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Second order latent growth curve models (Duncan é&ndan, 1996;
McArdle, 1988) can be used to study group diffeesnin change in latent
constructs. We give exact formulas for the covaamatrix of the parame-
ter estimates and an algebraic expression for stimation of slope differ-
ences. Formulas for calculations of the requiredpa size are presented,
illustrated and discussed. They are checked by &@atrlo simulations in
Mplus and also by Satorra and Saris’ (1985) powsr@imation tech-
niques for small and medium effect sizes (CoheB8)19Results are similar
across methods. Not surprisingly, sample sizesedser with effect sizes,
indicator reliabilities, number of indicators, freency of observation, and
duration of study. The relative importance of thiss#ors is also discussed,
alone and in combination. The use of the sample feiemula is illustrated
in a hypothetical example.
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1. Introduction

Individual changes in a population are often more interesting than changes of
the population as a whole. One may want to look at the individual changes in
one or several variables, the variation around this mean chasgeell as
differences between groups of people or the interplay betwagables.
Longitudinal studies differ from cross-sectional studies forérbesause
units are followed over time so that the correlation within units over tame c

be explored. Many statistical methddse available for longitudinal data
e.g. dependerit tests, repeated measures ANOVA, multivariate ANOVA,
autoregressive models and random effect models. The choice oiotte
suitable technique depends on the research question, the structtines of
data, and the underlying theory (e.g. Curran & Bollen, 2001; Digpkd.,
2002; Ferrer & McArdle, 2003).

This paper focuses on a longitudinal approach called latent grwite
(LGC) modeling. It may be a good choice when there are rdiatfeas

! See e.g. Diggle, Heagerty, Liang, and Zeger (26@2X)escriptions of longitudinal models.



measurements on a large number of individuals (Sayer & Cumsille, 2002). In
LGC modeling each individual is characterized by his or her pdrdenal-
opment, which in turn is described by a number of individual Ideemors
plus a residual term. The development of each individual mightcama a
straight line g, = 72 + 7%, where there are two factors, an “intercept’and

a “slope”: 76. Thus, in a population there are as many lines as theisdire
viduals. The population mean of the intercepts and slopes are /&)

= (a1, an). The individual's variation around his or her curve is desdrie
residual termg;. We will examine the simple case in which they are normal
with varianced®,,: n.= g + & Often, the exact levef, of the individual at
timet, cannot be observed directly but only through indicators havirg-a ¢
tain distribution. In a simple case the observed indicajs, 77: +&, are
unbiased, independent normal and have variaotgs This simple case is
illustrated in Figure 1 with 3 indicators and 4 equidistant nmessent occa-
sions.
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Figure 1. Path diagram of an LGC model with indicators.c@s indicate latent
variables, squares indicate observed variablesheaded arrows indicate
regression coefficients, and double headed arrodisate covariances.

The LGC model has been widely used in the social, developmentaldand e
cational literature to study chandemakes it possible to examine changes
in longitudinal data, to model different error structures and &wvasious
types of structural models. For example, Lance, Vandenberg,Saifd
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(2000) used an LGC model to study change in employee attachment for new
bank employees. Stoel, Peetsma, and Roelveld (2003) modeled changes in
language ability, school investment, and self-confidence for stdent
whereas Hong and Ho (2005) used students’ tests in reading, mathj-and sc
ence obtained in 1988, 1990, and 1992 to study their achievémiEnés

LGC model may also be used to compare the growth of multiple popula
tions, such as males and females, children with married or divqrarents,

or randomized groups in intervention settings analyses (e.g. Muthén &
Curran, 1997).

In this paper we will examine the sample sizes require@tiectdifferences

in latent factors between groups. In many research situatiemiength of a
confidence interval may be more important than the power tekta Our
methods are easily adapted to both cases. We give an algexpaéssion

for the variance of the estimated slope in a group and for diffeeences

that extends work by Raudenbush and Liu (2001). This expression is used to
investigate required sample sizes. In addition, sample sizesxamined
using power approximation techniques developed by Satorra and Saris
(1985). A sample of the results are also checked againstasiomsl. Effects

of the number of indicators and their reliabilities are itigaged in situa-
tions with different frequencies of observation and study duratiesuli

from the formula are illustrated numerically in tablespbsaand in an ex-
ample.

2. Previous work
2.1. Latent growth curve (LGC) models

LGC models were developed by Meredith and Tisak (1990), although the
originate from work by Rao (1958) and Tucker (1958), and they have bee
further developed by others, including McArdle (1988) and Willett and
Sayer (1994). They are latent variable models and can be thougghicoh-
firmatory factor analysis models where longitudinal behawea. growth or
decline, is captured and tested through latent variables assvigtent “er-
rors” at each time point (Meredith & Tisak, 1990; Muthén & CuyrE97).
More thorough descriptions of LGC models can be found, for example, in
Duncan, Duncan, Strycker, Li, & Alpert (1999), Curran and Muthén (1999),
McArdle (1988), McArdle and Bell (2000), Meredith and Tisak (1990),
Muthén and Curran (1997), Raykov (2000), and Willet and Sayer (1994).

As mentioned previously, the construct of interest can oftebenateasured
directly, but instead through indicators (see Figure 1). Secater &GC

2 They used the longitudinal PRIMA cohort study.
3 They used the NELS data.



models (Duncan & Duncan, 1996; McArdle, 1988) can be used to study
systematic change in latent constructs, and this provides adeanbver

first order models (e.g. Sayer & Cumsille, 2002). First, thereéerm related

to each occasion can be partitioned into measurement adareor related

to a unique factor (indicator residual), and to error relate@v@tions from

the growth curve (occasion residual). Second, assumptions of &hétori
variance over time and across groups can be explicitly te3testriptions

of second order LGC models can be found, for example, in Sayer and Cum-
sille (2002).

LGC modeling is an approach to growth curve modeling, and most LGC
models are also multilevel models (for descriptions of mukilevodels, see
e.g. Bryk & Raudenbush, 1992; Goldstein, 2003; Longford, 1993) under
certain restrictions. These models have fixed effects, leegaverage inter-
cept and the average slope corresponding to the means of thddaters,

and random effects, e.g. the deviations from the average intarestope,

and deviations from the individual growth trajectories. Theythezefore
also called mixed models or random effect models. For descripifasisi-
larities and differences between LGC modeling and multilengeleling, see

e.g. Raudenbush (2002), Hox (2000), Hox and Stoel (2005), MacCallum
(2000), and Stoel, van Der Wittenboer and Hox (2003).

