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Abstract

This thesis presents a model for dependent and equally distributed Bernoulli vari-
ables. The model, which incorporates explanatory variables, is a multivariate gen-
eralized linear models (MGLM).
In the particular case with just two dependent variables, the model can be further
divided into three different cases according to symmetry properties and indepen-
dency between the variables. Different cases can be distinguished using different
parameter restrictions. Locally D-optimal designs are given for each case. The
special case with symmetry properties for two dependent variables is examined in
detail. D-optimal designs for the special case have 2, 3, or 4 design points, where
the number of design points are determined by the log-odds ratio. The log-odds
ratio also partly explain the appearance of the probability distribution of the re-
sponse variables. For some 2−point designs and some 4−point designs a general
expression for D-optimal designs is given. These proposed designs are found to
have a high efficiency. In case the variables are independent, a general expression
for D-optimal designs is derived.

Score tests and likelihood ratio tests are derived for testing if the Bernoulli variables
are independent. Test statistics for two particular situations are outlined in detail.
Numerical illustrations of these test statistics are presented in three examples, in-
cluding one with visual impairment data.
An optimal design for maximization of the local asymptotic power of the score test
is proposed. The asymptotically power function based on the proposed design is
compared with power function for finite sample sizes using a small simulation ex-
periment. The finite sample power of the proposed design resembles the properties
of the asymptotic power as long as the log-odds ratio is negative. The simulation
study also indicate that there can be problems when computing the test statistic for
large values of the log-odds ratio. Since the locally optimal design depends on the
unknown parameters, the robustness of the design is examined. The examination
shows that the optimal design is robust against fairly incorrect parameter values.

Keywords: Cox bivariate binary model, D-optimality, E-optimality, power maxi-
mization, efficiency, log-odds ratio.
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1 Introduction

This thesis considers a model for dependent Bernoulli variables. Especially, situa-
tions with pairs of Bernoulli variables are studied. A symmetric model for depen-
dent Bernoulli variables is given. The presented model is particularly adequate for
matched-pairs data, see e.g. Agresti (2002). The key property in the model is that
the marginal probabilities are equal for all variables. In this model data follow a
multinomial distribution. An advantage with the model is that the expressions for
the likelihood as well as the Fisher information matrix are relatively uncomplicated.
Consequently, parameter estimators are obtained quite readily even when there are
many dependent variables. Examples with dependent Bernoulli variables exist in
several sciences including both observational and experimental studies.

One example of an application is visual impairment data. The probability for
visual impairment on the left eye is assumed to be equal to the probability of visual
impairment on the right eye. There is also a dependency between the eyes. This
kind of data have been studied by Rosner (1984), Tielsch et al. (1991), and Liang
et al. (1992).
Another type of application is certain longitudinal studies. Suppose that some bi-
nary property is measured at two different occasions and that these measurements
are possibly dependent. For example, respondents answer the same dichotomous
question at two different occasions. The two answers have to be modeled as depen-
dent although the marginal probability of "success" is the same at both times.
Consider an experiment where fry (of fish) are studied. The goal of the experiment
is to determine how different types of food (treatments) affect some property of
the fish. Fry that are assigned to a certain treatment are therefore kept isolated.
The fry can be further divided by other explanatory variables (covariates). It is
clear that the responses from the fry that are kept in the same isolation box are
dependent. The model with equal marginal probabilities can be applied if the fry
within a treatment are homogeneous.
In the fourth example groups of plants grow in common soil. Different batches of
plants are then exposed to different amount of some fertilizer. Since the plants
share soil the condition of each plant is dependent of the other plants within the
same batch. If the response variable is binary or coded as binary the model applies
to this kind of experiment.
A last example involves a company that produces a certain product. Employees
perform repeated measurements on the product to investigate whether the product
is flawless or not. The company wants to investigate if these employees come to
the same result in every measurement. The probability that the product is flawless
is constant for different measurements. Hence, a model for equally distributed
dependent Bernoulli variables is suitable for this special situation.

