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Abstract

Optimal design of experiments for binary data is the topic of this thesis. A partic-
ular logistic model containing a quadratic linear predictor and one control variable
is considered. The problem that the optimal designs for this model depends on the
unknown true parameters is in focus. The aim of the �rst paper is to examine the
small sample performance of the optimal designs and to investigate the loss from
using non-optimal designs. D-optimal designs are derived for di¤erent parameter
sets and compared to a couple of non-optimal designs in a simulation study. The
evaluations are made in terms of mean squared error of the maximum likelihood
parameter estimator. Another problem with this model is the occurrence of certain
data patterns for which no maximum likelihood estimates can be obtained. The
designs di¤ered considerably in this respect and this problem also turned out to
be parameter dependent. When it comes to the small sample distribution of the
maximum likelihood estimator it was demonstrated to be quite di¤erent from the
asymptotic distribution. The aim of the second paper is to �nd a solution to the
parameter dependence issue. Two sequential approaches are proposed and tested
in a simulation study. The purpose is to �nd the conditions that maximize the
probability of response. The �rst approach is an optimal design approach where
c-optimal designs are updated sequentially. The second approach is a stochastic
approximation approach which is a nonparametric approach, that is no distribu-
tional assumptions has to be made. The two approaches are compared in terms of
mean squared error. Based on the simulation results the c-optimal design approach
was consistently favored.

Keywords: Response Surface Methodology, D-optimality, c-optimality, Maxi-
mum likelihood estimator, Sequential design, Stochastic approximation.
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1 Introduction

Experimentation constitutes a cornerstone of the empirical sciences. With the help
of experiments it is possible to answer questions, to test hypotheses and ultimately
to either con�rm or refute theories. An experiment is a controlled study in which
observations are made and data collected that forms the basis for analysis and
subsequent conclusions. The quality of the analysis depends directly on the exper-
imental design. A well-designed experiment allows valid conclusions to be drawn.
Statistical methods are of vital importance to achieve this ambition. Available as
an alternative is to perform an observational study in which the researcher does not
make any interventions but merely observes existing states. The advantage with
experiments over observational studies is the opportunity to control the experimen-
tal conditions and to determine which variables to include. Observational studies
are vulnerable in the sense that the interpretations may be distorted by important
variables that are not measured or even unknown.

A common objective is to gain knowledge about a process or system, such as a
manufacturing process or a biomedical system, that is a¤ected by one or more
controllable variables and possibly a number of uncontrollable variables. A response
variable re�ects some observable aspect of the output that is of interest, like the
yield of a chemical process or whether a product is defect or not. The person
conducting the experiment, the experimenter, can vary the levels of the control
variable(s) systematically in order to investigate how it in�uences the response
variable(s). Response Surface Methodology (RSM) treats the statistical methods
for design and analysis of such experiments. The search for optimum operating
conditions in a manufacturing process is a frequent application.

RSM rests on the notion that there are many equally satisfactory paths that lead
to correct conclusions and that the learning process is iterative. It is often wise to
split the resources into several stages instead of devoting everything to one large
experiment. For instance, it may very well happen that a screening experiment
points in a di¤erent direction than anticipated beforehand. For example, moving
from current towards optimum operating conditions is usually accomplished in more
than one step.

The theory of optimal design provides an approach that enables the experimental
design to be customized to a speci�c inferential goal. Planning and performing
experiments require resources, optimal experimental design is about getting good
value for the time and money invested. By carefully considering certain choices
before the experiment is conducted the information obtained can be maximized
(given a cost constraint) or the expenses can be minimized (for a desired precision).
The choices that have to be made include deciding on which variables to examine, at
what levels to make observations and the corresponding proportion of observations

1



as well as how the resources should be divided between di¤erent stages of the
experiment.

A pioneer in the design of experiments area was Sir R. A. Fisher. He introduced
statistical principles to the experimental design in the studies of agricultural sys-
tems. The work of Fisher starting in the 1930�s laid the foundation to the statistical
experimental design, see for example Fisher (1935). The applications were mainly
in the agricultural, biological and medical �elds. In the 1950�s the development of
RSM caused statistical design of experiments to enter the industrial �eld of appli-
cation. RSM originated with the paper by Box and Wilson (1951) on which an
extensive growth followed during the next decades. The book by Box and Draper
(1987) gives a comprehensive treatment of the RSM techniques.