Because LGC models are latent variable models, paranwterbe esti-
mated through Structural Equation Modeling (SEM) (Bollen, 1989; Jéreskog
& Sorbom, 1979, 1993; Loehlin, 1992) methods (e.g. Willet & Sayer, 1994).
Regular SEM software, such as LISREL, Mx, Calis, Amos, EQ8mus,

as well as standard statistical packages such as S+, Ratar (GLM or
GLAMM) or multilevel packages such as MLwiN or HLM can bged in
estimation of parameters.

2.2 Sample size determination

When planning a longitudinal study it is desirable to know the numbe
participants needed. This might be particularly importathéf planned in-
tervention is costly. Several authors have investigated sasigd and power
for detection of group differences in longitudinal models (e.g. Liu and Liang,
1997; Liu, Shih, & Gehan, 2002; Rochon, 1991; 1998; Shieh, 2003). In the
multilevel literature, Raudenbush and Liu (2000; 2001) presenteddclose
form formulas for variances used in power calculations of grouprdiftes

in means and trends in longitudinal models based on calculatingptioen-
trality parameter of thE distribution. Effects of duration of study, frequency
of observation, and effect size, among other factors, could theatse us-

ing these formulas. In the medicine literature, closed form fasnbhve
also been presented for related models (e.g. Liu and Liang, 1997; L
Boyett, and Xiong (2000); Liu, Shih, and Gehan, 2002; Rochon, 1991).



Common approaches for studying power and sample sizes for LGCsmodel
include Satorra and Saris (1985) power approximation technique, artd Mon
Carlo simulations. Muthén and Curran (1997) and Curran and Muthén
(1999) showed how to use Satorra and Saris’ (1985) technique to iatestig
the power to detect non-zero differences in mean slopes bhasmelterac-

tions in LGC models. Hertzog, Ghisletta, Lindenberger, and Oer2886)

used the same approximation techniques to study power to detedt covar
ances between slopes of parallell change processes. Muthépluhén
(2002) showed how Monte Carlo simulations could be used to obtain sample
sizes for LGC and SEM models. Fan and Fan (2005) and Fan (2003) used
simulations to study power to detect linear growth in single grtuglies

and group differences in intercepts and slopes respectively. Duncan, Duncan,
Strycker, and Li (2002) provide a discussion of power estimat@migues

for multiple groups within LGC- and other models.

Power and sample sizes have also been evaluated for odar Vatiable
models. For example, MacCallum and colleagues (MacCallum, Bratne,
Cai, 2006; MacCallum, Browne & Sugawara, 1996; MacCallum & Hong,
1997) used the RMSEA- and other indices encountered in SEM analyses to
estimate the noncentrality parameter needed to compute poarcotk
(2001) investigated power and sample sizes for detecting difegéncsin-

gle latent constructs.

Previous studies on the power of LGC and related models have fosind po
tive effects of sample size, effect size, and frequen@peérvation on pre-
cision and power (Fan & Fan, 2005; Muthén & Curran, 1997; Fan, 20083;
Raudenbush & Liu, 2001). A long duration of the study is also positive
(Muthén & Curran, 1997; Raudenbush & Liu, 2001), whereas missing data
are negative (Muthén & Muthén, 2002). LGC methods have also been found
better than univariate ANCOVA (Muthén & Curran, 1997; Curran &
Muthén, 1999), ANOVA and dependentests, and highly more powerful
than MANOVA (Fan & Fan, 2005; Fan, 2003). However, Fan (2003) sug-
gested that ANOVA may be more powerful in detecting diffeesrin inter-
cepts.

All the LGC studies mentioned above focused on first order mooels,
models where the measurement errors and the individual rissaheanon-
distinguishable. Second order LGC models are used more and mbee in t
social sciences. These models are often preferred tocofidgr models,
whenever applicable, due to their variance decomposition properigks
possibilities of factorial invariance testing (e.g. Saye€émsille, 2002). A
researcher with limited resources benefits from knowing whéthi@icus on
getting more participants, using more indicators, using fewer brg neli-
able indicators, or measuring the participants on more occasions.



3. The model

3.1 One group

Consider a group with individuals. Each person is observed accasions.
At each occasiorK indicators are measured. Lgf denote the observed
value of individuali, of indicatork at occasion. Definex; to be the elapsed
time from start to th&th measurement occasion<0). Raudenbush and Liu
(2001) have investigated the effect of study duration and frequémdyser-
vation. Following their definitions, we defirigthe frequency of observation,
to be the number of observations per time unit: (t - 1) / x for equally
spaced occasions. The total study time (the duratidd¥is, which in this
case equal® = (T — 1)f. If the measurements are made every second year,
the frequency will bé = 1/2, and =0, 2, 4, .., 2T-2 fort =1, 2, 3, 4, ...T,
andD = 2T — 2.

The LGC modél consists of a measurement part and a structural part. The
structural part describes the development of the latentblesiaand the
measurement part the relation between the measurements aaigtiherdri-
ables. Every individual is characterized byatent factors1=(rz, ..., 75)',
which are assumed to come from a normal distribution with nreator
a=(a; ..., ay)' and covariance matriX,. The structural pattrelates an
individual's true latent levels at each time to his latentfact

,7h :ah+Bhn+Zh’ (1)

wherer, is a column vector with the individual’'s latent level at Themeas-
urement occasionsgy, is an intercept vectoBy, is a matrix withTxJ factor
loadings and}, is a random residual vector with mean 0 and covariance ma-
trix X,

Often andrn, are stacked above each other. In that case one can write th
structural part as

MThy _ G 0 B,/
()= )+( X

S
700 n) )
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This expression may be written (see e.g. Sayer and Cumsille (2002))

“We will focus on the second order model in whistlicators of latent variables are observed
at each occasion.

® See e.g. Joreskog and Sérbom (1979) for a geS&sl model with a measurement and a
structural part.



n=a+Bn+{ (2)

whereq is aT+J vector of factor mean8 is a [+J) x (T+J) matrix of factor
loadings and{ is aT+J vector of latent residuals which are normal with
zero mean and covariance matdix The column vector now contains the
T+J latent factors.

In order to describe the model in Figure 1 we hawe(0,0,0,001,a5)'

1111 gy O _
Bh:(o 1 3), z, =( ; ”]1272) and X, =diag(c?)