The example above with fry allocated to different treatments is one example of a
design of an experiment. A design of an experiment includes choosing the treat-
ments and choosing the corresponding number of observations to be allocated to
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each treatment. The design is important since all analysis is based on the design.
A design that generates the most precise estimators of the parameters in the model,
according to some criterion, is referred to as an optimal design. Optimal designs
for univariate binary data have received a lot of attention the past twenty years.
Less has been written on optimal experimental designs for multivariate binary data.
Still a large number of models for multivariate binary variables have been proposed.

The main aim of this thesis is to describe optimal designs for dependent Bernoulli
variables using a modified Cox model. In the bivariate case, different properties
for the probability distribution of the variables are explored. If possible, analytical
results for locally D-optimal designs are derived for the bivariate model. The the-
sis also addresses test procedures for testing independency between the variables.
Another aim is to propose and motivate optimal designs for maximizing the power
of these tests. A limitation with the thesis is that only one class of models is
considered.

Chapter 2 gives a brief overview over different models for bivariate Bernoulli vari-
ables. The modified Cox model is presented in Chapter 3. Expressions for the
likelihood function, the score functions and the information matrix are derived.
Chapter 4 contains an introduction to optimal designs. The different design crite-
ria used throughout the thesis are illustrated by examples. A symmetric bivariate
model is outlined in Chapter 5. Different symmetry properties for the probability
distribution are given together with an example of D-optimal designs and some
general results about D-optimal designs. Chapter 6 deals with the special situa-
tion when the variables are independent. Likelihood ratio tests and score tests for
testing for independency between the Bernoulli variables are discussed in Chapter
7. In Chapter 8, an expression for a design that maximize the power of the score
test is derived. The performance in small samples for the score test based on the
optimal design is examined in a simulation experiment. Robustness of the optimal
design is also examined in Chapter 8. Finally, Chapter 9 summarizes the results of
the thesis and discusses further research.

2 Overview of models for bivariate Bernoulli vari-

ables

Let S1 and S2 denote two possibly dependent binary variables. Moreover let xi
be a covariate associated to the ith response unit, i = 1, 2, . . . ,N . Several ways
of modelling the joint distribution of S1 and S2 as a function of x has been pro-
posed. A summary of different approaches was given already in Cox (1972). Bonney
(1987) presents general loglinear multivariate logistic models for arbitrary number
of dependent binary variables. In the case of two variables, let η1 and η2 be
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η1 = ln
P (S1 = 1 | x)
P (S1 = 0 | x)

= α+ βx

η2 = ln
P (S2 = 1 | S1, x)
P (S2 = 0 | S1, x)

= α+ γ1Z21 + βx,

where
Z = 2S1 − 1.

If S1 and S2 are independent then γ1 = 0. Based on

P (S1, S2 | x) =
2

Π
i=1

eηiSi

1 + eηi
,

the probability of the four possible outcomes of (S1, S2) , (1, 1) , (1, 0) , (0, 1) , and
(0, 0) are

π11 (x) =
eα+βx

1 + eα+βx
eα+γ1+βx

1 + eα+γ1+βx

π10 (x) =
eα+βx

1 + eα+βx
1

1 + eα+γ1+βx

π01 (x) =
1

1 + eα+βx
eα−γ1+βx

1 + eα−γ1+βx

π00 (x) =
1

1 + eα+βx
1

1 + eα−γ1+βx
,

respectively. Thus, the bivariate probability distribution of (S1, S2) can be ex-
pressed as products of ordinary logistic functions. Therefore the log-likelihood
function and the information matrix can be obtained quite readily. This model
is referred to as the unsaturated model by Bonney (1987). The saturated model
include different α and different β for η1 and η2.

Murtaugh and Fisher (1990) utilizes the bivariate logistic cumulative distribution
function (cdf) given by Gumbel (1961). Define

η1 = α1 + β1x

η2 = α2 + β2x.