The optimal design theory was initiated in the late 1950�s where many contributions
are attributable to J. Kiefer. For instance, the alphabetical terminology referring to
the optimality criteria was introduced by Kiefer (1959) and the General Equivalence
Theorem is owing to Kiefer and Wolfowitz (1959) and Kiefer (1961). Fedorov
(1972), Silvey (1980), Pazman (1986), Atkinson and Donev (1992), Pukelsheim
(1993) and Fedorov and Hackl (1997) are all classic books that cover optimal design
of experiments.

The attention was predominantly concentrated to linear models in the beginning
but the research has been extended to concern non-linear models including Gener-
alized Linear Models. The crux of the problem of �nding optimal designs for the
latter cases is that the optimal design generally depends on the unknown model
parameters. It may seem discouraging that the construction of an optimal design
to estimate the parameters requires the very same parameters to be known prior to
the experiment. However, there exist several approaches to solve this problem. The
most straightforward solution is to base the construction on a best guess, obtained
from earlier experiments or based on expert knowledge, which obviously risks being
poor if the guess is poor. Such a design is called a locally optimal design and was
introduced by Cherno¤ (1953). A natural development of this approach is the so
called optimum on average designs (also known as Bayesian designs) which assume
a prior distribution on the parameters instead of focusing on just one guess, see
e.g. Fedorov and Hackl (1997). Another alternative is the sequential construction
of designs which is the approach that is adopted in this thesis. The idea is that the
parameter estimates and the optimal design are updated stepwise, that is a locally
optimal design is derived at each step based on the parameter estimates obtained
in the previous step.

Much of the research concerning optimal experimental design for GLMs has been
devoted to the logistic two-parameter model. A common application is the dose-
response models that relates the control variable, e.g. the dose of a drug, to the
probability of response, e.g. that a test subject is cured. The interest is often to
�nd the dose associated with some speci�c response rate, referred to as the e¤ective
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dose. An overview of optimal designs for the two-parameter logistic model can be
found in Myers et al. (1994). Wu (1985) presents various sequential designs for
binary data, that for instance are suitable to �nd the e¤ective dose.

This thesis treats optimal design of experiments for the logistic model. After a
summary of the subject matters that are relevant for the thesis, two papers are
appended; paper I with the title �D-optimal Designs for Quadratic Logistic Regres-
sion Models�and paper II with the title �Sequential Designs for Binary Data with
the purpose to Maximize the Probability of Response�. In common for the two
papers is that a particular logistic model involving three parameters is considered.
Furthermore, both of the papers deal with the problem of parameter dependence
but in di¤erent ways. In paper I the aim is to examine the extent of the adverse
e¤ects from using non-optimal designs in a simulation study. In addition, the focus
is on the performances of optimal as well as non-optimal designs in small samples.
In paper II two sequential approaches are proposed as a solution to the parameter
dependence issue. The performances of the sequential designs and their abilities to
�nd the optimum operating conditions are evaluated through simulations. The out-
line of the summary is as follows. Chapter 2 introduces the concept of generalized
linear models and reviews the theory of optimal design of experiments. Chapter 3
goes through Response Surface Methodology, it starts with a general introduction
followed by the de�nition of the logistic model. Summaries of the two papers are
given in the next chapter. Conclusions together with some suggestions for future
research areas appear in the last chapter.

2 Design of experiments for Generalized Linear
Models

2.1 Generalized Linear Models

The concept of a generalized linear model uni�es the analysis of a wide variety of
statistical models. The standard linear regression model with the responses being
continuous and normally distributed can be viewed as a special case. However, both
continuous and discrete data as well as several other probability distributions �t
into this framework. Consider for example an experiment where the outcome is one
out of two possibilities, e.g. success or failure, explode or not explode, resulting in
a binary response variable. Logit and probit regression are commonly used models
for situations of that kind. Generalized Linear Models were introduced in Nelder
and Wedderburn (1972), a comprehensive book-length treatment is provided by
McCullagh and Nelder (1989) and an introduction is given by Dobson (2002). The
class of GLMs shares the following characteristics.
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� The random component speci�es the distribution of the independent response
variables Y1; :::; YN . This can be any distribution that is a member of the expo-
nential family and the response variable may be both discrete or continuous.