The measurement part of the model relates the observatiohg fatént
variables

Y=r+An+e¢, 3)

whereY is the column vector with th€T observed measurements, the col-
umn vectorr contains the correspondigl’ measurement intercepts afid

is aKTx (T+J) matrix containing the factor loadings The vector contains

KT normal error terms with zero mean and covariance m@tr@ne factor
loading for each latent factay,, can be fixed to 1 to set the scale. The corre-
sponding interceptr, can be fixed to O for identification purposes. In the
model corresponding to Figure A= (0, 115, 715 0, Ty, T23 0, Tas, T35 0, 112

I;3)' and a typical row of\ is (0,1,,, 0,0,0,0).

3.2 Analysis of the one group model
In our case, (3) can be simplified to

Y=1+A/, +E€, 4)
since we cannot measure the basic latent factors directly tron individ-

ual's latent level at certain time points. The matkixnow containsKTxT
elements. Inserting (1) into (4) we get

Y=r+A, (a,+BM+¢)+¢e ®)
The expected value is thas/A\nai+/\Bra, and the variance is

V=A,B,Z,BA, +AZ A, +0O. We cannot estimate both and a;, sepa-
rately. To solve this we will set, = 0. The expected value is thos\.B,ap.



For all components to be estimable the total number of parameteand
a, must be less than the dimensidiK,. Some components incan be set to
0. We may then write the expected valugo, o) with Ag=(AnB, 1). In the
example of Figure 1, the number of independent parameters Eie- 2}

If V has full rank, the vectora,to)' can now be estimated, for each individ-
ual, with the well-known generalized least square estimagetf)' =
(NoV' No) ' AVYY with variance (gV™ Aot assuming that all parameters
are estimable. The estimate basednandividuals is the average of thme
individual estimates and its variance V™ Ao)/n. If we know the co-
variance matrix we can now use standard statistical techniqudecide
what sample sizes are needed to obtain a certain precision or. fiothe
covariance matrix is unknown the formulas hold approximately isémeple
sizes are large enough to make good variance estimates. étowre re-
quired sample size is then expressed in terms of the unknown parameters and
to use the formula in practise one must guess their value. Baissnthat it
is not so important to get exact values for small sampés since the size
will be uncertain anyway.

3.3 Two or more groups

In several studies there may be two or more groups. For exahgie,nay

be one group of males and one group of females or there may be one or sev-
eral treatment and control groups. We enter a superggriptdenote group.
Equation (2) becomés

,7(9) =a"9 + B(g)”(g) +Z(g) (6)
and equation (3) becomes
y(e) = 7(0) +/\(g),7(g) +glo) (7

where the parameters may differ between groups. If we havantiepend-

ent groups with no common parameters it is easily seen that the best estimate
of the difference between them is the difference ofctireesponding group
parameters with variance

(ADVOLADYYRD 4 (A2 VO A @)@,

Muthén and Curran (1997) and Curran and Muthén (1999) presented a way
of testing the equality of slope parameters by introducing ddet curve
factor due to treatment” (Muthén & Curran, 1997; p. 378). A model avith

® This is based on the general latent variable pielthopulation formulation (see e.g. Bollen,
1989; Joreskog & S6rbom, 1979; Muthén & Curran,7)99
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added curve factor is depicted in Figure 2 for the second grouptlife.g
treatment group). The first group model is as in Figure 1néfi-zero pa-
rameters can be constrained to have the same values in both lgubtipere
may be some extra relations in the second group. In Figured 2,as is
constant between groups but a new growth faetpryith meanas and vari-
anceo? , is added to the second group that correspondgte- 7zi in our

formulation.

€n € &2 €n  €xn €3 €1 &3 €3 &n Ep &g
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Figure2. Second order LGC model with an added curve fa@arran & Muthén,
1999; Muthén & Curran, 1997) for one of the groups.

In many situations it is reasonable to assume that some gararage com-
mon to the groups and that other parameters differ between Semnthe
Appendix for how to find the variance of least squares estimdtea some
parameters are equal across groups, using matrix forms.

4. Variance formulas and sample size

4.1 Different group means

From now on we restrict ourselves to the simple case in Figuvigh two
groups and two factors, intercept and slope. We have already exptiesse
estimates and variances in matrix terms. In this speuiael they can be



expressed in ordinary algebraic expressions. The parametetgrelst are
the slopesziand 7717 with meansa{ anda!?, in the two groups.

In a first order model, the minimum variance, unbiased estiofatee mean
for one group and its variance are

A o x _ 2 _ _
1+Xﬂ2:Y:;Yt/TI Var(Y):%(%"'U;"'XZU;+2X0m] (8)

where g is the common residual variance Yofat each occasior, is the
number of measurements, am:qf1 and 0,2,2 are factor variances. The esti-
mate and variance of the slope are

:gl(xt - %)Y, =)
> (x - %)’

t=1 t=1

ﬁZ = ! Var(ﬁz) = Y] (9)

wherex; is the elapsed time since the start of the stadyét:th measure-
ment occasions. The first term inside the bracisetise conditional variance
of the least squares estimate of the individuapesldn cases of equally
spaced measurements at times 0, 1, T.- 1, this can also be written
12T -1)o? /DT(T +1) (Friedman, Furberg & DeMets, 1985; see also
Raudenbush & Liu, 2001) whefieis the number of occasions abdis the
duration. We can also write this as2¢ c2/(T* -T) wheref is the fre-
guency of observation. The second term inside theket of (9) is variance
across individualgrinally, for two groups with no common parametdrs t
estimate of the mean slope difference is just ifferdnce 7, = Y - 7% .
Its variance is the sum of the two group variances.

The formulas above can be extended to incorporatecand order model
with several measurements on each occasion. Astwaheve haveK unbi-
ased and independent indicators with equal vargapee factor = g + ¢.
The mean of the indicators for individuaht occasiort has the following
conditional variance

2

K
A N o;
”“_g?%/K’ Var(j, |, m,) = L (10)

T

where the first variance term is the measuremenamee and the second
term is the residual variance around the individuzé. Assuming equal

10



residual variances at each occasion, we can sutestif =0, +07/K into
(8) and (9) above.