The bivariate probability distribution of (S1, S2) can then be modelled using the
Gumbel cdf

FU,V (u, v) =
1

1 + e−u
1

1 + e−v

[
1 +

γe−u−v

(1 + e−u) (1 + e−v)

]
,

where U and V are continuous latent variables such that

S1 = 1 iff U ≤ η1
S2 = 1 iff V ≤ η2
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The parameter γ incorporates the possible dependency between S1 and S2 in the
model. Using FU,V (u, v) the probabilities

π11 (x) =
1

1 + e−η1
1

1 + e−η2
+

γe−η1−η2

(1 + e−η1)2 (1 + e−η2)2
(1)

π10 (x) =
1

1 + e−η1
− 1

1 + e−η1
1

1 + e−η2
− γe−η1−η2

(1 + e−η1)2 (1 + e−η2)2

π01 (x) =
1

1 + e−η2
− 1

1 + e−η1
1

1 + e−η2
− γe−η1−η2

(1 + e−η1)2 (1 + e−η2)2

π00 (x) = 1− 1

1 + e−η1
− 1

1 + e−η2
+

1

1 + e−η1
1

1 + e−η2

+
γe−η1−η2

(1 + e−η1)2 (1 + e−η2)2

are obtained. It follows directly that S1 and S2 are independent if and only if
γ = 0. As Murtaugh and Fisher (1990) point out, the marginal probabilities of S1
and S2 are logistic in η1 and η2, respectively. The likelihood function follows di-
rectly from (1). Maximum likelihood estimation of (α1, β1, α2, β2, γ) are conducted
by numerical maximization of the likelihood function. Heise and Myers (1996)
and Dragalin and Fedorov (2006) also use the Gumbel model in bivariate logistic
regression models.

In addition Murtaugh and Fisher (1990) and Dragalin and Fedorov (2006) use the
Cox bivariate binary model, given in Cox and Snell (1989), to model dependent
binary variables. In this model

π11 (x) =
eη2

1 + eη10 + eη01 + eη2

π10 (x) =
eη10

1 + eη10 + eη01 + eη2

π01 (x) =
eη01

1 + eη10 + eη01 + eη2

π00 (x) =
1

1 + eη10 + eη01 + eη2
,

where

η2 = α2 + β2x

η10 = α10 + β10x

η01 = α01 + β01x

The marginal probabilities of S1 and S2 are not logistic in η2, η10, and η01. Instead
the conditional probabilities are logistic in η2, η10, and η01, see e.g. Murtaugh and
Fisher (1990). Throughout the thesis, the Cox binary model will be referred to as
the Cox model.
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This thesis presents a modified version of the Cox model. Assume that S1 and
S2 are equally distributed, i.e. S1 and S2 have the same marginal distribution.
Thus, S1 and S2 are exchangeable under this restriction, see Galambos (1988) for
a definition of exchangeability. By imposing the restrictions

• η10 = η01

• eη10 + eη01 = eη1

the bivariate probability distribution of (S1, S2) becomes

π11 (x) =
eη2

1 + eη1 + eη2

π10 (x) =
1

2

eη1

1 + eη1 + eη2

π01 (x) =
1

2

eη1

1 + eη1 + eη2

π00 (x) =
1

1 + eη1 + eη2
,

where

η1 = α1 + β1x

η2 = α2 + β2x.

The number of response categories is reduced from four to three, which yields
a trinomial response for S = S1 + S2. Moreover the number of parameters is
reduced from six to four. The parameter restrictions for independence as well as
the expression for the likelihood function are changed compared to the Cox bivariate
binary model. This modified Cox model is outlined in Chapter 3.

Another class of models are loglinear models. A loglinear model for two binary
variables is defined by