� The linear predictor de�ned as

�i = x
T
i �; i = 1; :::; N

where xi is a p�1 vector containing the control variables and � is a p�1 pa-
rameter vector. The vector xi may include non-linear elements, in contrast to
the parameter vector �. For instance, a model with an intercept, a quadratic
term and a cubic term yields xi =

�
1 xi x2i x3i

�T
:

� The link function
g (�i) = �i i = 1; :::; N

de�nes the connecting link between the mean response, E (Yi) = �i, and the
linear predictor, �i. The only limitation is that g should be a di¤erentiable
and monotonic function. Examples on standard GLMs and corresponding
link functions are shown in Table 1.

Table 1: Some GLM examples.

Regression

model
Response Distribution Link function

Inverse

link function

Linear Continuous Normal identity: � = � � = �

Logistic Binary Binomial logit: � = ln
�

�
1��

�
� = exp�

1+exp�

Probit Binary Binomial probit: � = ��1 (�) � = �(�)

Poisson Counts Poisson log: � = ln� � = exp�

The mean response �i is a function of the linear predictor, see Table 1, that in turn
is a function of the control variables and the model parameters. Furthermore, the
variance of Yi generally depends on the mean response �i. For example, in the case
of a binomial response variable V (Yi) = Ni�i (1� �i), where Ni is the number of
observations at xi; and for a Poisson response variable V (Yi) = �i, whereas in the
standard linear regression model V (Yi) = �2. The function

v (xi) =
1

V (Yi)

�
@�i
@�i

�2
is called the GLM weight. For binomial Yi and the logit link the GLM weight
becomes v (xi) = Ni�i (1� �i), for a Poisson response and log link v (xi) = �i and
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for a normally distributed response it is constant, v (xi) = 1=�2. This is what makes
the construction of optimal designs for GLMs generally more complicated than for
linear models. An optimal design often attempts to maximize the precision, or
equivalently minimize the variance, of the parameter estimates, e.g. to make good
predictions of the response. The GLM weight enters as term into the variance
associated with estimating the model parameters. Since v (xi) depends on the true
parameters through �i the optimal design will also depend on the true parameters.

2.2 Optimal design

The experimenter has to decide on what levels of the control variable that should
be used in the experiment, such as the amounts of a certain fertilizer in an agricul-
tural experiment, the quantities of a new drug in a biomedical experiment or the
temperatures in a manufacturing experiment. A design point is a particular level
of the control variable, like 150 degrees or 5 ml of the drug. The locations of the
design points have a direct in�uence on the amount of information that can be ex-
tracted from the experiment. Other issues related to the experimental design refer
to the number of design points and the allocation of observations to the points. In
the case of sequential experimentation additional questions arise, for example are
a few large batches preferred over many batches of smaller size?

The purpose of conducting experiments is to increase knowledge, to gain as much
information as possible. The core of the theory of optimal design is therefore the
information matrix which mathematically summarizes the amount of information.
Optimal designs are derived by maximizing some function of the information matrix
or minimizing some function of its inverse.

2.2.1 The information matrix

Let � denote a design formulated according to

� =

�
x1 x2 : : : xn
N1 N2 : : : Nn

�
;

nP
i=1

Ni = N;

where Ni is the number of observations taken at the design point xi. Alternatively
the design can be formulated as

� =

�
x1 x2 : : : xn
w1 w2 : : : wn

�
; wi � 0;

nP
i=1

wi = 1;

where the design weights, wi = Ni=N , specify the allocation to the design points.
The restriction that Ni should be integer needs to be imposed for the design to be
realizable. The ful�lment of this condition is what distinguishes an exact design
from a continuous design. It is typically more practical to handle continuous designs
calculation-wise although such designs are not guaranteed to be feasible. However,
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a continuous design can often serve as a satisfactory approximation, provided that
N is not too small. Let the N � p design matrix be given by

X =

266666666666666664

xT1
:
xT1

9=; N1 times

xTi
:
xTi

9=; Ni times

xTn
:
xTn

9=; Nn times

377777777777777775
where the exact appearance of the 1 � p vector xTi is determined by the model.
Each of the N observations made according to the design � enters as a row in X,
one time each. If there are any replicates some of the rows will be exactly the same.
The design matrix contains information about the location of the design points in
the design space �. The information matrix for a GLM