4.2 Equal intercepts in groups

As mentioned previously, some factors may be eqoabss groups. E.g.
when the assignment to groups is random and dos&idtk,=0), it is rea-
sonable to assume that the starting values (imiegcare equal. In that case
the difference between the two group means isaisestimate of the differ-
ence in slope means. Combining the two estimatas ioptimal way we get

>

- (11)

3

X

v _y0 v (2 _y O
(YYJ(Var(ﬁizz) _ ﬁil))_ Cov) + (ﬁ(zz) _ ﬁ(zl) {Var(Y_Y] - Cov]
X

& _y0
Var(79 - ;,gl))ﬂ,a{w

J - 2Cov
X

where Cov=Cou(7? - #%),(Y? -Y")/%). Assuming equal variances
and sample sizes in the groups, the variance efrtbiv estimator can be
shown to be

- 2
Var(7,) = %{vz +02 - %J (12)
where
gy +ollK
T (13)
o; +ollK

Vv, = ,
2o (Te-T)n2f2 (14)

and J,f is the common residual variance of the first ofdetors, g? is the
common residual variance of the indicatarg, and o, are the variances of
the latent intercept and slope, aad,l,,2 is their covariance. h‘a,,l,,2 =0,
formula (12) can also be written

11



Var(fz,) = (15)

SN
AR
N

1
—+
VZ

4.3 Relation between variance and sample size

The standard sample size formula for tests undenaldy with known vari-
ance (see e.g. Desu & Raghavarao, 1990) is

; (16)

wheren is the sample size per group,is the significance level, 3 the
power, 4,,, and A, quantiles of the normal curveg?n the variance of the

estimate ane.s. the effect size. We can use formula (16) for L@Gdels,
once 27 has been determined. Several authors have presientedlas for
correlated observations where (16) is adjusted fgctor containingo, the
correlation among the measurements (see e.g. Liia&g, 1997; Diggle et
al., 2002). For LGC models, the numerators of @2j15) can be used for
207 in (16).

As mentiond previously, the length of a confidemterval may be more
important than the power of a test. One may watiintba 95% confidence
interval for the mean group difference that is gothan a given valub.
Equation (16) easily translates into the requiresug sample sizes for a
certain length of a confidence interval. All we idoto substituted, , + A1,

by 24,,, and e.s. by.

4.4 Reliability effects

As mentioned previously, one aim of this papepigwestigate sample sizes
for second order LGC models with varying numbeindicators and indica-
tor reliabilities. Since the reliability often vas with timé we will use the
reliability att = 1. The indicator residual variance (error vacgnand the
indicator reliability are related to each otherd &nowing one, in addition to
knowing the total factor variance, (&), we can compute the other. The
error variancécan be obtained from the reliabil iR

" Previous studies have also focused on relialgtityme 1, see e.g. Hertzog et al. (2006).
& This formula follows fromR, =/1§Var(/71)/?/1§Var l71)+0'fk) which is related to the defini-
tion of reliability from classical test theory (eldcDonald, 1999).

12



. _ Avar(z,)L-R)
Oy R, @

where/’ is thekth indicator loading. For simplicity, we will assenthat all
K reliabilities are equal and we may drop the supskr The error variance,
o?, corresponding t&, can then be used in (13) and (14).

4.5 Standardized effect size

Equation (16) entails the raw effect size, e.g. tilve difference in slope
means across groups, however it might be benetwikhow the standard-
ized effect size as well in order to compare madetshen (1988) provided
guidelines for effect sizes in the social sciendexording to him, a stan-
dardized effect sizej= .2, can be considered small, wherdas .5 andd =
.8 are medium and large, respectively. Considendda (16). It is easy to
see that the sample sizes under large, mediunsraatl effect sizes relate to
each other as 8= 1.5625 to .5 = 4 to .2° = 25, since we assume that the
variance is known or well estimated. For example,can go from smalid(
= .2) to large q = .8) effect size by dividing our obtained samgire by
25/1.5625=16.

Effect size can be standardized in different waysldngitudinal data. Fol-
lowing Curran & Muthén (1999) and Muthén & Currd®97) we will de-
fine the standardized effect sideas the difference in means between the
groups at the last time point divided by the stahdbeviation at that time
point.

d a,D

) \/a,i +0, +D’0, +2Do, (18)

whereas is the mean ofg, andD is the duration of the study.

Other standardizations are also possible. For ebaripn (2003) considered
both the standardized mean difference at the bagjrand at the end of the
study, and Raudenbush and Liu (2001) used an efiteetof the group slope
difference divided by the population standard diéma of the slope,

03/110,2,2 . See also Hancock (2001) for a discussion of statsdfor latent
variable means, taking into account reliabilityttod indicators.
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5. Alternative ways to decide sample size
5.1 Satorra and Saris’ method

Satorra and Saris (1985) suggested a method fooxipmting the power of
the likelihood ratio test often used in latent aate analyses. The likelihood
ratio test statistic is asymptoticaljf-square distributed under the null hy-
pothesis and asymptotically non-centgdisquare distributed under the al-
ternative hypothesis. The technique is easy towisie the help of SEM
software, and works well for large sample sizes whdn the misspecifica-
tion is small. The procedure includes specifyingael under an alternative
hypothesis and computing the implied covariancerimainder this model.
This can be done using SEM software by fixing altgmeters as in the al-
ternative hypothesis and specifying the sampletsiz® large. The obtained
implied covariance matrix can then be used as puatimatrix for analysis
under the null hyothesis, i.e. an analysis modspecified with constrained,
free, and fixed parameters (as usual in SEM ansiylsawvever with the re-
striction of fixing the parameter(s) of interesti® as in the null hypothesis.
The obtained non-zerg-square value can be used as an approximation of
the non-centrality parameter, and power of thedastbe computed.