lnNπij = λ+ αi + βj + (αβ)ij , i, j = 0, 1,

where Nπij is the expected frequency under the current model. The model is analo-
gous to a model for analysis of variance. To model the probabilities π11, π10, π01, and
π00 a four factor model is required. Agresti (2002) points out that loglinear mod-
els focuses on association and interaction in the joint distribution of categorical
response variables. Logit models are preferable if a single categorical response vari-
able depends on explanatory variables. This thesis focus on the latter situation
where the probability of the different outcomes of S depend on an explanatory
variable, x. Loglinear models are presented in Agresti (2002) , Bishop et al. (1975),
and Christensen (1997).
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The modified version of the Cox model can be represented in terms of a model often
referred to as multinomial logistic model. Models for multinomial responses can be
categorized depending on the type of data. Zocchi and Atkinson (1999) argues
that there are different models for nominal, ordinal and hierarchical data. Agresti
(2002) divides the models in a similar way. Models for nominal data have been
explored by Fahrmeir and Tutz (2001), Puu (2003), and Agresti (2002). This kind
of models is sometimes called simple multinomial logit models. When there is an
ordering between the outcomes of a response, several models exist. Agresti (2002),
Dobson (2002), Fahrmeir and Tutz (2001), and Zocchi and Atkinson (1999) present
some models, examples include cumulative logit model, proportional odds model
and continuation-ratio logit model. The continuation-ratio logit model is further
explored in Fan (1999) and Fan and Chaloner (2004). The models for ordered
responses are especially useful for efficacy-toxicity responses where a natural order
among the different responses exist.
All the models above have used the same link function, the logit link. Other link
functions such as probit link and complementary log-log link are discussed in Agresti
(2002), Dobson (2002), and Fahrmeir and Tutz (2001).

Another type of models utilizes the odds ratio as a measure of the dependency
between S1 and S2. This type of models are based on the cross-ratio model, see
e.g. Dale (1986). Palmgren (1991), Le Cassie and Van Houwelingen (1994), and
Appelgren (2004) use this model for bivariate binary responses. Let π1· = π11+π10
and π·1 = π11 + π01 denote the marginal probabilities P (S1 = 1) and P (S2 = 1),
respectively. Moreover, let Ω denote the odds ratio between S1 and S2, defined as

Ω =
π11π00
π10π01

.

Using the expression from Palmgren (1991)

π11 =

{
1
2
(Ω− 1)−1

{
a−

√
a2 + b

}
if Ω �= 1

π1·π·1 if Ω = 1
,

where

a = 1 + (π1· + π·1) (Ω− 1)
b = −4Ω (Ω− 1) π1·π·1.

The other probabilities π10, π01, and π00 follow from the marginal probabilities π1·
and π·1. These probabilities can be associated with covariates using the bivariate
logistic regression model given by McCullagh and Nelder (1989). One example is
obtained if

ln
π1·

1− π1·
= η1 = α1 + β1x

ln
π·1

1− π·1
= η2 = α2 + β2x

lnΩ = η12 = α12 + β12x.

In this model S1 and S2 are independent if and only if lnΩ = 0.
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3 The modified Cox model

Let S1, S2, . . . , Sk denote k identically distributed binary variables. Let

S =
k∑

i=1

Si,

and
P (S = s) = πs for s = 0, 1, . . . , k.

Note that since this thesis focuses on identically distributed variables the number
of response categories for S1, S2, . . . , Sk is reduced from 2k to k + 1.

A model for S can be viewed as a multivariate generalized linear model (MGLM).
In a MGLM the response variable, the linear predictor, and the link function are
vector-valued functions, see Fahrmeir and Tutz (2001). The response vector is
denoted Y ,

Y =
(
Y1 Y2 . . . Yk

)T
,

where

Yi =

{
1, if S = i
0, otherwise

for i = 1, 2, . . . , k.

Hence, the expected value of Y is

µ = E
[(
Y1 Y2 . . . Yk

)T]
=
(
π1 π2 . . . πk

)T
.

In a logit model, one of the response categories is chosen to be reference category.
Because the way Y is defined, the event S = 0 is chosen to be reference category.
Given the reference category, the logit link function g (π1, π2, ..., πk) is

g (π1, π2, . . . , πk)
T =

(
ln π1

π0
ln π2

π0
. . . ln πk

π0

)T
= η,

where η is the linear predictor.

η =
(
η1 η2 . . . ηk

)T
=
(
α1 + β1x α2 + β2x . . . αk + βkx

)T
= xθ,

where

x =




1 0 . . . 0 x 0 . . . 0

0
. . .

... 0
. . .

...
...

. . . 0
...

. . . 0
0 . . . 0 1 0 . . . 0 x




and
θ =

(
α1 . . . αk β1 . . . βk

)T
.
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x is a (k × 2k) matrix and θ is a size 2k vector. The probabilities π0, π1, . . . , πk as
a function of x are

π0 =
1

1 +
∑k

i=1 e
ηi

πj =
eηj

1 +
∑k

i=1 e
ηi

for j = 1, . . . , k.