I (�;�) = XTVX

is composed of the design matrix and the N �N GLM weight matrix

V =diag

"
v (x1) :::v (x1)| {z }
N1 times

: : :
v (xi) :::v (xi)| {z }
Ni times

: : :
v (xn) :::v (xn)| {z }
Nn times

#
:

That is, smaller weights are assigned to less informative locations/points and vice
versa. The weights are determined by the model parameters �, as argued in the
previous section. Again, there may be elements in V that are identical if replicates
are made at any design point. The information matrix reduces to

I (�) =
1

�2
XTX

for the linear regression model, in which case it su¢ ces to consider the design
matrix when deriving optimal designs (not the true parameters). Furthermore, it
is customary to deal with the standardized information matrix that reveals the
average information per observation. Adding more points to a design will never
decrease the total information, worst case scenario is that it remains the same.
Unless a candidate point causes the average information to increase it would pay
o¤ more to make replications at an already existing point. Seeking to maximize
average information assures the inclusion of only highly informative design points.
The standardized information matrix from a design is given by

M (�;�)= XTVWX:

6



The design matrix X is here of dimension n� p and the GLM weight matrix V of
dimension n � n. The n � n design weight matrixW contains the proportions of
observations on the diagonal according to

W =diag
�
w1 ::: wi ::: wn

�
:

The standardized information matrix can also be expressed as the weighted sum of
the information obtained from the individual design points

M (�;�) =
nP
i=1

wiv (xi)xix
T
i =

nP
i=1

m (�;xi) :

Moreover, the standardized variance associated with making predictions of the re-
sponse at x is de�ned as

d (x; �) = v (x)xTM�1 (�;�)x = tr
�
m (�;x)M�1 (�;�)

�
for a GLM. d (x; �), known as the standardized predictor variance, plays an impor-
tant role in the construction of D-optimal designs as will be seen in the D-optimality
section.

2.2.2 Maximum likelihood estimation

The inferential goal of an experiment is often to get high precision/low variance
when estimating the model parameters. Maximum likelihood estimates for a GLM
are obtained by solving the equations

@l

@�j
= Uj =

NP
i=1

(yi � �i)xij
V (Yi)

�
@�i
@�i

�
= 0 j = 1; 2; :::; p

where l is the logarithm of the likelihood function L (�;y) : The solutions to these
equations generally have to be found numerically. The method of scoring (see e.g.
Dobson, 2002) is an iterative method that is useful to compute the estimates. Given
a guess b(m�1) of the parameter vector � a new guess b(m) is obtained by

b(m)= b(m�1)+
�
I(m�1)

��1
U(m�1):

I(m�1) is the information matrix and U(m�1) is the vector of scores (Uj), both
evaluated at b(m�1). This can be rewritten as

b(m) =
�
XTVX

��1
XTVz;

where z stands for a N � 1 vector with elements

zi = x
T
i b

(m�1) + (yi � �i)
�
@�i
@�i

�
:

and X is the N � p design matrix. V and z are evaluated at b(m�1). Iterations
are continued until a termination criterion is reached. It can for example be that
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the relative di¤erence between b(m) and b(m�1) is less than a predetermined small
number. b(m) is then taken as the MLE of � denoted by b�: The asymptotic sampling
distribution of b� is normal with covariance

I�1 (�;�) =
�
XTVX

��1
= N�1M�1 (�;�) :

A problem that sometimes turns up is that of nonexisting maximum likelihood
estimates. The data pattern of a sample determines whether the MLE exists or
not. These issues are treated in Albert and Anderson (1984). As an extreme
example consider a binary response experiment in which only zeros (nonresponse)
are observed at all design points. In such case it is intuitive that no parameter
estimates can be obtained.