Descriptions of the Satorra-Saris method can badpfor example, also in
Duncan et al. (1999; 2002) and in Muthén and Cufi&97). We compared
their method to our method in some numeric examphess used the model
proposed by Muthén and Curran (1997) and Curranvauttién (1999) with
an added growth factorg, with meanas and zero variance. First we speci-
fied the model unded,, using a non-zero effect sizg. The implied means-
and covariance matrix was then created using ttestital software Mplus
(Muthén & Muthén, 1998-2006) by inputting identityatrices and zero
mean vectors, specifying the sample sizes in eashipgto be large (1000
per group), and fixing all parameters to be eqgaahe values according to
H;. The resulting implied means- and covariance wedrivere then checked

for mistakes by estimatingr, and making sure that all original parameter
values were reproduced. The implied means- andrieowa matrices were
then analyzed according td, (i.e. settingr, =0) with a certain sample
size. Using the obtainegf-value as an approximate non-centrality parame-
ter, the power for a test with 1 degree of freeqone parameter fixed as in

Ho) was computed. The power for various sample siz@s obtained, and
the sample size that corresponded to a powerwéas8recorded.
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5.2 Monte Carlo Simulations

Both the Satorra-Saris’ (1985) technique and otmidas may not work as
well for small sample sizes and unknown covariamagrix (e.g. Curran,
Bollen, Paxton, Kirby & Chen, 2002; Satorra & Safi885). To check the
methods a sample of the analyses were simulatedklhsFor each simula-
tion, 10,000 samples were generated and analyzaderRvas computed as
the proportion of replications that the null hygtisers = 0 was rejected at
significance level .05, given that the populaticdue was different from
zero. All simulations were checked to make suré pasameter and standard
error biases were no larger than 10% (5%afgr and that coverage was

between .91 and .98 (see Muthén & Muthén, 26802).

6. Numerical illustrations

The formulas in this paper can be used for anyrel@giarameter values. For
our illustrations we chose the basic model in FeglimwithT = 4,D = 3, and
f = 1. We then varied the number of indicators, tiwcator reliability, the
number of occasions, standardized effect size,tidaraand frequency of
observation. We used the significance level .05thagower .8 throughout.
Cohen (1988) recommended a power of .8 in the keciances. We used

the parameter values; = 05, o, =05, ando;, = 0.1, providing a com-
monly seen intercept/slope variance ratio (Muthém@&thén, 2002). Unless
otherwise stated, we have assumed thgt =0 and equal intercepts across

groupsal =a®.
6.1 Comparisons across methods

Table 1 shows the required group sample sizes us$iagSatorra-Saris
(1985) approximation method (top) and the formblattom). As shown, the
Satorra-Saris sample sizes are slightly lower tiese obtained from the
formula ford = .2, and slightly higher fod = .5, but this discrepancy is
rounding error due to the fact that Mplus uses dhige decimals in com-
puting the implied means- and covariance matrices.

® Only fairly large sample sizes were used. Had $asipes been smaller (erg= 10), biases
might have been larger.
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Table 1. Required Group Sample Sizes for .8 Power to t&iepe Difference

Method d=.2 d=.5
Satorra-Saris R K= 3 4 5 3 4 5
T=4,D=3,f=1 1 322 322 322 53 53 53
.9 330 328 326 54 54 53
.6 367 356 350 60 58 57
3 464 431 411 75 70 67
T=6,D=3f=5/3 1 298 298 298 49 49 49
.9 305 303 302 50 50 50
.6 336 327 321 55 54 53
.3 415 389 372 68 64 61
Sample Size Formula
T=4,D=3,f=1 1 323 323 323 52 52 52
.9 330 329 327 53 53 52
.6 368 357 350 59 57 56
.3 465 433 412 74 69 66
T=6,D=3,f=5/3 1 299 299 299 48 48 48
.9 305 304 303 49 49 48
.6 336 327 322 54 52 52
.3 416 390 373 67 62 60

Note. o) =a , d = standardized effect sizB, = reliability, K = number of indicators =
number of measurement occasidds; duration of study, anid= frequency of observation.

Table 2 shows simulations for a sample of analy$ee. analyses in the
simulations are made assuming that the variancariamces are unknown.
The Satorra-Saris sample sizes found from the topable 1 were used in
the simulations to get approximate power and sicanice levels. The preci-
sion in the table is around .008 for the power espand around .004 for the
confidence levels. As shown, power is close t@r&ifl analyses witld = .2,
and the significance level is close to .05. The groand significance levels
are slightly inflated fod = .5, however. This is because the test statistc u
to evaluate power and significance level in Mplhg, ratio of the parameter
estimate to its standard error, is approximatelymadly distributed in large
samples (Muthén & Muthén, 2002), and the samplessiard = .5 are fairly
small. We can conclude, however, that results ftbenSatorra-Saris tech-
nique and the sample size formula (16) can be ag@mactically equivalent,
and they are also similar to simulations.
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Table2. Results from Monte Carlo Simulations using Sat@aris Sample Sizes

from Table 1
d=.2 =5

Power R K= 3 4 5 3 4 5

T=4,D=3,f=1 1 .792 - - .814 - -
9 .803 .800 .802 .810 .816 .811
.6 .804 .794 .800 .809 .815 .809

Significance level

T=4,D=3,f=1 1 .050 - - .058 - -
.9 .052 .050 .046 .059 .056 .055
.6 .051 .051 .050 .060 .060 .055

Note. ol =4, d = standardized effect sizB, = reliability, K = number of indicators] =

number of measurement occasidds; duration of study, anid= frequency of observation.
*The simulations fod = .5 resulted in covariance matrices that werepositive definite for
some replications. The largest number of non-pesitiefinite matrices (.0033%) came from
theR = .6,K = 3 model.

6.2 Effect size, reliability, and number of indicators

Table 3 and Figure 2 show required group samplesdiar testingas = 0
against small (.2) and medium (.5) effect sizes. dvenot report large (.8)
effect sizes here because of the previously meatiolimitation of the
method for small sample sizes. If desired, howetvmse are easily derived
as discussed in section 4.5. We should mention, #diat all sample sizes in
Table 3 and Figure 2 would increase by a facto® b@d we used the effect
size definition of Raudenbusch & Liu (2001). Théetor decreases and ap-
proaches 1, however, as duration of the study ase®

As expected, effect size has a large effect onimedjsample size (a factor
of 6.25). Also according to expectations, morecgatbrs per occasion do not
require as large sample sizes, and this reducsomadre noticeable with
smaller reliabilities. As expected, models with &wndicator reliabilities
require larger sample sizes, and this is more pnooed for models with few
indicators. The increase in required sample sizeotsproportional to the
decrease in reliability. The increase is largethat lower scale of reliabil-
ities.
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Table 3. Required Group Sample Sizes Tor 4,0 = 3,f= 1, andr¥) = a?

d R K= 1 2 3 4 5 6 10 20
0.2 1 323 323 323 323 323 323 323 323
.9 346 334 330 329 327 327 325 324
.8 373 349 340 336 333 331 328 325
e 406 366 352 345 341 338 332 327
.6 447 388 368 357 350 346 337 330
5 501 418 388 373 363 357 344 333
A4 577 461 418 396 382 373 354 338
3 698 527 465 433 412 399 370 347
2 931 651 552 501 469 447 401 363
A 1606 999 792 687 622 577 485 409
0.5 1 52 52 52 52 52 52 52 52
9 55 53 53 53 52 52 52 52
.8 60 56 54 54 53 53 52 52
e 65 59 56 55 54 54 53 52
.6 71 62 59 57 56 55 54 53
5 80 67 62 60 58 57 55 53
A4 92 74 67 63 61 60 57 54
3 112 84 74 69 66 64 59 56
2 149 104 88 80 75 71 64 58
A 257 160 127 110 99 92 78 66

Note.al(g’ is the intercept mean in group @)= standardized effect sizR,= reliability, K =

number of indicatorsT = number of measurement occasidds; duration of study, anfl=
frequency of observation.