No simple and direct interpretation of the parameters exist. The parameters αk and
βk in ηk are interpreted from the expression ηk = ln

πk
π0
. Thus it is difficult to inter-

pret how different parameters affect the joint probability function of S1, S2, . . . , Sk.

The probability function for one observation of Y is

P (Y = y | θ) = πy11 π
y2
2 . . . π

yk
k (1− π1 − π2 − . . .− πk)

(1−y1)(1−y2)...(1−yk) .

Using the expression for the probability distribution of Y it follows that the dis-
tribution of Y belongs to the exponential family of distributions. Moreover, the
likelihood function for a whole sample is

L (θ|y) =
N

Π
i=1

{
πy1i1i π

y2i
2i . . . π

yki
ki (1− π1i − π2i − . . .− πki)

(1−y1i)(1−y2i)...(1−yki)
}
.

The loglikelihood function is

l (θ|y) =
N∑

i=1

(y1iη1i + . . .+ ykiηki − ln (1 + eη1i + . . .+ eηki)) .

The score function for one observation can be derived using the chain rule,

u (θ) =

(
∂η

∂θ

)T (
∂π

∂η

)T (
∂l

∂π

)T

The derivatives are given by

(
∂η

∂θ

)T
=




∂η1
∂α1

∂η1
∂α2

. . . ∂η1
∂αk

∂η1
∂β1

∂η1
∂β2

. . . ∂η1
∂βk

∂η2
∂α1

. . . ∂η2
∂αk

∂η2
∂β1

. . . ∂η2
∂βk

...
. . .

...
...

. . .
...

∂ηk
∂α1

∂ηk
∂α2

. . . ∂ηk
∂αk

∂ηk
∂β1

∂ηk
∂β2

. . . ∂ηk
∂βk




T

= xT

(
∂π

∂η

)T
= D =




∂π1
∂η1

∂π2
∂η1

. . . ∂πk
∂η1

∂π1
∂η2

∂π2
∂η2

∂πk
∂η2

...
. . .

...
∂π1
∂ηk

∂π2
∂ηk

. . . ∂πk
∂ηk



=




π1 (1− π1) −π1π2 . . . −π1πk
−π1π2 π2 (1− π2) −π2πk

...
. . .

−π1πk −π2πk πk (1− πk)




(
∂l

∂π

)T
=




y1
π1
− (1−y1)(1−y2)...(1−yk)

(1−π1−π2−...−πk)
...

yk
πk
− (1−y1)(1−y2)...(1−yk)

(1−π1−π2−...−πk)


 .
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The matrix D is symmetric. Moreover D is equal to Var(Y ). Using the fact that

D

(
∂l

∂π

)T
= (y − µ)

yields the score function for a whole sample

u. (θ) =




uα1 . (θ)
...

uαk . (θ)
uβ1 . (θ)

...
uβk . (θ)




=
N∑

i=1

xTi (yi − µi) =
N∑

i=1




(y1i − π1i)
...

(yki − πki)
xi (y1i − π1i)

...
xi (yki − πki)




.

The Fisher information for one observation is derived using the score function.

I (θ, x) = E
[
u (θ) uT (θ)

]

= E
[
xT (y − µ) (y − µ)T x

]

= xTDx

=




π1 (1− π1) −π1π2 . . . −π1πk xπ1 (1− π1) −xπ1π2 . . . −xπ1πk
−π1π2 π2 (1− π2)

... −xπ1π2 xπ2 (1− π2)
...

...
. . . −πk−1πk

...
. . . −xπk−1πk

−π1πk −π2πk . . . πk (1− πk) −xπ1πk −xπ2πk . . . xπk (1− πk)
xπ1 (1− π1) −xπ1π2 . . . −xπ1πk x2π1 (1− π1) −x2π1π2 . . . −x2π1πk
−xπ1π2 xπ2 (1− π2)

... −x2π1π2 x2π2 (1− π2)
...

