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Second order latent growth curve models (Duncan & Duncan, 1996; 
McArdle, 1988) can be used to study group differences in change in latent 
constructs. We give exact formulas for the covariance matrix of the parame-
ter estimates and an algebraic expression for the estimation of slope differ-
ences. Formulas for calculations of the required sample size are presented, 
illustrated and discussed. They are checked by Monte Carlo simulations in 
Mplus and also by Satorra and Saris’ (1985) power approximation tech-
niques for small and medium effect sizes (Cohen, 1988). Results are similar 
across methods. Not surprisingly, sample sizes decrease with effect sizes, 
indicator reliabilities, number of indicators, frequency of observation, and 
duration of study. The relative importance of these factors is also discussed, 
alone and in combination. The use of the sample size formula is illustrated 
in a hypothetical example. 
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1. Introduction 
 
Individual changes in a population are often more interesting than changes of 
the population as a whole. One may want to look at the individual changes in 
one or several variables, the variation around this mean change, as well as 
differences between groups of people or the interplay between variables. 
Longitudinal studies differ from cross-sectional studies foremost because 
units are followed over time so that the correlation within units over time can 
be explored. Many statistical methods1 are available for longitudinal data 
e.g. dependent t tests, repeated measures ANOVA, multivariate ANOVA, 
autoregressive models and random effect models. The choice of the most 
suitable technique depends on the research question, the structures of the 
data, and the underlying theory (e.g. Curran & Bollen, 2001; Diggle et al., 
2002; Ferrer & McArdle, 2003).  
 
This paper focuses on a longitudinal approach called latent growth curve 
(LGC) modeling. It may be a good choice when there are relatively few 
                               
1 See e.g. Diggle, Heagerty, Liang, and Zeger (2002) for descriptions of longitudinal models. 
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measurements on a large number of individuals (Sayer & Cumsille, 2002). In 
LGC modeling each individual is characterized by his or her personal devel-
opment, which in turn is described by a number of individual latent factors 
plus a residual term. The development of each individual might be around a 
straight line, gt = π1 + π2xt, where there are two factors, an “intercept”: π1 and 
a “slope”: π2. Thus, in a population there are as many lines as there are indi-
viduals. The population mean of the intercepts and slopes are E(π1, π2) 
=  (α1, α2). The individual’s variation around his or her curve is described by 
residual terms ζt. We will examine the simple case in which they are normal 
with variance σ2

ηt,: ηt =  gt + ζt. Often, the exact level, ηt, of the individual at 
time t, cannot be observed directly but only through indicators having a cer-
tain distribution. In a simple case the observed indicators, ytk = ηt +εtk, are 
unbiased, independent normal and have variances σ2

εtk. This simple case is 
illustrated in Figure 1 with 3 indicators and 4 equidistant measurement occa-
sions. 
 

Figure 1. Path diagram of an LGC model with indicators. Circles indicate latent 
variables, squares indicate observed variables, one-headed arrows indicate 
regression coefficients, and double headed arrows indicate covariances. 

 
 
The LGC model has been widely used in the social, developmental, and edu-
cational literature to study change. It makes it possible to examine changes 
in longitudinal data, to model different error structures and to use various 
types of structural models. For example, Lance, Vandenberg, and Self 
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(2000) used an LGC model to study change in employee attachment for new 
bank employees. Stoel, Peetsma, and Roelveld (2003) modeled changes in 
language ability, school investment, and self-confidence for students2, 
whereas Hong and Ho (2005) used students’ tests in reading, math, and sci-
ence obtained in 1988, 1990, and 1992 to study their achievements3. The 
LGC model may also be used to compare the growth of multiple popula-
tions, such as males and females, children with married or divorced parents, 
or randomized groups in intervention settings analyses (e.g. Muthén & 
Curran, 1997). 
 
In this paper we will examine the sample sizes required to detect differences 
in latent factors between groups. In many research situations, the length of a 
confidence interval may be more important than the power of a test. Our 
methods are easily adapted to both cases. We give an algebraic expression 
for the variance of the estimated slope in a group and for slope differences 
that extends work by Raudenbush and Liu (2001). This expression is used to 
investigate required sample sizes. In addition, sample sizes are examined 
using power approximation techniques developed by Satorra and Saris 
(1985). A sample of the results are also checked against simulations. Effects 
of the number of indicators and their reliabilities are investigated in situa-
tions with different frequencies of observation and study duration. Results 
from the formula are illustrated numerically in tables, graphs and in an ex-
ample. 
 

2. Previous work 
 
2.1. Latent growth curve (LGC) models  
 
LGC models were developed by Meredith and Tisak (1990), although they 
originate from work by Rao (1958) and Tucker (1958), and they have been 
further developed by others, including McArdle (1988) and Willett and 
Sayer (1994). They are latent variable models and can be thought of as con-
firmatory factor analysis models where longitudinal behavior, e.g. growth or 
decline, is captured and tested through latent variables as well as latent “er-
rors” at each time point (Meredith & Tisak, 1990; Muthén & Curran, 1997). 
More thorough descriptions of LGC models can be found, for example, in 
Duncan, Duncan, Strycker, Li, & Alpert (1999), Curran and Muthén (1999), 
McArdle (1988), McArdle and Bell (2000), Meredith and Tisak (1990), 
Muthén and Curran (1997), Raykov (2000), and Willet and Sayer (1994). 
 
As mentioned previously, the construct of interest can often not be measured 
directly, but instead through indicators (see Figure 1). Second order LGC 

                               
2 They used the longitudinal PRIMA cohort study. 
3 They used the NELS data. 
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models (Duncan & Duncan, 1996; McArdle, 1988) can be used to study 
systematic change in latent constructs, and this provides advantages over 
first order models (e.g. Sayer & Cumsille, 2002). First, the error term related 
to each occasion can be partitioned into measurement error and error related 
to a unique factor (indicator residual), and to error related to deviations from 
the growth curve (occasion residual). Second, assumptions of factorial in-
variance over time and across groups can be explicitly tested. Descriptions 
of second order LGC models can be found, for example, in Sayer and Cum-
sille (2002). 
 
LGC modeling is an approach to growth curve modeling, and most LGC 
models are also multilevel models (for descriptions of multilevel models, see 
e.g. Bryk & Raudenbush, 1992; Goldstein, 2003; Longford, 1993) under 
certain restrictions. These models have fixed effects, e.g. the average inter-
cept and the average slope corresponding to the means of the latent factors, 
and random effects, e.g. the deviations from the average intercept and slope, 
and deviations from the individual growth trajectories. They are therefore 
also called mixed models or random effect models. For descriptions of simi-
larities and differences between LGC modeling and multilevel modeling, see 
e.g. Raudenbush (2002), Hox (2000), Hox and Stoel (2005), MacCallum 
(2000), and Stoel, van Der Wittenboer  and Hox (2003). 