Sample size, reliability and number of indicatoreract. Let us assume, for
simplicity, that A = 1. Al pars (RK) such that:
K=(@- R)(a,f+a,2,1)/(Raj), give the same sample size, which follows
from formula (17). We can fin#, the number of indicators of reliabilify

that are needed to obtain the same sample siz# asiodel with one indi-
cator with  reliability R* and indicator error variance

o’ =(1- R*)(a,f +02 )/(R*). For example, in a model witr; =g, =5,
say that we want to find the number of indicatoithweliability R = .6 that
will give the same sample size as a model withindeator with reliability
R* = .9. Findingo? =1/9 we obtainK = 6. We thus need to use six indica-

tors per measurement occasion of reliability .6rider to get the same sam-
ple size as for a .9 reliability, one-indicator rabd
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Figure 3. Group sample sizes as a function of reliabikfffect size, and number of
indicators for models with four measurement ocaasio

6.3 Equality of Intercepts

All models mentioned so far have equal startingies) i.e.a” =a®. This
may be reasonable in an intervention study wherntieevention is made at
timet = 1. If the intercepts differ, the group meansegiw information and
formula (15) is simplified to

var(r,) = 2, + o2 )/n. 19)

The right half of Table 4 shows required group sangizes for selected
models with unconstrained intercepts. It is seext gubstantially larger
sample sizes are required when the means of tkecapts cannot be as-
sumed equal across groups.
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Table 4. Required Group Sample Sizes (br 0.2 andD =3

T(f) RK= 1 3 5 10 1 3 5 10
al =a? al £ a?
2(1/3) 1 341 341 341 341 392 392 392 392
9 369 350 347 344 438 408 402 397
6 499 396 374 358 668 484 448 420
3 859 524 454 399 1356 714 585 489
6(5/3) 1 299 299 299 299 333 333 333 333
9 318 305 303 301 366 344 340 337
6 401 336 322 311 530 399 373 353
3 596 416 373 338 1022 563 471 402
10(9/3) 1 269 269 269 269 287 287 287 287
9 284 274 272 270 310 295 292 290
6 347 298 287 278 422 332 314 301
3 490 359 326 299 760 445 382 335
20(19/3) 1 236 236 236 236 242 242 242 242
9 245 239 238 237 254 246 244 243
6 288 254 247 241 317 267 257 249
3 383 295 273 255 504 329 294 268
o - 186 186 186 186 186186 186 186

Note.z/® is the intercept mean in group dj= standardized effect sizR,= reliability, K =
number of indicatorsT = number of measurement occasidds; duration of study, anfl=
frequency of observation.

6.4 Number of Occasions

Table 4 and Figure 3a show sample sizes for diffenembers of equidis-
tant occasions but with a fixed durati@w3, and fixed standardized effect
size,d = 0.2 The four-occasion models in Table 3 lad1 andx, = 0, 1, 2,
and 3. Herd varies e.gf = 5/3 gives, = 0, 3/5, 6/5, 9/5, 12/5, 3 afd= 1/3
givesx = 0, 3. As expected, using only two measurements 1/3) yields
the highest sample sizes. Increasing frequency bskmvation results in
lower required sample sizes but never below 18@ntiing formulas (13),

(14) and (15) we see that’ decreases towarcts,z,2 asf increases with fixed
D.
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Figure 3a (top) and b (bottom). Group sample sizes as a function of reliability,
fixed- or non-fixed duration, and number of measwgpt occasions for
three-indicator models.

We can also increase the number of occasions bgasing the duration
keeping the frequency constant. This is a situatibere additional meas-
urements correspond to additional time, and thsis t greater effect sizes,
d, at the last time point. The effect of the numbkoccasions is illustrated
in Table 5 and Figure 3b with standardized effent d = .2 fixed at time
pointt = 4. The mean change in each interwgl,is constant at .0919 (which
corresponds ta = .2 for theT = 4,f = 1 model). This model can thus be
compared to Tables 1 and 3. Not surprisingly, iasieg the duration by
adding measurements results in substantially smsdieaple sizes, although
never below 186, whereas decreasing the duratisultsein substantially
larger sample sizes.
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Table 5. Required Group Sample Sizesaﬂ) = al(z) andf =1

TD) d R K= 1 3 5 10
2(1)  0.0667 1 1580 1580 1580 1580
9 1833 1666 1632 1638
6 3005 2078 1883 1733
3 6243 3229 2595 2102
6(5)  0.3333 1 227 227 227 227
9 234 229 228 227
6 263 240 235 231
3 333 269 253 241
10(9)  0.6000 1 195 195 195 195
9 197 196 195 195
6 204 198 197 196
3 220 205 201 198
20(19) 1.2667 1 187 187 187 187
9 187 187 187 187
6 188 188 187 187
3 191 189 188 188
00 - - 186 186 186 186

Note.a¥) is the intercept mean in group dj= standardized effect sizR,= reliability, K =

number of indicatorsT = number of measurement occasidds; duration of study, anfl=
frequency of observation.

Formula (16) can be used to show that there imia il the required sample
sizes, regardless & andR, asT and/orf tends toward infinity. This corre-
sponds to the case when we have succeded in yagtihe latent variable
76 exactly for the individuals. For example, with = .0919 (which corre-
sponds dal = .2 for our basic modet) tends towards

(196+.84162x 1
091¢

=18587,

which was seen in the tables. In other words, weagfind a measurement
plan with less than 186 participants per groupaiagpower of .8, regardless
of the number of indicators, their reliabilities, the number of measure-
ments.