...
. . . −xπk−1πk

...
. . . −x2πk−1πk

−xπ1πk −xπ2πk . . . xπk (1− πk) −x2π1πk −x2π2πk . . . x2πk (1− πk)




= x∗ ⊗D,
where

x
∗ =

(
1 x
x x2

)
.

In general, there is no problem to numerically obtain maximum likelihood estima-
tors for models with k ≥ 3 variables. Nevertheless analytical results are hard to
derive for such models. For example when k = 3 the dependence structure between
the variables is much more complicated than for a model with k = 2 variables. For
the bivariate case when k = 2, the joint probability distribution for (S1, S2) is given
in Table 1. Table 1 also includes marginal probabilities for S1 and S2.
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S2
0 1

0 π00 =
1

1 + eη1 + eη2
π01 =

eη1

2 (1 + eη1 + eη2)
π0· =

2 + eη1

2 (1 + eη1 + eη2)
S1

1 π10 =
eη1

2 (1 + eη1 + eη2)
π11 =

eη2

1 + eη1 + eη2
π1· =

2eη2 + eη1

2 (1 + eη1 + eη2)

π·0 =
2 + eη1

2 (1 + eη1 + eη2)
π·1 =

2eη2 + eη1

2 (1 + eη1 + eη2)
1

Table 1: Joint probability function for (S1, S2) and marginal distributions for S1
and S2.

This modified Cox model is a special case of the original Cox model described in
the Chapter 2. Assuming a bivariate model and that π10 = π01, the Cox model
reduces to the modified Cox model if

π10 + π01 = π1

The relationship between the models can also be expressed in terms of the linear
predictors

η10 = η01 = η1 − ln 2.
Recall that the linear predictors for each model is given by

The original Cox model The modified Cox model
η10 = α10 + β10x η1 = α1 + β1x
η01 = α01 + β01x (η2 = α2 + β2x)
(η2 = α2 + β2x) .

Using the expression for the linear predictors above yields the following connection
between the parameters in the models.

{
α10 = α01 = α1 − ln 2
β10 = β01 = β1

Since there are only two dependent variables (S1, S2), the (marginal) odds ratio can
be given by just one expression.

Property 1 The odds ratio for S1 = 1 is 4e
η2−2η1 .

10



Proof. Denote the odds ratio for S1 = 1 by Ω.

Ω =
Ω1|1
Ω1|0

=
π11
π01
π10
π00

=
π11π00
π10π01

=
1

1+eη1+eη2
eη2

1+eη1+eη2

eη1

2(1+eη1+eη2)
eη1

2(1+eη1+eη2)

= 4eη2−2η1 .

Hence the log-odds ratio is

lnΩ = ln 4 + α2 − 2α1 + x (β2 − 2β1) .

In general the log-odds ratio depends on the value of x. A model for (S1, S2)
contains the four parameters,

θT =
(
α1 α2 β1 β2

)
.

The parameters can be interpreted using ln π1
π0

and ln π2
π0

as described above. An-
other way of interpreting the parameters is to use the expression for the log-odds
ratio. For example, the effect of the covariate on the log-odds ratio is controlled by
β1 and β2.

To see how the probability distribution of S changes with x, four plots with different
parameter values are shown in Figure 1. Although the plots differ a lot, they share
some general properties. Since β1 and β2 is larger than zero, P (S = 0) decreases
with x and P (S = 2) increases with x.

4 Optimal designs

A design is defined as

ξ =

{
x1 x2 . . . xr
w1 w2 . . . wr

}
,

where x1, x2, . . . , xr are called design points and w1, w2, . . . , wr are the correspond-
ing design weights. The design weights determine the proportion of observations to
be taken at the different design points. A design is optimal according to a specific
criterion if it minimizes the corresponding criterion function. The choice of opti-
mality criterion is controlled by the objectives of the experiment. These objectives
are usually connected to the precision in the parameter estimators. Optimal de-
signs for nonlinear models depend in general on the true and unknown values of the
parameters. Typically, the Fisher information matrix, denoted by I. (θ, x), depends
on the parameter vector θ as well as the vector of covariates, x. A design that is
optimal for a given set of parameter values is therefore referred to as a locally opti-
mal design. Thus, a locally optimal design is optimal in case the true value on the
parameter vector equals the particular value chosen when determining the design.
However, if the true value of the parameter vector is different from that chosen for
determining the design, there is no guarantee that the design has any favourable
properties.