 
Because LGC models are latent variable models, parameters can be esti-
mated through Structural Equation Modeling (SEM) (Bollen, 1989; Jöreskog 
& Sörbom, 1979, 1993; Loehlin, 1992) methods (e.g. Willet & Sayer, 1994). 
Regular SEM software, such as LISREL, Mx, Calis, Amos, EQS or Mplus, 
as well as standard statistical packages such as S+, R, or Stata (GLM or 
GLAMM) or multilevel packages such as MLwiN or HLM can be used in 
estimation of parameters. 
 
2.2 Sample size determination 
 
When planning a longitudinal study it is desirable to know the number of 
participants needed. This might be particularly important if the planned in-
tervention is costly. Several authors have investigated sample size and power 
for detection of group differences in longitudinal models (e.g. Liu and Liang, 
1997; Liu, Shih, & Gehan, 2002; Rochon, 1991; 1998; Shieh, 2003). In the 
multilevel literature, Raudenbush and Liu (2000; 2001) presented closed 
form formulas for variances used in power calculations of group differences 
in means and trends in longitudinal models based on calculating the noncen-
trality parameter of the F distribution. Effects of duration of study, frequency 
of observation, and effect size, among other factors, could be evaluated us-
ing these formulas. In the medicine literature, closed form formulas have 
also been presented for related models (e.g. Liu and Liang, 1997; Liu, 
Boyett, and Xiong (2000); Liu, Shih, and Gehan, 2002; Rochon, 1991).  
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Common approaches for studying power and sample sizes for LGC models 
include Satorra and Saris (1985) power approximation technique, and Monte 
Carlo simulations. Muthén and Curran (1997) and Curran and Muthén 
(1999) showed how to use Satorra and Saris’ (1985) technique to investigate 
the power to detect non-zero differences in mean slopes as well as interac-
tions in LGC models. Hertzog, Ghisletta, Lindenberger, and Oertzen (2006) 
used the same approximation techniques to study power to detect covari-
ances between slopes of parallell change processes. Muthén and Muthén 
(2002) showed how Monte Carlo simulations could be used to obtain sample 
sizes for LGC and SEM models. Fan and Fan (2005) and Fan (2003) used 
simulations to study power to detect linear growth in single group studies 
and group differences in intercepts and slopes respectively. Duncan, Duncan, 
Strycker, and Li (2002) provide a discussion of power estimation techniques 
for multiple groups within LGC- and other models. 
 
Power and sample sizes have also been evaluated for other latent variable 
models. For example, MacCallum and colleagues (MacCallum, Browne, & 
Cai, 2006; MacCallum, Browne & Sugawara, 1996; MacCallum & Hong, 
1997) used the RMSEA- and other indices encountered in SEM analyses to 
estimate the noncentrality parameter needed to compute power. Hancock 
(2001) investigated power and sample sizes for detecting differences in sin-
gle latent constructs. 
 
Previous studies on the power of LGC and related models have found posi-
tive effects of sample size, effect size, and frequency of observation on pre-
cision and power (Fan & Fan, 2005; Muthén & Curran, 1997; Fan, 2003; 
Raudenbush & Liu, 2001). A long duration of the study is also positive 
(Muthén & Curran, 1997; Raudenbush & Liu, 2001), whereas missing data 
are negative (Muthén & Muthén, 2002). LGC methods have also been found 
better than univariate ANCOVA (Muthén & Curran, 1997; Curran & 
Muthén, 1999), ANOVA and dependent t tests, and highly more powerful 
than MANOVA (Fan & Fan, 2005; Fan, 2003). However, Fan (2003) sug-
gested that ANOVA may be more powerful in detecting differences in inter-
cepts.  
 
All the LGC studies mentioned above focused on first order models, i.e. 
models where the measurement errors and the individual residuals are non-
distinguishable. Second order LGC models are used more and more in the 
social sciences. These models are often preferred to first order models, 
whenever applicable, due to their variance decomposition properties and 
possibilities of factorial invariance testing (e.g. Sayer & Cumsille, 2002). A 
researcher with limited resources benefits from knowing whether to focus on 
getting more participants, using more indicators, using fewer but more reli-
able indicators, or measuring the participants on more occasions.  
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3. The model 
 
3.1 One group 
 
Consider a group with n individuals. Each person is observed at T occasions. 
At each occasion K indicators are measured. Let yitk denote the observed 
value of individual i, of indicator k at occasion t. Define xt to be the elapsed 
time from start to the t:th measurement occasion (x1=0). Raudenbush and Liu 
(2001) have investigated the effect of study duration and frequency of obser-
vation. Following their definitions, we define f, the frequency of observation, 
to be the number of observations per time unit: f = (t - 1) / xt for equally 
spaced occasions. The total study time (the duration) is D=xT, which in this 
case equals D = (T – 1)/f. If the measurements are made every second year, 
the frequency will be f = 1/2, and xt = 0, 2, 4, …, 2T-2 for t = 1, 2, 3, 4, …, T, 
and D = 2T – 2.  
 
The LGC model4 consists of a measurement part and a structural part. The 
structural part describes the development of the latent variables and the 
measurement part the relation between the measurements and the latent vari-
ables. Every individual is characterized by J latent factors, Π=(π1, …, πJ)', 
which are assumed to come from a normal distribution with mean vector 
αp=(α1, …, αJ)' and covariance matrix Σπ. The structural part5 relates an 
individual’s true latent levels at each time to his latent factors  
 

,hhhh B ζαη +Π+=  (1) 

 
where ηh is a column vector with the individual’s latent level at the T meas-
urement occasions, αh is an intercept vector, Bh is a matrix with TxJ factor 
loadings and ζh is a random residual vector with mean 0 and covariance ma-
trix Ση.  
 
Often Π and η h are stacked above each other. In that case one can write the 
structural part as 
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This expression may be written (see e.g. Sayer and Cumsille (2002)) 
 

                               
4 We will focus on the second order model in which indicators of latent variables are observed 
at each occasion. 
5 See e.g. Jöreskog and Sörbom (1979) for a general SEM model with a measurement and a 
structural part. 
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ζηαη ++= B  (2) 
 
where α is a T+J vector of factor means, B is a (T+J)× (T+J) matrix of factor 
loadings and ζ  is a T+J vector of latent residuals which are normal with 
zero mean and covariance matrix Ψ. The column vector η now contains the 
T+J latent factors. 
 