6.5 Non-Zero Intercept-Slope Covariance
All models so far have had zero covariance betvtberintercept and slope
factors. A non-zero covariance may increase oredser the required sample

size. For example, covariances of .05, .1, andegu(ting in correlations)
of .223, .447, and .895 respectively) for 4,D = 3,f=1,R=.9,K = 3,
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and a, =.0919 result inn = 359, 378 and 382 respectively (compared 0
330 forr = 0). Covariancesrm =-05, -.1, and -.2 result in = 291, 241,

and 109 respectively. Equation (12) shows thatwbest case occurs when
V,X=0 i.e. wheno,, =.161 in this case, and a minimumis reached

forr=-1,ie.0,, =-22. One has to keep in mind, however, that a posi-

tive covariance increases the variance at theoesdsion. If one wants to
use standardized effect sizk one must also change.

7. Choice of design

Looking at equation (16), we can examine the magdei of the effects of
the various factors on sample size. For examplepesse we have a design
withK=2,D=3,f=1(i.e.T=4),R=.6,d = .2, significance levat = .05,
and power = .8. The required sample size is 38§marmp. Suppose that it is
only possible to obtain 340 individuals per grolip. keep the same power
we need to use a design wkKhe= 8, orf = 7/4, or prolong the study time

= 5 keepind fixed, or make more reliable measuremeRts, .86, or use a
lower level testt = .075, or accept a power of .75 (all else begstant). If
costs permit, it is thus beneficial to increase dbeation by taking another
measurement at an additional time point. If theatdon is fixed, however,
increasing the frequency of observations has atagffect on sample size
than increasing the number of indicators. The cobiscreasing the dura-
tion and/or the frequency is often higher, howewean the costs of more
indicators.

7.1 A hypothetical example

Say that we want to collect data to study groufedifices in spatial cogni-
tive ability development for adults (e.g. differescbetween adults without
dementia and adults with a mild case of dementid) that we believe that
there are small differences in the population. €ednine sample sizes we
use the parameters obtained by Finkel, Reynold#rile, Gatz, and Peder-
sen (2003), who, among other things, stutfiegatial ability of 590 adults.

The measurements spanned over six years with #gemlistant measure-
ment occasions. Results for the Figure Logic (Fid €ard Rotations (CR)

indicators were:a,,, =6114, a,, =4588, a,, =—46, O, =-69,

10 They used the Swedish adoption/twin study of aging fitted two slopes (one before age
65 and one after), however for illustration purgogae will only focus on the one-slope mod-
els.
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o, =8349, g, =21524, g, =01, 0.

it TT2CcR

o2, =8102"

=09, o2 =8256, and

The estimates above are from separate first ortEyses. However, know-
ing the reliabilities of the indicators, we canwsdjthe above estimates for
use in a second order model. The means of the alamiances, adjusted for
.89 reliability (see Pedersen, Plomin, Nesselroadd,McClearn (1992) for
reliabilities of these and other indicators assgsspatial ability), yield:

o2 =14937, 02, = 05, 02 =5636, ando? = 2543. ForT = 3,f = 1/3,D

=6,K=1,0" £ a®, andd = .2 we get the following sample sizes:

2

2(1.96+ .8416} (5«233?+ 2543 .osj — 31276

048 32(3°-3)n2
We will thus need approximately 313 participanteach group to have .8
power to detect small differences in slopes usimg indicator per measure-
ment occasion, at three occasions=(0, 3, and 6) with no assumptions on
equal intercept means. If we increase the numbeénditators to two, we
will need 265 per group, and we can decreas®e236 by using five indica-
tors per occasion. We can also increase the fregugihobservationf. Us-
ing one indicator ang, = 0, 2, 4, 6f(=1/2) orx, =0, 1, 2,3, 4,5, 6E 1)
results in 282 and 202 per group respectively. Hewndf we add four indi-
cators to each occasion as well, the results @&8ea@d 153 respectively. We
can also increase the duration. Measuring oneatati@atx; = 0, 3, 6, and 9
(f = 1/3) results in sample sizes of 127 (96 for fivdicators). The best thing
we can do is to extend the study period, if ieadible.

8. Discussion
8.1 Results in relation to previous work

We presented a sample size formula that can be tosealculate required
sample sizes to study group differences in latenstucts. Several authors
have presented algebraic expressions for relatettlnde.g. Liu and Liang,
1997; Liu et al. (2000); Liu et al., 2002; Rochd®91), however most ex-
pressions have been in terms of the correlatiowdsst repeated measures.
When models such as latent growth curve- or mutllenodels are used,
variance expressions in terms of the random compenef these models
might then be used to study design issues. We datka variance formula

11 Correlations between the intercept and slope faci®re also found, however these are
ignored here, and the example should only be thoofgds an illustration.
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by Raudenbush and Liu (2001) to include growthabent constructs, which
enabled us to study effects of the number of indrsaand their reliabilities
on sample size.

In settings where randomization to groups have medy the group inter-
cepts may be assumed equal. The difference in sleg@es across groups
can then be estimated with more precision. Our fitemalso incorporated
the possibility of this extra precision. We fourdt this extra precision is
often substantial but largest when there are orflgmameasurement occa-
sions.

The results were illustrated in different situaiomhere many different de-
sign factors were varied. Sample sizes were foartktrease with increases
in effect size, the number and reliability of timglicators, duration of time,
and frequency of observation. This is not astonglaind in this respect the
results agreed with previous studies (e.g. Fan32b@rtzog et al., 2006;
Muthén & Curran, 1997; Raudenbush & Liu, 2001). Westrated the rela-
tive importance of the different factors and nosedne facts that have not
been reported elsewhere for LGC models.

Hertzog et al. (2006) studied first order LGC maddihey looked at the

power to detect covariances between slopes oflepabcesses and found
that growth curve reliability, i.e. the proportiofvariance explained by the
structural model at the first occasion, had positffects on power. They
suspected that multiple indicator models wouldease the power in detect-
ing inter-individual differences. This occurredtive present study, although
sample sizes for differences in slopes betweenpgrawas examined and not
sample sizes for slope covariances. Duncan é2@02( suggested that using
multiple indicators should increase power of thedeidecause it accounts
for measurement error and thus “refines” the deumakntal process. The
present study also found that if the observed kbataperfectly measure the
latent construct of interest, one measure per omiss enough. If the reli-

ability is not perfect, however, more measuresmake up for this unreli-

ability.