2.2.3 Optimality criteria

Ideally the design that maximizes the entire standardized information matrixM (�;�)
would be chosen as the optimal design. Unfortunately, such an optimization task
is generally not doable. Some appropriate function of M (�;�) will instead be the
subject of optimization. Let 	 fM (�;�)g denote a criterion function that agrees
well with the inferential goal of the experiment. Generally a design �� is said to be
	-optimal if

�� = arg min
xi;wi;n

	 fM (�;�)g

Let �� be a design with design weight 1 at the design point x and let �0 be de�ned
as

�0 = (1� �) � + ���
for 0 � � � 1. The directional derivative of 	(�;�) in the direction �� is given by

� (x; �) = lim
�!0+

1

�
[	 fM (�0;�)g �	 fM (�;�)g]

A design is 	-optimal if and only if the minimum of the directional derivative
� (x; ��) � 0 for all x 2 �. This result is stated in The General Equivalence Theo-
rem (Kiefer and Wolfowitz (1959) and Kiefer (1961)) together with two equivalent
conditions on ��:

1. The design �� minimizes 	 fM (�;�)g
2. The minimum of � (x; ��) � 0
3. The derivative � (x; ��) achieves its minima at the points of the design

see e.g. Atkinson and Donev (1992). Various optimality criteria have been pro-
posed, some popular examples are listed below.
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D-optimality The perhaps most widely used optimality criteria is that of D-
optimality, where the optimal design is found by minimizing

	 fM (�;�)g = ln
��M�1(�;�)

�� :
Equivalently a D-optimal design can be found by maximizing

	� fM (�;�)g = ln jM(�;�)j

because jM�1j = jMj�1. Numerical methods and the aid of a computer pro-
gram are required to solve this task. Mathcad and Matlab were used in the work
with this thesis. The rationale of this criterion function is that the square root of
jM�1(�;�)j is proportional to the volume of the asymptotic con�dence region for
the parameters and it is desirable to have this region as small as possible. When
	(�;�) = jM�1(�;�)j it can be shown that

� (x; �) = p� d (x; �) ;

see for example Silvey (1980), with the resulting alternative formulation of the
conditions on �� in The General Equivalence Theorem

1. The design �� minimizes 	 fM (�;�)g
2. d (x; ��) � p
3. d (x; ��) achieves its maxima at the points of the design

The practical implication of this is that the optimality of a suggested design can
easily be veri�ed or disproved. A graphical examination of a plot of d (x; �) re-
veals whether a design is optimal or not. In the case of a non-optimal design the
appearance of the curve can give a clue about the optimal number of design points.

Sometimes interest is in s linear combinations of the p parameters, a situation that
often arises in medical experiments when interest is in making comparisons between
a control group and several treatment groups. The asymptotic covariance matrix
for the linear combination AT� is given by

ATM�1 (�;�)A

where A is a p � s matrix. This special case of D-optimality, referred to as DA-
optimality occurs when

	 fM (�;�)g = ln
��ATM�1 (�;�)A

��
is minimized.

Another special case, Ds-optimality, comes about in situations where there are
s parameters of interest and p � s nuisance parameters, or when interest is in
model checking. Consider for example that the parameter vector is partitioned as
� =

�
�s �p�s

�
and that the aim is to �nd the optimal design to estimate �s. It is

analogous to DA-optimality if A is set equal to
�
Is 0

�
, Is being the s� s identity

matrix and 0 a (p� s)� s matrix with zeros.
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c-optimality c-optimality is an appropriate criterion when the aim is to estimate
some function h (�) of the model parameters with minimum variance. Such situ-
ations often arise in the RSM context when interest is in estimating the point of
optimum response. Consider for example manufacturing a food product that needs
to be prepared in oven, an experiment might then be conducted to �nd the baking
time that maximizes the probability of a good product. The criterion function to
be minimized is then

	 fM (�;�)g = cTM�1 (�;�) c

where c is a p � 1 vector. Speci�cally, when the target function is nonlinear in �,
the asymptotic variance of h

�b�� is given by
V
�
h
�b��� = cTV

�b�� c;
c =

@h (�)

@�
:

Hence, it follows that c-optimality is a natural criterion when the purpose of the
experiment is accurate estimation of h (�).

A-optimality Even if the volume of a con�dence ellipsoid is small (as strived for
using the D-optimality criterion) all variances of the parameter estimates are not
necessarily small. As an alternative A-optimality strives for minimizing the sum of
the variances of the parameter estimates. The diagonal elements of the inverse of
the standardized information matrix are proportional to the asymptotic variances
of the MLE of �. The design that minimizes

	 fM (�;�)g = tr
�
M�1(�;�)

�
is called A-optimal.

It needs to be pointed out that these optimal design criteria rely on asymptotics
for the GLM models. In practice all designs are limited regarding the number of
observations. As a consequence the success of a particular design depends on the
degree of agreement between the asymptotic sampling distribution and the current
small sampling distribution.

