Stockholm University

BASIC STATISTICS FOR ECONOMISTS, STE101. EXAM

Department of statistics
Edgar Bueno
2023-06-01

Time: 08:00 - 13:00
Approved aid: Hand-held calculator with no stored text, data or formulas
Provided aid: Formula Sheet and Probability Distribution Tables, returned after the exam.
Problems 1 - 12: Multiple choice questions (max 60 points):

- A total of 12 multiple choice questions with five alternative answers per question one of which is the correct answer. Mark your answers on the attached answer form.
- Marking more than one alternative will result in zero points for that question.
- Each correct answer is worth 5 points.
- Written solutions should not be submitted; only your answers on the answer form will be considered in the assessment and final grading.

Problems 13 - 14: Complete written solutions (max 40 points):

- Use only the provided answer sheets when submitting your solutions and answers.
- For full marks, clear, comprehensive and well-motivated solutions are required. Unclear and unexplained solutions may result in point deductions even if the final answer is correct.
- Check your calculations and solutions before submitting. Careless mistakes may result in unnecessary point deductions.

The maximum total number of points is $60+40=100$. At least 50 points are required to pass (grades A-E). The grading scale is as follows:

$$
\begin{array}{c|ccccccc}
\text { Points } & 0-39 & 40-49 & 50-59 & 60-69 & 70-79 & 80-89 & 90-100 \\
\hline \text { Grade } & \mathrm{F} & \mathrm{Fx} & \mathrm{E} & \mathrm{D} & \mathrm{C} & \mathrm{~B} & \mathrm{~A}
\end{array}
$$

NOTE: Fx and F are failing grades that require re-examination. Students who receive the grade Fx or F cannot supplement extra assignments for a higher grade.

Part one. Multiple choice

1. Which of the following charts describes the information of only one variable?
(a) Cluster bar chart;
(b) Histogram;
(c) Component bar chart;
(d) Scatter plot;
(e) All of the above.
2. Which of the following is correct regarding the variance of a random variable:
(a) if the expectation of the random variable is negative, the variance will be negative;
(b) it indicates the difference between the largest and the smallest outcome of the random variable;
(c) it indicates how spread are the outcomes of the random variable around its expectation;
(d) it is only defined for continuous random variables, not for discrete random variables;
(e) it is measured in the same units as the random variable itself.
3. Which of the following sentences is not correct:
(a) an estimate is the specific value taken by the estimator under the observed sample;
(b) among two unbiased estimators, the one with largest variance shall be preferred;
(c) an estimator is a statistic that approximates the parameter of interest;
(d) an estimator is said to be unbiased if its expected value equals the parameter of interest;
(e) an estimator is a random variable.
4. In the context of simple linear regression, which of the following is not correct?
(a) the coefficient of determination R^{2} indicates the proportion of variability of the dependent variable y that is explained by the independent variable x;
(b) the coefficient of determination R^{2} is equal to the coefficient of correlation between the independent variable x and the dependent variable y;
(c) the intercept b_{0} indicates the expected value of the dependent variable y when the independent variable x equals zero;
(d) the slope b_{1} indicates the expected increment in the dependent variable y associated to a one unit increment in the independent variable x;
(e) the least squares regression is the one that minimizes the sum of squares error.
5. A researcher has asked the thirteen married men in a small community about the brideprice they had to pay to the bride's family when they got married. The brideprice values (in USD) are
$200003000 \begin{array}{llllllllllll} & 10000 & 20000 & 13000 & 0 & 31000 & 20000 & 63000 & 8000 & 3000 & 12000 & 4000\end{array}$
What is the mode of the brideprice?
(a) 12000 ;
(b) 15500 ;
(c) 15923;
(d) 20000 ;
(e) 31000 .
6. An ice-cream shop offers 10 different flavors. How many combinations of 2 scoops can be made if the order is not important and the flavors can be used more than once?
(a) 20 ;
(b) 45 ;
(c) 55 ;
(d) 90 ;
(e) 100 .
7. In a card game, the player has three possible outcomes: win, tie or lose. If the player wins (which happens with probability 0.19), he gets two dollars; if the player loses (which happens with probability 0.47), he loses one dollar; in the case of a tie, the player neither wins nor loses any money. What is the variance of the amount of money of the player at the end of one game?
(a) -0.09 ;
(b) 0 ;
(c) 1.22 ;
(d) 5 ;
(e) 5.2 ;
8. Coffee Inc. is a company that imports two types of coffee to Sweden. The number of sacks of the type Arabica imported every month can be described by a normally distributed random variable with expectation 50 and variance 4. The number of sacks of the type Robusta imported every month can be described by a normally distributed random variable with expectation 45 and variance 9 . The covariance between the number of sacks of both types is 5 . The price of one sack of the type arabica is 400 SEK and the price of one sack of the type robusta is 200 SEK. What is the probability that the total sales during one month are less than 30000 SEK?
(a) 0.77 ;
(b) 0.80;
(c) 0.84 ;
(d) 0.87 ;
(e) 1.00 .
9. A car rental company knows by experience that 10% of the customers rent a sport utility vehicle -suv- and that the customers' choice is independent of each other. What is the (approximated) probability that, out of the next 100 customers, the number of customers renting a suv is larger than eight but at most eleven?
(a) 0.03;
(b) 0.13 ;
(c) 0.30 ;
(d) 0.38 ;
(e) 0.62 ;
10. One week before the local elections of a city, a poll is carried out by selecting a random sample of 100 voters. The proportion of individuals in the sample who will vote for the candidate of the party A is 0.4 . A 99% confidence interval for the proportion of individuals who will vote for this candidate on the elections is:
(a) $(0 \%, 99 \%)$;
(b) $(27.4 \%, 52.6 \%)$;
(c) $(30.4 \%, 49.6 \%)$;
(d) $(39.4 \%, 40.6 \%)$;
(e) $(39.5 \%, 40.5 \%)$;
11. One week before the local elections of a city, a candidate, Mrs. B, believes that more than 30% of the voters support her. In order to verify her claim, the campaign has selected a sample of 100 voters. 45 out of the 100 voters in the sample claim that they will vote for Mrs. B. With a significance level of 1%, which of the following is correct. (Hint: Use the alternative $P>0.3)$:
(a) the critical value is 2.36 and the test statistic is 3.02 , therefore the null hypothesis is rejected;
(b) the critical value is 2.36 and the test statistic is 3.02 , therefore the null hypothesis is not rejected;
(c) the critical value is 2.33 and the test statistic is 60.61 , therefore the null hypothesis is rejected.
(d) the critical value is 3.02 and the test statistic is 2.36 , therefore the null hypothesis is rejected;
(e) the critical value is 3.02 and the test statistic is 2.36 , therefore the null hypothesis is not rejected;
12. The teacher of a course in statistics wants to test whether $X=$ "grade in the first assignment" (Pass or Fail) and $Y=$ "grade in the exam" (A, C, E or F) are independent. The following table summarizes the results of the 120 students in the course:

		Y			
		A	C	E	F
X	Pass	14	17	34	42
	Fail	2	1	1	9

What is the value of the test statistic:
(a) 1.960 ;
(b) 5.321 ;
(c) 7.815 ;
(d) 10.648;
(e) 145.461;

Part two. Complete solution

13. The owner of a record store has advertised his business in a popular search engine. Before advertising, he collected a sample of the sales during eight randomly selected days. The observed sales (in SEK) were:

$$
\begin{array}{llllllll}
8100 & 6000 & 10600 & 10000 & 5800 & 8900 & 7000 & 8700
\end{array}
$$

After advertising, he collected a sample of the sales during twelve randomly selected days. The observed sales (in SEK) were:

$$
\begin{array}{llllllllllll}
13500 & 11500 & 12800 & 12400 & 7800 & 11300 & 10000 & 10000 & 3500 & 11000 & 9400 & 8900
\end{array}
$$

The owner knows, by experience, that the sales can be adequately described by a normal distribution. In addition, he considers it safe to assume that the variance before and after advertising is the same.
(a) Find a 95% confidence interval for the expected change in sales (after minus before). (5p.)
(b) Using a significance level of 5%, test the null hypothesis that there was no change in sales against the two-sided alternative. i. State the hypothesis of interest; ii. Compute the test statistic and the critical value; iii. What is the conclusion regarding the hypothesis? (5p.)
(c) Consider the null hypothesis that, after advertising, the sales increased by μ_{0} SEK against the two-sided alternative. Using a significance level of 5%, for what values of μ_{0} would the null hypothesis not been rejected. (5p.)
(d) Compare your answers in (a) and (c). What do you conclude? (5p.)
14. In order to fit the linear regression that explains $y=$ "sleeping time" (variable sleep, in hours per week) in terms of $x_{1}=$ "working time" (variable work, in hours per week), data on $n=700$ individuals was collected. Some summary statistics of the collected data are shown below:

$$
\sum_{s} x_{1 i}=24980 \quad \sum_{s} y_{i}=38430 \quad \sum_{s} x_{1 i}^{2}=1060000 \quad \sum_{s} x_{1 i} y_{i}=1333000
$$

(a) Calculate the intercept and the slope of the regression of interest. (5p.)
(b) Predict the number of hours sleeping for a person working forty hours per week. (5p.)

A second explanatory variable

$$
x_{2 i}= \begin{cases}1 & \text { if the } i \text { th individual has kids younger than } 3 \\ 0 & \text { otherwise }\end{cases}
$$

(variable young_kid) was added to the model. The estimated coefficients and their estimated standard errors are shown in the following table.

	Coefficients	Standard Error
Intercept	59.80	0.6561
work	-0.1507	0.0168
young_kid	-13.82	47.33

(c) Using a significance level of 5%, test the hypothesis that young_kid is significant in the model. (5p.)
(d) Interpret the three estimated coefficients. (5p.)

