STOCKHOLM UNIVERSITY
Department of Statistics
Econometrics I, Regression analysis, ST223G
Spring semester 2020

Written Re-examination in Econometrics I

Date	$2020-06-08$
Hour:	$15.00-20.00$
Examiner:	Jörgen Säve-Söderbergh
Allowed tools:	1) Textbook: Wooldridge, J.M. Introductory
	Econometrics: A Modern Approach, Cengage.
	2) Pocket calculator
	3) Notes written in the text book are allowed.

- Note that no formula sheet is provided.
- Passing rate: 50% of overall total, which is 100 points. For detailed grading criteria, see the course description.
- The maximum number of points for each problem is stated after each question. If not indicated otherwise, to obtain the maximum number of points on each problem, detailed and clear solutions are required. Answers may be given in English or Swedish.

Good luck!

The Data Set

We will utilize the data set FERTIL1. The data in FERTIL1 are a pooled cross section on more than a thousand U.S. women for the even years between 1972 and 1984. Exactly, there $n=1129$ women in the sample.

```
1. year
2. educ
3. meduc
4. feduc
5. age
6. kids
7. black
8. east
9. northcen
10. west
11. farm
12. othrural
13. town
14. smcity
15. y74
16. y76
17. y78
18. y80
19. y82
20. y84
21. agesq
age^2
22. y74educ
y74*educ
23. y76educ
24. y78educ
25. y80educ
26. y82educ
27. y84educ
```

1. A researcher has eighteen observations on three variables that are interesting in her field of knowledge. One of them is the dependent variable y and the other two are one explanatory variable x and one dummy/indicator variable that has values in three categories. Thus, we will need two dummy variables to take care of the three different categories. Let d_{1} denote the first one and d_{2} the second (we don't need to know which category is the base category for this problem).
(a) Assume that the researcher models the connection between the variables as

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} d_{1}+\beta_{3} d_{2}+\varepsilon
$$

She finds that the total sum of squares (SST) equals 85260.44444 and that the residual sum of squares (SSR) equals 5078.71318 . Use this information to test

$$
H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0 \quad \text { versus } H_{1}: \neg H_{0}
$$

Use 5% significance level. (15 p)
(b) The next step for the researcher is to estimate the model

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} d_{1}+\beta_{3} d_{2}+\beta_{4} x d_{1}+\beta_{5} x d_{2}+\varepsilon
$$

where she finds that the explained sum of squares (SSE) equals 82707.77658195. Use this information to test

$$
H_{0}: \beta_{4}=\beta_{5}=0 \text { versus } H_{1}: \neg H_{0} .
$$

Use 5% significance level. (15 p)
2. In this question we bring example 13.1 in Wooldridge (page 428 in 7 th) a little further. We are seeking to estimate a model for the total number of children ever born to a woman. What are the determinants of this? Since our dependent variable is a count variable we are interested in using Poisson regression.

An analysis of the data material FERTIL1 was undertaken with R where we relate the number of kids to a number of explanatory variables.

Call:
glm(formula $=$ kids \sim educ + age $+\mathrm{I}\left(\right.$ age $\left.{ }^{\wedge} 2\right)+$ black + east + northcen + west + farm + othrural + town + smcity $+\mathrm{y} 74+\mathrm{y} 76+\mathrm{y} 78+$ $y 80+y 82+y 84, f a m i l y=$ poisson, data $=$ fertil1)

Deviance Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-2.91598	-0.67884	-0.04123	0.55625	2.49302

Coefficients:

| | Estimate | Std. Error | z value $\operatorname{Pr}(>\|z\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| (Intercept) | -3.0604626 | 1.2106974 | -2.528 | 0.011476 | $*$ |
| educ | -0.0482027 | 0.0072302 | -6.667 | $2.61 e-11$ | $* * *$ |
| age | 0.2044553 | 0.0547527 | 3.734 | 0.000188 | $* * *$ |
| I (age~2) | -0.0022290 | 0.0006171 | -3.612 | 0.000304 | $* * *$ |
| black | 0.3603475 | 0.0610748 | 5.900 | $3.63 e-09$ | $* * *$ |
| east | 0.0878001 | 0.0526729 | 1.667 | 0.095535 | . |
| northcen | 0.1417221 | 0.0475056 | 2.983 | 0.002852 | $* *$ |
| west | 0.0795427 | 0.0656991 | 1.211 | 0.226006 | |
| farm | -0.0148484 | 0.0575534 | -0.258 | 0.796412 | |
| othrural | -0.0572939 | 0.0691574 | -0.828 | 0.407412 | |
| town | 0.0306807 | 0.0485793 | 0.632 | 0.527675 | |
| smcity | 0.0741129 | 0.0615484 | 1.204 | 0.228535 | |
| y74 | 0.0932809 | 0.0630849 | 1.479 | 0.139232 | |
| y76 | -0.0287888 | 0.0675828 | -0.426 | 0.670123 | |
| y78 | -0.0156856 | 0.0686754 | -0.228 | 0.819334 | |
| y80 | -0.0196524 | 0.0689821 | -0.285 | 0.775727 | |
| y82 | -0.1926076 | 0.0674991 | -2.853 | 0.004324 | $* *$ |
| y84 | -0.2143735 | 0.0694641 | -3.086 | 0.002028 | $* *$ |

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1331.1 on 1128 degrees of freedom Residual deviance: 1184.3 on 1111 degrees of freedom AIC: 4176.5

```
Number of Fisher Scoring iterations: 5
```

(a) Interpret the coefficient on $y 82 . \quad(10 \mathrm{p})$
(b) What is the estimated percentage difference in fertility between a black woman and a nonblack woman, holding other factors fixed? (10 p)
(c) What is the estimated value of the standard deviation? Is there evidence of over- or underdispersion? (10 p)
3. Assume that you have decided that the model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

fits your data material. An editor in a famous research magazine asks you to test the null hypothesis $H_{0}: \beta_{1}+\beta_{2}=1$. Show how this can be done.

Hint: Define $\theta_{1}=\beta_{1}+\beta_{2}-1$ and write a regression equation involving β_{0}, θ_{1} and β_{2} that allows you to directly obtain $\hat{\theta}_{1}$ and its standard error. (20 p)
4. Consider the simple linear regression $y=\beta_{0}+\beta_{1} x+u$, where the assumptions SLR. 1 - SLR. 4 are assumed to be true. Let the OLS estimator of β_{1} be denoted (as usual) by $\hat{\beta}_{1}$. Show that

$$
E\left(\hat{\beta}_{1}\right)=\beta_{1}
$$

(20 p)

