(i.) $y_{t}=\beta_{0}+\beta_{1} t+\phi y_{t-11}+\varepsilon_{t}$, with $|\phi|<1$ and ε_{t} iid with $\mathrm{E}\left(\varepsilon_{t}\right)=0$.
(ii.) $y_{t}=L_{t} S_{t}+\varepsilon_{t}$, where L_{t} is the linear trend component and S_{t} is the seasonal adjustment with

$$
S_{t}=S_{t+6}=S_{t+12}=S_{t+18}=\ldots,
$$

and ε_{t} iid with $\mathrm{E}\left(\varepsilon_{t}\right)=0$.
(iii.) $y_{t}=L_{t}+S_{t}+\varepsilon_{t}$, where L_{t} is the linear trend component and S_{t} is the seasonal adjustment with

$$
S_{t}=S_{t+12}=S_{t+24}=S_{t+36}=\ldots
$$

and ε_{t} iid with $\mathrm{E}\left(\varepsilon_{t}\right)=0$.
(iv.) $y_{t}=L_{t} S_{t}+\varepsilon_{t}$, where L_{t} is the linear trend component and S_{t} is the seasonal adjustment with

$$
S_{t}=S_{t+12}=S_{t+24}=S_{t+36}=\ldots
$$

and ε_{t} iid with $\mathrm{E}\left(\varepsilon_{t}\right)=0$.
(d.) Suppose that we have two periods of data, $t=1,2$, and N individuals, $i=1, \ldots, N$. Consider the fixed effects (unobserved effects) model

$$
\begin{equation*}
y_{i t}=\beta x_{i t}+a_{i}+u_{i t}, \tag{2}
\end{equation*}
$$

where $u_{i t}$ is the time-varying error and a_{i} is the fixed effect. What is not true about this fixed effects model:
(i.) We can take the first differences to obtain

$$
\begin{equation*}
\Delta y_{i}=\beta \Delta x_{i}+\Delta u_{i} \tag{3}
\end{equation*}
$$

with $\Delta y_{i}=y_{i 2}-y_{i 1}, \Delta x_{i}=x_{i 2}-x_{i 1}$, and $\Delta u_{i}=u_{i 2}-u_{i 1}$.
(ii.) To estimate β by OLS using the approach in (i.), i.e. using (3), it is required that $x_{i t}$ is constant across time for each individual i.
(iii.) To estimate β by OLS using the approach in (i.), i.e. using (3), strict exogeneity needs to hold for $u_{i t}$ in (2), which means that $\mathrm{E}\left(u_{i t} \mid x_{i 1}, x_{i 2}\right)=0$ for $t=1,2$.
(iv.) The parameter a_{i} in (2) captures unobserved effects for individual i that are constant across time.
(e.) Which of the following is the main problem with serially correlated errors u_{t} in the time series regression

$$
y_{t}=\alpha+\beta x_{t}+u_{t}
$$

(i.) They necessarily violate contemporaneous exogeneity, i.e. $\mathrm{E}\left(u_{t} \mid x_{t}\right) \neq 0$.
(ii.) The OLS estimator of β is inconsistent, even if $\mathrm{E}\left(u_{t} \mid x_{t}\right)=0$.
(iii.) Testing the hypothesis $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$ using the sampling distribution of the OLS estimator may give misleading results.
(iv.) $\operatorname{Cov}\left(u_{t}, \alpha\right) \neq 0$, which causes inconsistent estimation of α.

Figure 1: Time series data in Problem 1 (c.).

Problem 2. (15 marks)
Consider the following three time series models:

- Model 1:

$$
\begin{equation*}
y_{t}=5+\epsilon_{t}-0.7 \epsilon_{t-1}+0.3 \epsilon_{t-2}, \tag{4}
\end{equation*}
$$

with $\epsilon_{t} \sim \mathcal{N}(0,1)$, and independent for all t.

- Model 2:

$$
\begin{equation*}
y_{t}=5+\epsilon_{t}+0.9 \epsilon_{t-1}+0.5 \epsilon_{t-2}, \tag{5}
\end{equation*}
$$

with $\epsilon_{t} \sim \mathcal{N}(0,1)$, and independent for all t.