In order to describe the model in Figure 1 we have α = (0,0,0,0,α1,α2)'   
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The measurement part of the model relates the observations to the latent 
variables 
 

,εητ +Λ+=Y  (3) 

where Y is the column vector with the KT observed measurements, the col-
umn vector τ  contains the corresponding KT measurement intercepts and Λ 
is a KT× (T+J) matrix containing the factor loadings λ. The vector ε contains 
KT normal error terms with zero mean and covariance matrix Θ. One factor 
loading for each latent factor, ηt, can be fixed to 1 to set the scale. The corre-
sponding intercept, τ, can be fixed to 0 for identification purposes. In the 
model corresponding to Figure 1, τ  = (0, τ12, τ13, 0, τ22, τ23, 0, τ32, τ33, 0, τ42, 
τ43)' and a typical row of Λ is (0, λ22, 0,0,0,0).  
 
3.2 Analysis of the one group model 
 
In our case, (3) can be simplified to  

 
,εητ +Λ+= hhY  (4) 

since we cannot measure the basic latent factors directly, only the individ-
ual’s latent level at certain time points. The matrix Λh now contains KTxT 
elements. Inserting (1) into (4) we get  
 

.)( εςατ ++Π+Λ+= hhhh BY  (5) 

 
The expected value is thus τ+Λhαh+ΛhBhαp and the variance is  

Θ+ΛΛΣ+ΛΣΛ= Π
'''
hhhhh BBV η . We cannot estimate both αh and αp sepa-

rately. To solve this we will set αh = 0. The expected value is thus τ+ΛhBhαp. 
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For all components to be estimable the total number of parameters in τ and 
αp must be less than the dimension, TK. Some components in τ can be set to 
0. We may then write the expected value Λ0(αp,τ0)' with Λ0=(ΛhBh, I). In the 
example of Figure 1, the number of independent parameters are 2+T(K-1).  
 
If V has full rank, the vector (αp,τ0)' can now be estimated, for each individ-
ual, with the well-known generalized least square estimate (αp

*,τ0
∗)' =     

(Λ0'V
-1 Λ0)

-1Λ0'V
-1Y with variance (Λ0'V

-1 Λ0)
-1 assuming that all parameters 

are estimable. The estimate based on n individuals is the average of the n 
individual estimates and its variance is (Λ0'V

-1 Λ0)
-1/n. If we know the co-

variance matrix we can now use standard statistical techniques to decide 
what sample sizes are needed to obtain a certain precision or power. If the 
covariance matrix is unknown the formulas hold approximately if the sample 
sizes are large enough to make good variance estimates. However, the re-
quired sample size is then expressed in terms of the unknown parameters and 
to use the formula in practise one must guess their value. This means that it 
is not so important to get exact values for small sample sizes since the size 
will be uncertain anyway. 
 
3.3 Two or more groups 
 
In several studies there may be two or more groups. For example, there may 
be one group of males and one group of females or there may be one or sev-
eral treatment and control groups. We enter a superscript, g, to denote group. 
Equation (2) becomes6  

 
( ) ( ) ( ) ( ) ( )ggggg B ζηαη ++=  (6) 

 
and equation (3) becomes 
 

( ) ( ) ( ) ( ) ( )gggggY εητ +Λ+=  (7) 

 
where the parameters may differ between groups. If we have two independ-
ent groups with no common parameters it is easily seen that the best estimate 
of the difference between them is the difference of the corresponding group 
parameters with variance 
  
(Λ0

(1)'V(1)-1 Λ0
(1))-1/n(1) + (Λ0

(2)' V(2)-1 Λ0
(2))-1/n(2).  

Muthén and Curran (1997) and Curran and Muthén (1999) presented a way 
of testing the equality of slope parameters by introducing an “added curve 
factor due to treatment” (Muthén & Curran, 1997; p. 378). A model with an 

                               
6 This is based on the general latent variable multiple population formulation (see e.g. Bollen, 
1989; Jöreskog & Sörbom, 1979; Muthén & Curran, 1997).  
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added curve factor is depicted in Figure 2 for the second group (e.g. the 
treatment group). The first group model is as in Figure 1. All non-zero pa-
rameters can be constrained to have the same values in both groups but there 
may be some extra relations in the second group. In Figures 1 and 2, π2 is 
constant between groups but a new growth factor, π3, with mean α3 and vari-
ance 2

3πσ , is added to the second group that corresponds to ( ) ( )1
2

2
2 ππ −  in our 

formulation.  

 
Figure 2.  Second order LGC model with an added curve factor (Curran & Muthén, 

1999; Muthén & Curran, 1997) for one of the groups. 
 
 
In many situations it is reasonable to assume that some parameters are com-
mon to the groups and that other parameters differ between them. See the 
Appendix for how to find the variance of least squares estimates when some 
parameters are equal across groups, using matrix forms.  

 
4. Variance formulas and sample size  
 
4.1 Different group means 
 
From now on we restrict ourselves to the simple case in Figure 1 with two 
groups and two factors, intercept and slope. We have already expressed the 
estimates and variances in matrix terms. In this special model they can be 
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expressed in ordinary algebraic expressions. The parameters of interest are 
the slopes, ( )1

2π and ( )2
2π  with means, ( )1

2α  and ( )2
2α , in the two groups. 

 
In a first order model, the minimum variance, unbiased estimate of the mean 
for one group and its variance are  
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where 2

Yσ  is the common residual variance of Y at each occasion, T is the 

number of measurements, and 2
1πσ and 2

2πσ  are factor variances. The esti-

mate and variance of the slope are  
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(9) 

 
where xt is the elapsed time since the start of the study to the t:th measure-
ment occasions. The first term inside the brackets is the conditional variance 
of the least squares estimate of the individual slope. In cases of equally 
spaced measurements at times 0, 1, …, T - 1, this can also be written 

)1()1(12 22 +− TTDT Yσ (Friedman, Furberg & DeMets, 1985; see also 
Raudenbush & Liu, 2001) where T is the number of occasions and D is the 
duration. We can also write this as ( ( )TTf

Y
−32212 σ  where f is the fre-

quency of observation. The second term inside the bracket of (9) is variance 
across individuals. Finally, for two groups with no common parameters the 
estimate of the mean slope difference is just the difference ( ) ( )2

2
1

23
ˆˆˆ πππ −= . 

Its variance is the sum of the two group variances. 
  
The formulas above can be extended to incorporate a second order model 
with several measurements on each occasion. Assume that we have K unbi-
ased and independent indicators with equal variances per factor ηt =  gt + ζt. 
The mean of the indicators for individual i at occasion t has the following 
conditional variance  
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where the first variance term is the measurement variance and the second 
term is the residual variance around the individual line. Assuming equal 
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residual variances at each occasion, we can substitute KY /222
εη σσσ +=  into 

(8) and (9) above.  
 