3 Response Surface Methodology

The main aim of RSM is to study the nature of the relationship between the control
variables and the response variable. A response surface (or response curve in the
case of two dimensions) is used to depict this relationship. Except for some rare
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occasions where the exact nature of the relationship is known allowing a mechanistic
model to be formulated, RSM mostly deals with approximate empirical models.

In general a response variable Y is observed in an experiment and the relationship
between Y and the control variables x =

�
x1 ::: xk

�T
is assumed to have the

functional form
y = f (x;�) + ":

Observing the response may be associated with measurement and/or observational
errors. Furthermore, there may be errors due to variations in the experimental
setting. The term " captures all kinds of errors. Hence, the mean response expressed
as

E (Y ) = f (x;�) ;

forms the response surface. Often the exact true functional form f (x;�) is unknown
and needs to be approximated. A function g (x;�) is taken as a local approximation
to f (x;�). The approximation is local because it is restricted to be valid only in
a limited region of interest, R. The function g (x;�) is usually in the form of a
polynomial. The use of a polynomial stems from making a Taylor expansion of
f (x;�), a polynomial of degree d corresponds to truncating the Taylor�s series
after the d : th order term. The higher degree of complexity of the polynomial,
the better the approximation. Given a certain degree d; a smaller R will increase
the closeness of the approximating function to the true function. Of course there
has to be a balance between the complexity and a reasonable dimension, the higher
degree of complexity the more parameters to be estimated.

It is common that an RSM experiment is performed stepwise. One important ap-
plication is to determine the conditions of the control variables that maximize or
minimize the response function, for example to �nd the optimum operating condi-
tions for a manufacturing process. Starting at current operating conditions it may
be adequate to �t a lower order model at the �rst stage to �nd the direction to-
wards the optimum operating conditions. The method of steepest ascent (descent)
is a sequential procedure that aims at taking steps towards the maximum increase
(decrease) in the response. Assume that two control variables are believed to in�u-
ence the response variable and that a �rst order model is �tted to begin with. A
contour plot of the �rst order response surface may look like Figure 1, the steepest
ascent is then found in the direction of the arrow. The steps are proportional to the
parameter estimates, the actual step length is obtained by normalizing the vector b�
and then multiplying it with an appropriate step size. Observations on the response
variable are made along this path until the response decreases, when a new �rst
order model is �tted, a new direction of steepest ascent is located and a new path is
followed. Experimentation proceeds in this manner until a lack of �t test indicates
that the �rst order approximation no longer will do. This usually happens when
the maximum of the response surface is nearby. A higher order model is then �tted
and analyzed.
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Figure 1: A contour plot of a �rst order response surface, the arrow points in the
direction of steepest ascent.

RSM was initially concerned with linear regression models. However, there is noth-
ing that prevents a response surface being �tted for a GLM model. In such case
the mean response

E (Y ) = �

that forms the response surface is connected to the linear predictor � via the inverse
link function. Some examples on inverse link functions can be found in Table 1 in
section 2.1. In the special case of a linear model the connection between the mean
response and the linear predictor is direct, that is � = �. This thesis deals with a
second order logistic regression model for binary data. Consider a binary response
variable having the Bernoulli distribution, such as a food product that is either
good or defect. The probability of a good product depends on the values of the
control variables. The response surface is then given by

E (Y ) = � (x) ;

where � (x) is the probability of obtaining a response. See Figure 2 for an example
of a second order response surface with two control variables.
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Figure 2: A second order response surface of the probability of response �.

Say for example that the control variable is baking time and a second order response
curve approximately describes the relationship between the probability of a good
product and the baking time. One reasonable model is the quadratic logistic model
with the following link function

logit : �i = ln

�
�i

1� �i

�
= xTi � =

�
1 xi x2i

�
�
�
�0 �1 �2

�T
= �0+�1xi+�2x

2
i ;

such that mean response can be expressed as

�i = � (xi) =
exp f�ig

1 + exp f�ig
=

exp f�0 + �1xi + �2x2i g
1 + exp f�0 + �1xi + �2x2i g

:

Other link functions may also come into question to model this situation, the probit
model for example agrees closely with the logit in the range 0:1 � � � 0:9. An
investigator may want to perform an experiment with the purpose to locate the
point of maximum of the response curve in order to decide on the optimum baking
time. Maximizing the response function is equivalent to maximizing the linear
predictor since � = � (x) is a monotonic function of �. The point of maximum
response (�) is easily found as the maximum of a second order polynomial in this
case, that is