- Model 3:

$$
\begin{equation*}
y_{t}=0.35+0.93 y_{t-1}+\epsilon_{t}, \tag{6}
\end{equation*}
$$

with $\epsilon_{t} \sim \mathcal{N}(0,1)$, and independent for all t.
For each of the models above, $T=10,000$ samples are simulated and the autocorrelation function $\rho(k), k=1, \ldots, 12$, for each model is estimated. Figure 2 shows the estimated autocorrelation functions (B1, B2, B3) and snapshots of the first $t=1, \ldots, 50$ observations for each time series (A1, A2, A3). Note that the figures in each panel are in random order, i.e. a time series in a given row does not necessarily correspond to the autocorrelation function in the same row.
Pair each of the three models, i.e. (4), (5), and (6), with one realisation (A1, A2, A3) and one autocorrelation function (B1, B2, B3). Clearly motivate your answers. Providing a correct pairing for a model without motivation results in 0 marks for the model.

Figure 2: Three time series $y_{t}, t=1, \ldots, 50$, (left panel) and three estimated autocorrelation functions (right panel) in Problem 2. The dashed horisontal lines in the figures on the left panel correspond to $E\left(y_{t}\right)$. The two dashed horisontal lines in the figures on the right panel correspond to the 95% confidence bands for the sample autocorrelation. Note that the figures in each panel are in random order, i.e. a time series in a given row does not necessarily correspond to the autocorrelation function in the same row.

Problem 3. (10 marks)
Write the following models using backshift operators. Clearly indicate the order of the different lag-polynomials, e.g. for an ARIMA(1,1,3),

$$
\left(1-\phi_{1} B\right)(1-B) y_{t}=\delta+\left(1-\theta_{1} B-\theta_{2} B^{2}-\theta_{3} B^{3}\right) \epsilon_{t} .
$$

(a.) $\operatorname{ARIMA}(1,2,1)$.
(b.) $\operatorname{ARIMA}(0,2,2)$.
(c.) $\operatorname{ARIMA}(1,1,1) \times(1,1,2)$ with seasonal period $s=4$.

Problem 4. (20 marks)
A marketing company wants to model the average monthly amount y_{t} (in SEK) a car company spends on advertising, i.e marketing spending, as a function of their monthly sales x_{t} (in SEK) as follows

$$
\begin{equation*}
y_{t}=\alpha_{0}+\delta_{1} x_{t-1}+\delta_{2} x_{t-2}+\delta_{3} x_{t-3}+u_{t}, \tag{7}
\end{equation*}
$$

where u_{t} denotes the error term. Both y_{t} and x_{t} can be assumed to be stationary and weakly dependent.
(a.) What kind of model is (7)? Suppose OLS is used to estimate (7). What is required to obtain consistent estimates of δ_{1}, δ_{2} and δ_{3} ? Suppose further that u_{t} is serially correlated. Does your stated result for consistency still hold?
(b.) Suppose there is a temporary 10 million SEK increase in monthly sales at time t. What is the immediate change in marketing spending due to this increase?
(c.) Suppose there is a temporary 20 million SEK increase in monthly sales at time t. What is the change in marketing spending two periods after this increase?
(d.) Suppose there is a permanent 5 million SEK increase in monthly sales at time t. What is the cumulative effect on marketing spending two time periods after this permanent change?
(e.) The car company hires a new CEO at time t who promises that she will deliver a permanent 10 million SEK increase in monthly sales from the moment she starts. What is the long-term change in marketing spending with this new CEO?

Figure 3: Number of passengers (in millions) that used Stockholm Arlanda airport during 2010-2018 in Problem 5.

Problem 5. (25 marks)
Table 1 shows the number of passengers (in millions) that used Stockholm Arlanda airport during 2010-2018. Figure 3 shows a time series plot of the data.

Table 1: Number of passengers (in millions) that used Stockholm Arlanda airport during 2010-2018 in Problem 5.

$$
\begin{array}{lccccccccc}
\text { Year } & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 \\
\hline y_{T} & 17 & 19.1 & 19.7 & 20.7 & 22.4 & 23.2 & 24.7 & 26.6 & 26.8 \\
\hline
\end{array}
$$

Table 2 shows the data y_{T} together with the smoothed values $\tilde{y}_{T}^{(1)}$ and $\tilde{y}_{T}^{(2)}$ obtained as

$$
\begin{aligned}
& \tilde{y}_{T}^{(1)}=\lambda y_{T}+(1-\lambda) \tilde{y}_{T-1}^{(1)} \\
& \tilde{y}_{T}^{(2)}=\lambda \tilde{y}_{T}^{(1)}+(1-\lambda) \tilde{y}_{T-1}^{(2)},
\end{aligned}
$$

for $T=1, \ldots, 5,(T=1$ and $T=5$ correspond to 2010 and 2014, respectively) with $\tilde{y}_{0}^{(1)}=\tilde{y}_{0}^{(2)}=17$ and $\lambda=0.6$.