4.2 Equal intercepts in groups 
 
As mentioned previously, some factors may be equal across groups. E.g. 
when the assignment to groups is random and done at start (x1=0), it is rea-
sonable to assume that the starting values (intercepts) are equal. In that case 
the difference between the two group means is also an estimate of the differ-
ence in slope means. Combining the two estimates in an optimal way we get  
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and sample sizes in the groups, the variance of this new estimator can be 
shown to be  
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and 2

ησ  is the common residual variance of the first order factors, 2
εσ  is the 

common residual variance of the indicators, 2

1πσ  and 2

2πσ are the variances of 

the latent intercept and slope, and 
21ππσ  is their covariance. If 0

21
=ππσ , 

formula (12) can also be written  
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4.3 Relation between variance and sample size 
 
The standard sample size formula for tests under normality with known vari-
ance (see e.g. Desu & Raghavarao, 1990) is 
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(16) 

 
where n is the sample size per group, α is the significance level, 1-β  the 

power, 2/αλ  and βλ  quantiles of the normal curve, 2σ2/n the variance of the 

estimate and e.s. the effect size. We can use formula (16) for LGC models, 
once 2σ2 has been determined. Several authors have presented formulas for 
correlated observations where (16) is adjusted by a factor containing ρ, the 
correlation among the measurements (see e.g. Liu & Liang, 1997; Diggle et 
al., 2002). For LGC models, the numerators of (12) or (15) can be used for 
2σ2 in (16). 
 
As mentiond previously, the length of a confidence interval may be more 
important than the power of a test. One may want to find a 95% confidence 
interval for the mean group difference that is shorter than a given value h. 
Equation (16) easily translates into the required group sample sizes for a 
certain length of a confidence interval. All we do is to substitute βα λλ +2/  

by 2/2 αλ  and e.s. by h. 
 
4.4 Reliability effects  
 
As mentioned previously, one aim of this paper is to investigate sample sizes 
for second order LGC models with varying number of indicators and indica-
tor reliabilities. Since the reliability often varies with time7 we will use the 
reliability at t = 1. The indicator residual variance (error variance) and the 
indicator reliability are related to each other, and knowing one, in addition to 
knowing the total factor variance, Var(η1), we can compute the other. The 
error variance8 can be obtained from the reliability Rk  

                               
7 Previous studies have also focused on reliability at time 1, see e.g. Hertzog et al. (2006). 
8 This formula follows from ( ) ( )( )2

1
2

1
2

kkkk VarVarR εσηληλ +=  which is related to the defini-
tion of reliability from classical test theory (e.g. McDonald, 1999).  
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( )
k

kk
k R

RVar )1(1
2

2 −
=

ηλσ ε  
 
(17) 

 
where 2

kλ  is the kth indicator loading. For simplicity, we will assume that all 
K reliabilities are equal and we may drop the subscript k. The error variance, 

2
εσ , corresponding to R, can then be used in (13) and (14). 

 
4.5 Standardized effect size 
 
Equation (16) entails the raw effect size, e.g. the true difference in slope 
means across groups, however it might be beneficial to know the standard-
ized effect size as well in order to compare models. Cohen (1988) provided 
guidelines for effect sizes in the social sciences. According to him, a stan-
dardized effect size, d= .2, can be considered small, whereas d = .5 and d = 
.8 are medium and large, respectively. Consider formula (16). It is easy to 
see that the sample sizes under large, medium, and small effect sizes relate to 
each other as .8-2 = 1.5625 to .5-2 = 4 to .2-2 = 25, since we assume that the 
variance is known or well estimated. For example, we can go from small (d 
= .2) to large (d = .8) effect size by dividing our obtained sample size by 
25/1.5625=16.  
 
Effect size can be standardized in different ways for longitudinal data. Fol-
lowing Curran & Muthén (1999) and Muthén & Curran (1997) we will de-
fine the standardized effect size d as the difference in means between the 
groups at the last time point divided by the standard deviation at that time 
point. 
 

2121
22222

3

ππππη σσσσ
α

DD

D
d

t
+++

=  
 
(18) 

 
where α3 is the mean of π3, and D is the duration of the study.  
 
Other standardizations are also possible. For example, Fan (2003) considered 
both the standardized mean difference at the beginning and at the end of the 
study, and Raudenbush and Liu (2001) used an effect size of the group slope 
difference divided by the population standard deviation of the slope, 

2
3 2πσα . See also Hancock (2001) for a discussion of standards for latent 

variable means, taking into account reliability of the indicators.  
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5. Alternative ways to decide sample size 
 
5.1 Satorra and Saris’ method 
 
Satorra and Saris (1985) suggested a method for approximating the power of 
the likelihood ratio test often used in latent variable analyses. The likelihood 
ratio test statistic is asymptotically χ2-square distributed under the null hy-
pothesis and asymptotically non-central χ2-square distributed under the al-
ternative hypothesis. The technique is easy to use with the help of SEM 
software, and works well for large sample sizes and when the misspecifica-
tion is small. The procedure includes specifying a model under an alternative 
hypothesis and computing the implied covariance matrix under this model. 
This can be done using SEM software by fixing all parameters as in the al-
ternative hypothesis and specifying the sample size to be large. The obtained 
implied covariance matrix can then be used as an input matrix for analysis 
under the null hyothesis, i.e. an analysis model is specified with constrained, 
free, and fixed parameters (as usual in SEM analyses) however with the re-
striction of fixing the parameter(s) of interest to be as in the null hypothesis. 
The obtained non-zero χ2-square value can be used as an approximation of 
the non-centrality parameter, and power of the test can be computed. 
 
Descriptions of the Satorra-Saris method can be found, for example, also in 
Duncan et al. (1999; 2002) and in Muthén and Curran (1997). We compared 
their method to our method in some numeric examples. We used the model 
proposed by Muthén and Curran (1997) and Curran and Muthén (1999) with 
an added growth factor, π3, with mean α3 and zero variance. First we speci-
fied the model under H1, using a non-zero effect size α3. The implied means- 
and covariance matrix was then created using the statistical software Mplus 
(Muthén & Muthén, 1998-2006) by inputting identity matrices and zero 
mean vectors, specifying the sample sizes in each group to be large (1000 
per group), and fixing all parameters to be equal to the values according to 
H1. The resulting implied means- and covariance matrices were then checked 
for mistakes by estimating 3α  and making sure that all original parameter 

values were reproduced. The implied means- and covariance matrices were 
then analyzed according to H0 (i.e. setting 03 =α ) with a certain sample 

size. Using the obtained χ2-value as an approximate non-centrality parame-
ter, the power for a test with 1 degree of freedom (one parameter fixed as in 
H0) was computed. The power for various sample sizes was obtained, and 
the sample size that corresponded to a power of .8 was recorded.  
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5.2 Monte Carlo Simulations 
 