� = � �1
2�2

;

and � is a nonlinear function of the model parameters. A design that allows esti-
mation of a function of the parameters with high precision is found by using the
c-optimality criterion, see section 2.2.3. Thus, a c-optimal design will be appro-
priate when the aim of the experiment is to estimate �. The applications are not
limited to maximizing the probability of response � (x), optimizing any general
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function h (x) may as well be the objective. For instance, let c (x) be the produc-
tion cost and h (x) = c (x) =� (x) be the cost per produced unit that is saleable.
Interest may then be in �nding the value of x that minimizes h (x).

For linear response surface models there are several standard designs that are widely
used, for example factorial designs and central composite designs. All of these de-
signs are described in Box and Draper (1987). These are generally not applicable
to GLM models due to the dependence of the variance function on the mean re-
sponse and thereby on the model parameters. An overview of the usage of GLMs
for response surfaces with the connection to optimal design theory is provided by
Khuri (2001). The optimal designs derived using a criterion function are also as-
sociated with the parameter dependence problem. This issue calls for a solution.
The approach of updating the design sequentially is a possibility explored in the
second paper of this thesis. When an experiment is carried out in practise the
sample size is inevitably restricted, a fact that may cause problems with using an
optimal design if there are dissimilarities between the small sample and the asymp-
totic distributions. Another subject that needs to be examined concerns the size of
the penalty in the form of lost precision from using a non-optimal design instead
of an optimal design.

4 Summary of papers

4.1 Paper I: D-optimal Designs for Quadratic Logistic Re-
gression Models

Paper I concerns the quadratic logistic model for binary data that was introduced
in the previous chapter. Locally D-optimal designs are derived for four di¤erent
parameter sets. The parameter sets yield four response curves with maxima that
are either "high" or "low". The term "high" refers to the maximum value of � (x)
being close to 1 and "low" to the maximum value being close to 0. The D-optimal
designs consist of three points with equal design weights for the "low" response
curves. The optimal designs for estimation of the "high" response curves require
four points and with the design weights now being di¤erent. A common feature
for the designs is that the design points are placed symmetric around the point of
maximum response.

There are two problems with these locally optimal designs, the �rst is the parameter
dependence and the second one is the fact that the derivation of the designs involves
the asymptotic information matrix. A simulation study is performed with the
purpose to address these problems. In practise, when the parameters are unknown,
a strategy might be to include more than the optimal number of design points to
increase the chance that some points are good. Two non-optimal designs composed
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of 7 and 8 design points are compared to the D-optimal designs. The comparison is
made in terms of mean squared error to get an idea about the loss from not using the
optimal designs. The evaluations are made both for the inferential goal of parameter
estimation as well as for the pursuit of the optimum operating conditions. One of
the aims with this paper is to make an assessment of how well the asymptotics
work for various sample sizes, N = 10; 20; 50 and 100 are used in the simulations.
Yet another predicament is that the maximum likelihood parameter estimate does
not always exist, the probability for this to occur is computed for all designs. The
most important points about the simulation results are summarized as follows.

� The non-existence of the MLE came about as a severe problem for all cases
that were investigated in this paper. The probability that the MLE exists was
dependent on the choice of design and the true parameters besides the sample
size. From this viewpoint the non-optimal designs sometimes bene�ted from
the many design points and were favored in several cases. The fact that the
MLE is impaired by the lack of existing estimates reveals another aspect that
needs to be taken into account when designing experiments for this particular
logistic model.

� In terms of mean squared error the optimal designs were superior compared
to the non-optimal designs for the most cases. However, there were also cases
where the performances were equal and cases where the loss from choosing
a non-optimal design was quite small. The di¤erences were the largest for
estimation of the point of optimum response in small samples.

� There were generally rather large disagreements between the small sample
variances of the parameter estimators and their asymptotic analogue. This
may cause problems since the asymptotic information matrix is the basis
for the construction of the optimal designs. Although the di¤erences dimin-
ished when N was increased they were still appreciable for several cases when
N = 100 and the response curve was "low". However, for N exceeding 50 in
the cases of a "high" response curve the di¤erences were quite small. When
it came to estimation of the point of optimum response there were also dis-
crepancies but to a somewhat lesser extent.