Table 2: Number of passengers that used Stockholm Arlanda airport during 2010-2018 and smoothed values (up to 2014) using $\lambda=0.6$ in Problem 5.

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018
y_{T}	17	19.1	19.7	20.7	22.4	23.2	24.7	26.6	26.8
$\tilde{y}_{T}^{(1)}$	17.00	18.26	19.12	20.07	21.47	$?$	$?$	$?$	$?$
$\tilde{y}_{T}^{(2)}$	17.00	17.76	18.58	19.47	20.67	$?$	$?$	$?$	$?$

(a.) Explain why simple exponential smoothing is not a suitable model for these data.
(b.) Complete the cells with question marks (?) in Table 2 using double exponential smoothing (with the same λ as above, i.e. $\lambda=0.6$). Moreover, compute the unbiased estimates $\hat{y}_{T}, T=1, \ldots, 9$, of the expected value of the underlying process

$$
y_{t}=\beta_{0}+\beta_{1} t+\varepsilon_{t}
$$

where ε_{t} are iid for all t with $E\left(\varepsilon_{t}\right)=0$. You do not need to recompute the smoothed values that are given in Table 2.
(c.) Forecast the number of passengers that use Stockholm Arlanda airport in 2019 using double exponential smoothing. It turned out that the actual number of passengers that used Stockholm Arlanda airport in 2019 was 25.6 (in millions). Compute the relative forecast error.
(d.) Consider only the first four years of data, i.e. 2010, 2011, 2012, 2013. Forecast the number of passengers that will visit Arlanda in 2014 and 2015 using Holt's method. Use the starting values for the level and the trend as $L_{0}=16$ and $T_{0}=1.2$, respectively, and the smoothing constants $\alpha=0.5$ and $\gamma=0.6$. Compute the forecast errors (the one-step ahead forecast error for 2014 and the two-step ahead forecast error for 2015).

Problem 6. (15 marks)
Suppose that y_{t} follows the MA(5) process

$$
\begin{equation*}
y_{t}=\mu-\theta_{2} \epsilon_{t-2}-\theta_{4} \epsilon_{t-4}-\theta_{5} \epsilon_{t-5} \tag{8}
\end{equation*}
$$

where the error ϵ_{t} is white noise with $\mathrm{E}\left(\epsilon_{t}\right)=0$ and $\mathrm{V}\left(\epsilon_{t}\right)=\sigma^{2}$. In this problem, you are not allowed to use the formulas for the autocovariance and autocorrelation of an MA(5) process (Equations (5.9) and (5.10) in MJK): you have to do the calculations yourself.
(a.) Compute the autocovariance function of $y_{t}, \gamma_{y}(k)=\operatorname{Cov}\left(y_{t}, y_{t+k}\right)$ for $k=1,2,3,4,5$, and the autocorrelation function of $y_{t}, \rho_{y}(-k)=\operatorname{Corr}\left(y_{t}, y_{t-k}\right)$ for $k=2,3$.
(b.) Suppose that $\epsilon_{t} \sim \mathcal{N}(0,1), \mu=2, \theta_{2}=-0.2$, and $\theta_{4}=\theta_{5}=0.4$. Assume that, at time $t=15, \epsilon_{15}=0.28, \epsilon_{14}=-0.5, \epsilon_{13}=0.7, \epsilon_{12}=0.2, \epsilon_{11}=1.05, \epsilon_{10}=-1.21$, and $\epsilon_{9}=$ 2.11. Let \hat{y}_{t+1} be the optimal one-step ahead forecast that minimises $\mathrm{E}\left(\left(y_{t+1}-\hat{y}_{t+1}\right)^{2}\right)$. Compute \hat{y}_{t+1} for $t=15$.
Hint: \hat{y}_{t+1} is a special type of expectation (that is often played in the broken record!).