Some previous studies on power in LGC models faumg small effects of
the frequency of observation with fixed durationg(eécan & Fan, 2005).
This can happen when the residual variance at eecdsion is small com-
pared to the slope variance (see e.g. Raudenbusin,&001). Increasing
the number of measurement occasions within thevaltevill, in that case,
not make a big difference because there is not rraubk gained.

The sample sizes found in the illustrations maycbesidered fairly large

and thus discouraging. However, sample sizes fgetaeffects or other
parameter values can be derived by the same forrltlzough this study
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did not illustrate the effects of varying the vaga among individual slopes
or occasion factors, the formulas still hold. Tlyw that larger variances
result in larger sample sizes, as Raduenbush an(R0D1) also have noted.
In addition, sample size formulas from Diggle et (@002) and Liu et al.

(2000) have shown that sample sizes depend onditrelations between

observations over time.

8.2 Practical considerations

LGC models or multilevel models are increasinglydisn the study of
growth. These models can be used when we followoorseveral groups of
individuals over time. They can be used in inteti@nresearch such as
when we are evaluating a new program. Because thess of studies often
come with considerable costs (we observe partitipaeveral times, inter-
ventions might be expensive etc.), design condides such as decisions
on sample size and number of measurement occasaortherefore be valu-
able. Although we can use Satorra-Saris (1985)axpations or simula-
tions prior to data collection to determine thedeeksample size for these
models, using formulas presented in this paperbzaquicker and easier.
These formulas also allow researchers to see hidevetit factors interact in
their impacts on sample size. We can easily chaegegn aspects, such as
the number of occasions and indicators, in the filrand see what happens
to the sample size.

We compared some of our results to Satorra and $H985) approxima-

tions and simulations. They were found to be sinfda all checked sample
sizes. The formula is based on a known covariaimaetare, however, and a
reservation for small sample sizes is thereforessary. If sample size cal-
culations result in smali's (e.g.n < 20), results may be improved by ustng
percentiles. On the other hand, if the covarianatrimis not known when

designing the study one can never be sure of fintlie correct design in
advance. In addition, the results from our formwdas approximately true
for non-normal models as long as the linear strects the same and the
sample sizes so large that normal approximatiatiasved.

When we are interested in differences in growthwbeh predetermined
groups, such as males and females, or childreraofiéd and divorced par-
ents, we can still use formulas presented in thfgep The variance formula
becomes less complex when we cannot incorporatetira precision of
knowing that the groups were equal at one poititie. However, when the
means of the intercepts differ between groups,ithaten the groups differ
at the start of the study, the standardized effexet, d, as defined by (18)
may not be appropriate. Other standardized efigesssuch as those used
by Raudenbush and Liu (2001) might then be usddads
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8.3 Future work

We gave a farly general approach based on maticgdinear models. For
the special case of second order linear modelsplified algebraic formula
was given. Although we examined several factors #ffect sample size,
there were several factors we did not examine iaild&Ve did not examine
models with unequal group variances. Muthén andaDuf1997) looked at
groups with different variances and showed thatgromas greatest for stud-
ies that were nearly balanced but with a slightregresentation in the
treatment group. This was because the treatmenpdrad a larger variance
than the control group. The results were the oppedien they changed the
design so that the control group had the largeianee. A treatment that
increases the variance in the treatment groupimiliease the sample size
needed for sufficient power. For example, in tewhLurran and Muthén
(1999) and Muthén and Curran’s (1997) added caw®f in the treatment

group, we may have a positive added slope variauf;ge,lf a,fg =.1in the

T=4,f=1K=3,R=.9, model, the required sample size per group in
creases from 330 to 422. This is not surprisingyeh@r, because the total
variance then increases.

This study did not cover other more complex modeish as models with
correlated errors or models with interactions amiagnt variable, non-
linear models, models with more than two groupssmébrth. Further study
is needed to examine these models. For example(Z043) predicts that
the differences in power between LGC models anceatn measures
ANOVA will increase for non-linear models because@ models can esti-
mate time scores (factor loadings). These modeisatso be extended in
various other ways. For example, they can be aactstl to include regres-
sions among latent factors, additional growth psses, piecewise growth
factors, covariates etc. The formulas in this pajaer be extended to incor-
porate covariates or other factors. The generaisatf the matrix expres-
sions is fairly straightforward but the algebradcrfiiulas will get more com-
plex. Raudenbush and Liu’s (2001) formulas for kbrgbrder trends can also
be extended to include growth in latent factorsva$f as intervention set-
tings with equal intercepts.

12 See e.g. Muthén and Curran (1997) and Curran arttév (1999) for interaction interpre-
tations and power computations for first order niede
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Appendix

In a general analysis of several groups with soomengon parameters, lat

be the common parameters angﬁg) be the group-specific parameters (in-
cluding t). We then have in each groumc(, 0((9)9*)' is normal with mean
(ac, a9y and variance/®" VOIA@)n®,  Stacking these expressions
above each other we have thag (o, ac’, a@, ..., ac’, a®©y)" is nor-
mal with mean dc, a®, ac, a@, ..., ac, a®y)' and covariance matrix
block diagonal with blocks\,®" V@ Ay@) /@, These can be combined to
form a least squares estimate of the parameterdimdi their variance.

Let us consider an example with two groups. Ygtbe an observation on
individuali in group 1j = 1, ...,n™, andY, be an observation on individual
iingroup2j =1, ...,n%.

o

YJJ.DN( il)}x(l),z(l)},hl,...,n(l) (a)
_O’
a4 | @ s o @

Y, ON 0 X@ 5@\ =1 ..n (b)

From (a) we can write

a. a, |[TW «®7] 1
oo BN g0 | 0 g0 7@ ©

and from (b) we can write

a; a, r (2) K(Z)
|: (2) :l . N(|: (2):|’|: (2) (2) % ' (d)
a a K g n

We can stack (c) and (d) on top of each other
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a, a, |[r@/nt £B/p0 0 0

a' N a® || k9 g0/p0 0 0
a. a, |0 0 r@/mn@  x@/n@ 1" ()
a@r a2 1|0 0 K@@ @/l

We will call the covariance matrix in (& The variance of the generalized
least squares estimatead? — a@is [Z'R'lZ]:;l3 where

a ] L0 o
a¥| |0 12 1/2
a, | |1 0 0
a?| |0 v2 -12

and

10 O

0 1/2 1/2
1 0 O

0 1/2 -1/2
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