Both the Satorra-Saris’ (1985) technique and our formulas may not work as 
well for small sample sizes and unknown covariance matrix (e.g. Curran, 
Bollen, Paxton, Kirby & Chen, 2002; Satorra & Saris, 1985). To check the 
methods a sample of the analyses were simulated as well. For each simula-
tion, 10,000 samples were generated and analyzed. Power was computed as 
the proportion of replications that the null hypthesis α3 = 0 was rejected at 
significance level .05, given that the population value was different from 
zero. All simulations were checked to make sure that parameter and standard 
error biases were no larger than 10% (5% for3α ) and that coverage was 

between .91 and .98 (see Muthén & Muthén, 2002).9 
 

6. Numerical illustrations 
 
The formulas in this paper can be used for any desired parameter values. For 
our illustrations we chose the basic model in Figure 1 with T = 4, D = 3, and 
f = 1. We then varied the number of indicators, the indicator reliability, the 
number of occasions, standardized effect size, duration, and frequency of 
observation. We used the significance level .05 and the power .8 throughout. 
Cohen (1988) recommended a power of .8 in the social sciences. We used 
the parameter values 5.02 =ησ , 5.02

1
=πσ , and 1.02

2
=πσ , providing a com-

monly seen intercept/slope variance ratio (Muthén & Muthén, 2002). Unless 
otherwise stated, we have assumed that 0

21
=ππσ  and equal intercepts across 

groups ( ) ( )2
1

1
1 αα = .  

 
6.1 Comparisons across methods 
 
Table 1 shows the required group sample sizes using the Satorra-Saris 
(1985) approximation method (top) and the formula (bottom). As shown, the 
Satorra-Saris sample sizes are slightly lower than those obtained from the 
formula for d = .2, and slightly higher for d = .5, but this discrepancy is 
rounding error due to the fact that Mplus uses only three decimals in com-
puting the implied means- and covariance matrices.  
 
 
 
 
 
 
 
                               
9 Only fairly large sample sizes were used. Had sample sizes been smaller (e.g. n = 10), biases 
might have been larger. 
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Table 1. Required Group Sample Sizes for .8 Power to detect Slope Difference  
 

Method    d = .2 d = .5 
Satorra-Saris R K = 3 4 5  3 4 5 
T = 4, D = 3, f = 1 1  322 322 322  53 53 53 
 .9  330 328 326  54 54 53 
 .6  367 356 350  60 58 57 
 .3  464 431 411  75 70 67 
T = 6, D = 3, f = 5/3 1  298 298 298  49 49 49 
 .9  305 303 302  50 50 50 
 .6  336 327 321  55 54 53 
 .3  415 389 372  68 64 61 
Sample Size Formula          
T = 4, D = 3, f = 1 1  323 323 323  52 52 52 
 .9  330 329 327  53 53 52 
 .6  368 357 350  59 57 56 
 .3  465 433 412  74 69 66 
T = 6, D = 3, f = 5/3 1  299 299 299  48 48 48 
 .9  305 304 303  49 49 48 
 .6  336 327 322  54 52 52 
 .3  416 390 373  67 62 60 
Note. ( ) ( )2

1
1

1 αα = , d = standardized effect size, R = reliability, K = number of indicators, T = 
number of measurement occasions, D = duration of study, and f = frequency of observation. 
 
 
Table 2 shows simulations for a sample of analyses. The analyses in the 
simulations are made assuming that the variance-covariances are unknown. 
The Satorra-Saris sample sizes found from the top of Table 1 were used in 
the simulations to get approximate power and significance levels. The preci-
sion in the table is around .008 for the power curves, and around .004 for the 
confidence levels. As shown, power is close to .8 for all analyses with d = .2, 
and the significance level is close to .05. The power and significance levels 
are slightly inflated for d = .5, however. This is because the test statistic used 
to evaluate power and significance level in Mplus, the ratio of the parameter 
estimate to its standard error, is approximately normally distributed in large 
samples (Muthén & Muthén, 2002), and the sample sizes for d = .5 are fairly 
small. We can conclude, however, that results from the Satorra-Saris tech-
nique and the sample size formula (16) can be seen as practically equivalent, 
and they are also similar to simulations.  
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Table 2.  Results from Monte Carlo Simulations using Satorra-Saris Sample Sizes 
from Table 1 

 
    d = .2  da = .5 
Power R K = 3 4 5  3 4 5 
T = 4, D = 3, f = 1 1  .792 - -  .814 - - 
 .9  .803 .800 .802  .810 .816 .811 
 .6  .804 .794 .800  .809 .815 .809 

Significance level          
T = 4, D = 3, f = 1 1  .050 - -  .058 - - 
 .9  .052 .050 .046  .059 .056 .055 
 .6  .051 .051 .050  .060 .060 .055 
Note. ( ) ( )2

1
1

1 αα = , d = standardized effect size, R = reliability, K = number of indicators, T = 
number of measurement occasions, D = duration of study, and f = frequency of observation. 
aThe simulations for d = .5 resulted in covariance matrices that were not positive definite for 
some replications. The largest number of non-positive definite matrices (.0033%) came from 
the R = .6, K = 3 model. 
 
 
6.2 Effect size, reliability, and number of indicators 
 
Table 3 and Figure 2 show required group sample sizes for testing α3 = 0 
against small (.2) and medium (.5) effect sizes. We do not report large (.8) 
effect sizes here because of the previously mentioned limitation of the 
method for small sample sizes. If desired, however, these are easily derived 
as discussed in section 4.5. We should mention, also, that all sample sizes in 
Table 3 and Figure 2 would increase by a factor 19/9 had we used the effect 
size definition of Raudenbusch & Liu (2001). This factor decreases and ap-
proaches 1, however, as duration of the study increases.  
 
As expected, effect size has a large effect on required sample size (a factor 
of 6.25). Also according to expectations, more indicators per occasion do not 
require as large sample sizes, and this reduction is more noticeable with 
smaller reliabilities. As expected, models with lower indicator reliabilities 
require larger sample sizes, and this is more pronounced for models with few 
indicators. The increase in required sample size is not proportional to the 
decrease in reliability. The increase is larger at the lower scale of reliabil-
ities.  
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Table 3. Required Group Sample Sizes for T = 4, D = 3, f = 1, and ( ) ( )2
1

1
1 αα =  

 
d R K =  1 2 3 4 5 6 10 20 
0.2 1  323 323 323 323 323 323 323 323 
 .9  346 334 330 329 327 327 325 324 
 .8  373 349 340 336 333 331 328 325 
 .7  406 366 352 345 341 338 332 327 
 .6  447 388 368 357 350 346 337 330 
 .5  501 418 388 373 363 357 344 333 
 .4  577 461 418 396 382 373 354 338 
 .3  698 527 465 433 412 399 370 347 
 .2  931 651 552 501 469 447 401 363 
 .1  1606 999 792 687 622 577 485 409 
0.5 1  52 52 52 52 52 52 52 52 
 .9  55 53 53 53 52 52 52 52 
 .8  60 56 54 54 53 53 52 52 
 .7  65 59 56 55 54 54 53 52 
 .6  71 62 59 57 56 55 54 53 
 .5  80 67 62 60 58 57 55 53 
 .4  92 74 67 63 61 60 57 54 
 .3  112 84 74 69 66 64 59 56 
 .2  149 104 88 80 75 71 64 58 

 .1  257 160 127 110 99 92 78 66 

Note. ( )g
1α  is the intercept mean in group g, d = standardized effect size, R = reliability, K = 

number of indicators, T = number of measurement occasions, D = duration of study, and f = 
frequency of observation. 
 