4.2 Paper II: Sequential Designs for Binary Data with the
purpose to Maximize the Probability of Response

Paper II deals with the same quadratic logistic model as in the �rst paper. Se-
quential estimation of the optimum operating conditions is proposed as a solution
to the parameter dependence issue. Two sequential strategies are adopted, one
is a parametric approach and the other one is nonparametric, for the case when
the aim is to �nd the point of maximum response x = �. The advantage of the

15



nonparametric approach is to avoid having to make any distributional assumptions
whereas the parametric approach makes more use of the information.

The method of the parametric approach is to derive c-optimal designs sequentially
based on the assumption that the most recent parameter estimates are true. Hence,
the idea is that improving the parameter estimates stepwise will prevent the neg-
ative e¤ects of the parameter dependence. Locally c-optimal designs consisting of
two equally weighted designs points are computed at each stage, using two versions
of the standardized information matrix. The �rst is the regular version that re�ects
the information in the candidate design and the second one is a weighted version
that also takes into account the information from the already observed points. The
nonparametric sequential design provides an adaptive stochastic approximation ap-
proach. In accordance with a recursive scheme successive observations are made on
the response variable in a way that the sequence of design points x1; x2; ::: converges
to �. This approach is adaptive in the sense that it makes use of the information
gained so far by adjusting the step from xr to xr+1.

A simulation study is set up to investigate how the two approaches compare to each
other and to a nonsequential approach. Di¤erent sample sizes ranging fromN = 200
to N = 1000 as well as di¤erent batch sizes are explored. To study the e¤ects of
misspeci�cations in the model a di¤erent kind of linear predictor is also tested. The
results of the simulations are really promising for the c-optimal sequential designs
which consistently outperformed the other alternatives. The choice between the two
versions did not matter as they were almost identical. The success of the stochastic
approximation approach was limited to some cases and it was sometimes inferior
to the nonsequential approach. In addition, it was more sensitive to the initial
design and to the misspeci�ed model. Furthermore, it required the speci�cation of
a constant that proved to have a large impact on the results. There were not any
large di¤erences pertaining to the division between the number of batches and the
batch size for any of the approaches.

5 Conclusions and suggestions for future research

In Paper I it was concluded that non-existence of the MLE is a critical problem for
the quadratic logistic model in association with small samples. The extent of these
problems turned out to be dependent on the true parameters and the design. It
was also concluded that the small sample distribution of the parameter estimator
(given that the MLE exists) many times di¤ered from what could be anticipated
based on the asymptotic results. In Paper II the conclusion was that the proposed
sequential approach for estimating the point of optimum response overcomes the
problem of parameter dependence, at least for larger sample sizes. Some of the
questions and problems that remain unsolved are mentioned below.
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� First of all, solutions to the problem of nonexistence for the maximum like-
lihood estimator are demanded. Perhaps some alternative estimator that
handles more data types can be tested for this logistic model. Heinze and
Schemper (2002) proposed an estimator based on a modi�cation to the score
function originally suggested by Firth (1993). They concluded, based on a
simulation study and the analysis of two clinical data sets, that it provides a
solution to these problems for logistic regression.

� The risk of coming across non-existence has to be taken into account when it
comes to the design of experiments. Consider facing the situation of having
already performed an experiment and that no estimates can be computed.
Good strategies for choosing additional points need to be developed for such
situations. Designs that are optimal with respect to maximizing the proba-
bility to obtain estimates would also be of interest.

� More work needs to be done concerning the implications of the departures
from the asymptotic results in small samples.

� More extensive evaluations are needed for the sequential designs, regarding
for example other models and smaller samples. Theoretical evaluations are
desired but the problem is that they are complicated by the dependency
between the sequential steps.

� It remains to formally establish that the c-optimal design for the quadratic
logistic model consists of two design points, an assumption that was made in
Paper II. Ford et al. (1992) shows how c-optimal (and D-optimal) designs can
be geometrically constructed for the case when � is a linear function consisting
of two parameters and one control variable. It would be interesting to extend
their method to the case when � is a quadratic function.

� This thesis has only dealt with models including one control variable. Adding
more control variables would obviously increase the number of applications.
RSM is often concerned with processes that involve several variables.
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