 
Sample size, reliability and number of indicators interact. Let us assume, for 
simplicity, that λ = 1. All pairs (R,K) such that: 

( ) ),/()1( 222

1 επη σσσ RRK +−=  give the same sample size, which follows 

from formula (17). We can find K, the number of indicators of reliability R 
that are needed to obtain the same sample size as for a model with one indi-
cator with reliability R* and indicator error variance 

( ) )/()1( *22*2

1
RR πηε σσσ +−= . For example, in a model with 5.22

1
== πη σσ , 

say that we want to find the number of indicators with reliability R = .6 that 
will give the same sample size as a model with one indicator with reliability 
R* = .9. Finding 9/12 =εσ  we obtain K = 6. We thus need to use six indica-
tors per measurement occasion of reliability .6 in order to get the same sam-
ple size as for a .9 reliability, one-indicator model.  
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Figure 3. Group sample sizes as a function of reliability, effect size, and number of 
indicators for models with four measurement occasions. 

 
 
6.3 Equality of Intercepts 
 
All models mentioned so far have equal starting values, i.e. ( ) ( )2

1
1

1 αα = . This 
may be reasonable in an intervention study when the intervention is made at 
time t = 1. If the intercepts differ, the group means give no information and 
formula (15) is simplified to  
 

( ) ( ) .2ˆ 2
23 nVVar

sπσπ +=  (19) 

 
The right half of Table 4 shows required group sample sizes for selected 
models with unconstrained intercepts. It is seen that substantially larger 
sample sizes are required when the means of the intercepts cannot be as-
sumed equal across groups. 
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Table 4. Required Group Sample Sizes for d = 0.2 and D = 3 
 
T(f) R K =  1 3 5 10 1 3 5 10 

  ( ) ( )2
1

1
1 αα =   ( ) ( )2

1
1

1 αα ≠   

2(1/3) 1  341 341 341 341 392 392 392 392 
 .9  369 350 347 344 438 408 402 397 
 .6  499 396 374 358 668 484 448 420 
 .3  859 524 454 399 1356 714 585 489 
6(5/3) 1  299 299 299 299 333 333 333 333 
 .9  318 305 303 301 366 344 340 337 
 .6  401 336 322 311 530 399 373 353 
 .3  596 416 373 338 1022 563 471 402 
10(9/3) 1  269 269 269 269 287 287 287 287 
 .9  284 274 272 270 310 295 292 290 
 .6  347 298 287 278 422 332 314 301 
 .3  490 359 326 299 760 445 382 335 
20(19/3) 1  236 236 236 236 242 242 242 242 
 .9  245 239 238 237 254 246 244 243 
 .6  288 254 247 241 317 267 257 249 
 .3  383 295 273 255 504 329 294 268 
∞  -  186 186 186 186 186 186 186 186 
Note. ( )g

1α  is the intercept mean in group g, d = standardized effect size, R = reliability, K = 
number of indicators, T = number of measurement occasions, D = duration of study, and f = 
frequency of observation. 
 
 
6.4 Number of Occasions 
 
Table 4 and Figure 3a show sample sizes for different numbers of equidis-
tant occasions but with a fixed duration, D=3, and fixed standardized effect 
size, d = 0.2. The four-occasion models in Table 3 had f = 1 and xt = 0, 1, 2, 
and 3. Here f varies e.g. f = 5/3 gives xt = 0, 3/5, 6/5, 9/5, 12/5, 3 and f  = 1/3 
gives xt = 0, 3. As expected, using only two measurements (f  = 1/3) yields 
the highest sample sizes. Increasing frequency of observation results in 
lower required sample sizes but never below 186. Examining formulas (13), 

(14) and (15) we see that 2σ decreases towards 2
2πσ as f increases with fixed 

D.  
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Figure 3a (top) and b (bottom). Group sample sizes as a function of reliability, 
fixed- or non-fixed duration, and number of measurement occasions for 
three-indicator models. 

 
 
We can also increase the number of occasions by increasing the duration 
keeping the frequency constant. This is a situation where additional meas-
urements correspond to additional time, and thus also to greater effect sizes, 
d, at the last time point. The effect of the number of occasions is illustrated 
in Table 5 and Figure 3b with standardized effect size d = .2 fixed at time 
point t = 4. The mean change in each interval, α3, is constant at .0919 (which 
corresponds to d = .2 for the T = 4, f = 1 model). This model can thus be 
compared to Tables 1 and 3. Not surprisingly, increasing the duration by 
adding measurements results in substantially smaller sample sizes, although 
never below 186, whereas decreasing the duration results in substantially 
larger sample sizes.  
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Table 5. Required Group Sample Sizes for( ) ( )2
1

1
1 αα = and f = 1 

 
T(D) d R K = 1 3 5 10 
2(1) 0.0667 1  1580 1580 1580 1580 
  .9  1833 1666 1632 1638 
  .6  3005 2078 1883 1733 
  .3  6243 3229 2595 2102 
6(5) 0.3333 1  227 227 227 227 
  .9  234 229 228 227 
  .6  263 240 235 231 
  .3  333 269 253 241 
10(9) 0.6000 1  195 195 195 195 

  .9  197 196 195 195 
  .6  204 198 197 196 
  .3  220 205 201 198 
20(19) 1.2667 1  187 187 187 187 
  .9  187 187 187 187 
  .6  188 188 187 187 
  .3  191 189 188 188 

∞  - -  186 186 186 186 

Note. ( )g
1α  is the intercept mean in group g, d = standardized effect size, R = reliability, K = 

number of indicators, T = number of measurement occasions, D = duration of study, and f = 
frequency of observation. 
 
 
Formula (16) can be used to show that there is a limit in the required sample 
sizes, regardless of K and R, as T and/or f tends toward infinity. This corre-
sponds to the case when we have succeded in identifying the latent variable 
π2 exactly for the individuals. For example, with α3 = .0919 (which corre-
sponds do d = .2 for our basic model) n tends towards  

 
( )

,87.185
0919.

1.28416.96.1
2

2

≈×+
 

 
which was seen in the tables. In other words, we cannot find a measurement 
plan with less than 186 participants per group to get a power of .8, regardless 
of the number of indicators, their reliabilities, or the number of measure-
ments. 
 
6.5 Non-Zero Intercept-Slope Covariance 
 
All models so far have had zero covariance between the intercept and slope 
factors. A non-zero covariance may increase or decrease the required sample 
size. For example, covariances of .05, .1, and .2 (resulting in correlations (r) 
of .223, .447, and .895 respectively) for T = 4, D = 3, f = 1, R = .9, K = 3, 
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and 0919.3 =α  result in n = 359, 378 and 382 respectively (compared to n = 

330 for r = 0). Covariances 05.
21

−=ππσ , -.1, and -.2 result in n = 291, 241, 

and 109 respectively. Equation (12) shows that the worst case occurs when 

212 ππσ=xV , i.e. when 161.
21

=ππσ  in this case, and a minimum n is reached 

for r = -1, i.e. 22.
21

−=ππσ . One has to keep in mind, however, that a posi-

tive covariance increases the variance at the last occasion. If one wants to 
use standardized effect size, d, one must also change α3. 
 

7. Choice of design  
 
Looking at equation (16), we can examine the magnitudes of the effects of 
the various factors on sample size. For example, suppose we have a design 
with K = 2, D = 3, f = 1 (i.e. T = 4), R = .6, d = .2, significance level α = .05, 
and power = .8. The required sample size is 388 per group. Suppose that it is 
only possible to obtain 340 individuals per group. To keep the same power 
we need to use a design with K = 8, or f = 7/4, or prolong the study time to D 
= 5 keeping f fixed, or make more reliable measurements, R = .86, or use a 
lower level test α = .075, or accept a power of .75 (all else being constant). If 
costs permit, it is thus beneficial to increase the duration by taking another 
measurement at an additional time point. If the duration is fixed, however, 
increasing the frequency of observations has a larger effect on sample size 
than increasing the number of indicators. The costs of increasing the dura-
tion and/or the frequency is often higher, however, than the costs of more 
indicators. 
 
7.1 A hypothetical example 
 
Say that we want to collect data to study group differences in spatial cogni-
tive ability development for adults (e.g. differences between adults without 
dementia and adults with a mild case of dementia) and that we believe that 
there are small differences in the population. To determine sample sizes we 
use the parameters obtained by Finkel, Reynolds, McArdle, Gatz, and Peder-
sen (2003), who, among other things, studied10 spatial ability of 590 adults. 
The measurements spanned over six years with three equidistant measure-
ment occasions. Results for the Figure Logic (FL) and Card Rotations (CR) 
indicators were: 14.611 =FLα , 88.451 =CRα , 46.2 −=FLα , 69.2 −=CRα , 

                               
10 They used the Swedish adoption/twin study of aging and fitted two slopes (one before age 
65 and one after), however for illustration purposes we will only focus on the one-slope mod-
els.  
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49.832

1
=

FLπσ , 24.2152

1
=

CRπσ , 01.2

2
=

FLπσ , 09.2

2
=

CRπσ , 56.822 =FLεσ , and 

02.812 =CRεσ 11.  
 
The estimates above are from separate first order analyses. However, know-
ing the reliabilities of the indicators, we can adjust the above estimates for 
use in a second order model. The means of the above variances, adjusted for 
.89 reliability (see Pedersen, Plomin, Nesselroade, and McClearn (1992) for 
reliabilities of these and other indicators assessing spatial ability), yield: 

37.1492

1
=πσ , 05.2

2
=πσ , 36.562 =ησ , and 43.252 =εσ . For T = 3, f = 1/3, D 

= 6, K = 1, ( ) ( )21
ii αα ≠ , and d = .2 we get the following sample sizes:  

 

( ) 76.31205.
12/333

43.2536.56

48.0

8416.96.1
2

32

2

=







+

−
+








 +=n  

 
We will thus need approximately 313 participants in each group to have .8 
power to detect small differences in slopes using one indicator per measure-
ment occasion, at three occasions (xt = 0, 3, and 6) with no assumptions on 
equal intercept means. If we increase the number of indicators to two, we 
will need 265 per group, and we can decrease n to 236 by using five indica-
tors per occasion. We can also increase the frequency of observation, f. Us-
ing one indicator and xt = 0, 2, 4, 6 (f = 1/2) or xt  = 0, 1, 2, 3, 4, 5, 6 (f = 1) 
results in 282 and 202 per group respectively. However, if we add four indi-
cators to each occasion as well, the results are 213 and 153 respectively. We 
can also increase the duration. Measuring one indicator at xt = 0, 3, 6, and 9 
(f = 1/3) results in sample sizes of 127 (96 for five indicators). The best thing 
we can do is to extend the study period, if it is feasible. 
 

8. Discussion 
 
8.1 Results in relation to previous work 
 
We presented a sample size formula that can be used to calculate required 
sample sizes to study group differences in latent constructs. Several authors 
have presented algebraic expressions for related models (e.g. Liu and Liang, 
1997; Liu et al. (2000); Liu et al., 2002; Rochon, 1991), however most ex-
pressions have been in terms of the correlation between repeated measures. 
When models such as latent growth curve- or multilevel models are used, 
variance expressions in terms of the random components of these models 
might then be used to study design issues. We extended a variance formula 

                               
11 Correlations between the intercept and slope factors were also found, however these are 
ignored here, and the example should only be thought of as an illustration. 
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by Raudenbush and Liu (2001) to include growth in latent constructs, which 
enabled us to study effects of the number of indicators and their reliabilities 
on sample size. 
 
In settings where randomization to groups have occurred, the group inter-
cepts may be assumed equal. The difference in mean slopes across groups 
can then be estimated with more precision. Our formulas also incorporated 
the possibility of this extra precision. We found that this extra precision is 
often substantial but largest when there are only a few measurement occa-
sions.  

 
The results were illustrated in different situations where many different de-
sign factors were varied. Sample sizes were found to decrease with increases 
in effect size, the number and reliability of the indicators, duration of time, 
and frequency of observation. This is not astonishing and in this respect the 
results agreed with previous studies (e.g. Fan, 2003; Hertzog et al., 2006; 
Muthén & Curran, 1997; Raudenbush & Liu, 2001). We illustrated the rela-
tive importance of the different factors and noted some facts that have not 
been reported elsewhere for LGC models.  

 
Hertzog et al. (2006) studied first order LGC models. They looked at the 
power to detect covariances between slopes of parallel processes and found 
that growth curve reliability, i.e. the proportion of variance explained by the 
structural model at the first occasion, had positive effects on power. They 
suspected that multiple indicator models would increase the power in detect-
ing inter-individual differences. This occurred in the present study, although 
sample sizes for differences in slopes between groups was examined and not 
sample sizes for slope covariances. Duncan et al. (2002) suggested that using 
multiple indicators should increase power of the model because it accounts 
for measurement error and thus “refines” the developmental process. The 
present study also found that if the observed variables perfectly measure the 
latent construct of interest, one measure per construct is enough. If the reli-
ability is not perfect, however, more measures can make up for this unreli-
ability.  

 
Some previous studies on power in LGC models found only small effects of 
the frequency of observation with fixed duration (e.g. Fan & Fan, 2005). 
This can happen when the residual variance at each occasion is small com-
pared to the slope variance (see e.g. Raudenbush & Liu, 2001). Increasing 
the number of measurement occasions within the interval will, in that case, 
not make a big difference because there is not much to be gained.  
 
The sample sizes found in the illustrations may be considered fairly large 
and thus discouraging. However, sample sizes for larger effects or other 
parameter values can be derived by the same formula. Although this study 
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did not illustrate the effects of varying the variance among individual slopes 
or occasion factors, the formulas still hold. They show that larger variances 
result in larger sample sizes, as Raduenbush and Liu (2001) also have noted. 
In addition, sample size formulas from Diggle et al. (2002) and Liu et al. 
(2000) have shown that sample sizes depend on the correlations between 
observations over time. 
 
8.2 Practical considerations  
 
LGC models or multilevel models are increasingly used in the study of 
growth. These models can be used when we follow one or several groups of 
individuals over time. They can be used in intervention research such as 
when we are evaluating a new program. Because these types of studies often 
come with considerable costs (we observe participants several times, inter-
ventions might be expensive etc.), design considerations such as decisions 
on sample size and number of measurement occasions can therefore be valu-
able. Although we can use Satorra-Saris (1985) approximations or simula-
tions prior to data collection to determine the needed sample size for these 
models, using formulas presented in this paper can be quicker and easier. 
These formulas also allow researchers to see how different factors interact in 
their impacts on sample size. We can easily change design aspects, such as 
the number of occasions and indicators, in the formula and see what happens 
to the sample size.  
 
We compared some of our results to Satorra and Saris (1985) approxima-
tions and simulations. They were found to be similar for all checked sample 
sizes. The formula is based on a known covariance structure, however, and a 
reservation for small sample sizes is therefore necessary. If sample size cal-
culations result in small n’s (e.g. n < 20), results may be improved by using t 
percentiles. On the other hand, if the covariance matrix is not known when 
designing the study one can never be sure of finding the correct design in 
advance. In addition, the results from our formulas are approximately true 
for non-normal models as long as the linear structure is the same and the 
sample sizes so large that normal approximation is allowed. 

 
When we are interested in differences in growth between predetermined 
groups, such as males and females, or children of married and divorced par-
ents, we can still use formulas presented in this paper. The variance formula 
becomes less complex when we cannot incorporate the extra precision of 
knowing that the groups were equal at one point in time. However, when the 
means of the intercepts differ between groups, that is when the groups differ 
at the start of the study, the standardized effect size, d, as defined by (18) 
may not be appropriate. Other standardized effect sizes, such as those used 
by Raudenbush and Liu (2001) might then be used instead.  
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8.3 Future work 
 

We gave a farly general approach based on matrices and linear models. For 
the special case of second order linear models a simplified algebraic formula 
was given. Although we examined several factors that affect sample size, 
there were several factors we did not examine in detail. We did not examine 
models with unequal group variances. Muthén and Curran (1997) looked at 
groups with different variances and showed that power was greatest for stud-
ies that were nearly balanced but with a slight overrepresentation in the 
treatment group. This was because the treatment group had a larger variance 
than the control group. The results were the opposite when they changed the 
design so that the control group had the larger variance. A treatment that 
increases the variance in the treatment group will increase the sample size 
needed for sufficient power. For example, in terms of Curran and Muthén 
(1999) and Muthén and Curran´s (1997) added curve factor in the treatment 
group, we may have a positive added slope variance, 2

3πσ . If 1.2

3
=ησ  in the 

T = 4, f = 1, K = 3, R = .9, model, the required sample size per group in-
creases from 330 to 422. This is not surprising, however, because the total 
variance then increases. 
 
This study did not cover other more complex models such as models with 
correlated errors or models with interactions among latent variables12, non-
linear models, models with more than two groups and so forth. Further study 
is needed to examine these models. For example, Fan (2003) predicts that 
the differences in power between LGC models and repeated measures 
ANOVA will increase for non-linear models because LGC models can esti-
mate time scores (factor loadings). These models can also be extended in 
various other ways. For example, they can be constructed to include regres-
sions among latent factors, additional growth processes, piecewise growth 
factors, covariates etc. The formulas in this paper can be extended to incor-
porate covariates or other factors. The generalisation of the matrix expres-
sions is fairly straightforward but the algebraic formulas will get more com-
plex. Raudenbush and Liu’s (2001) formulas for higher order trends can also 
be extended to include growth in latent factors as well as intervention set-
tings with equal intercepts. 
 

                               
12 See e.g. Muthén and Curran (1997) and Curran and Muthén (1999) for interaction interpre-
tations and power computations for first order models. 
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Appendix 
 
In a general analysis of several groups with some common parameters, let αc 
be the common parameters and αg

(g) be the group-specific parameters (in-
cluding τ). We then have in each group  (αC

*, α(g)
g
*)' is normal with mean 

(αC, α(g)
g) and variance (Λ0

(g)' V(g)-1Λ0
(g))-1/n(g).  Stacking these expressions 

above each other we have that (αC
*, α(1)

g
*, αC

*, α(2)
g
*, …, αC

*, α(G)
g
*)' is nor-

mal with mean (αC, α(1)
g, αC, α(2)

g, …, αC, α(G)
g)' and covariance matrix 

block diagonal with blocks (Λ0
(g)' V(g)-1 Λ0

(g))-1/n(g). These can be combined to 
form a least squares estimate of the parameters and to find their variance.  
 
Let us consider an example with two groups. Let Y1i be an observation on 
individual i in group 1, i = 1, …, n(1), and Y2i be an observation on individual 
i in group 2, i = 1, …, n(2). 
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From (a) we can write 
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and from (b) we can write 
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We can stack (c) and (d) on top of each other 
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(e) 

  
We will call the covariance matrix in (e) R. The variance of the generalized 

least squares estimate of α(1) – α(2) is [ ] 1

3,3
1' −− ZRZ where 

 

( )

( )

( ) ( )

( ) ( ) 















−
+



















−

=





















21

21

2

1

2/1

0

2/1

0

2/1

0

2/1

0

0

1

0

1

αα
αα

α

α
α
α
α

c

c

c

 

 
and  
 

.

2/1

0

2/1

0

2/1

0

2/1

0

0

1

0

1

Z=



















−

 