11
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Figure 1: Four examples of different probability distributions for S. The parameters
are θT1 = (−2,−9, 0.3, 1), θT2 = (−1,−9, 1.1, 1.3), θT3 = (−1,−5, 1, 2), and θT4 =
(−3,−1, 0.5, 1), respectively.

Optimal design theory uses the standardized information matrix, denoted

M (θ, x) =
I. (θ, x)

N
,

rather than the Fisher information matrix. In order to stress that the information
matrices depend on the design, the information matrices are denoted

I. (θ, ξ) and M (θ, ξ) ,

respectively. Optimal designs for nonlinear models in general is treated in e.g. Sil-
vey (1980), Atkinson and Donev (1992), Atkinson and Haines (1996), and Fedorov
and Hackl (1997).

This thesis uses D-optimality and E-optimality as criteria for an optimal design.
These optimality criteria have in common that their respective criterion function is a
function of the standardized information matrix, and consequently also a function of
the unknown parameters θ. Therefore, the derived optimal designs in this thesis are
locally optimal designs. Furthermore, there is in general no closed form formula that
defines an optimal design, it must be numerically determined using some routines
for function optimization. In this thesis routines in Mathcad and Matlab have been
used. A description of the criterion for D-optimality is given below together with
a brief description of the criterion function for E-optimality.
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4.1 D-optimal designs

The criterion function for D-optimality is

ψ {M (θ, ξ)} = ln
(∣∣M−1 (θ, ξ)

∣∣) .

Given regularity conditions, see e.g. Casella and Berger (2002), the variance of the

maximum likelihood estimator θ̂mle is asymptotically equal to the inverse of the
Fisher information matrix, I. (θ, ξ)−1. The determinant of the inverse of the stan-
dardized information matrix in the criterion function is interpreted as a generalized
volume of a confidence ellipsoid of the parameters. A smaller value of the criterion
function therefore leads to better precision in the parameter estimators.

A design can be evaluated using the standardized variance of the predicted response,
d(x, ξ), see Puu (2003)

d(x, ξ) = tr
{
M (θ, ξ)−1 I (θ, x)

}
∀xǫX

X is called design region and specifies the possible values of x. Let

ξ =

{
x
1

}

denote the design which puts unit mass at the point x. The directional derivative
of ψ {M (θ, ξ)} in the direction of ξ is

φ (x, ξ) = lim
α−→0+

1

α

[
ψ
{
(1− α)M (θ, ξ) + αM

(
θ, ξ

)}
− ψ {M (θ, ξ)}

]
,

see Atkinson and Donev (1992). Silvey (1980) showed that the directional derivative
of the criterion function for a D-optimal design is

φ (x, ξ) = p− d(x, ξ),

where p is the number of parameters in the model. According to the general equiv-
alence theorem, (Kiefer (1959) and Kiefer and Wolfowitz (1960)), the design ξ∗ is
optimal if

min
xǫX

φ (x, ξ∗) � 0.

Hence a design, ξ∗, that satisfy

d(x, ξ∗) � p ∀xǫX

is D-optimal. Furthermore, the general equivalence theorem state that, d(x, ξ∗) = p
at the design points. This inequality with d(x, ξ) is very useful in order to verify if
a design is D-optimal or not.
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Example 1 To illustrate a D-optimal design, Figure 2 shows the probability
distribution for an example of the bivariate model. The parameters are α1 =
−1, α2 = −9, β1 = 1.1, and β2 = 1.3, respectively. In Figure 2, d(x, ξ∗) for the
locally D-optimal design

ξ∗ =

{
−0.4719 2.3431 32.3787 47.6213
0.2514 0.2598 0.2422 0.2466

}

is also included. Note that d(x, ξ∗) = 4 = p at the design points. This result is in
line with the general equivalence theorem, see Atkinson and Donev (1992).
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Figure 2: The probability distribution for S given α1 = −1, α2 = −9, β1 = 1.1
and β2 = 1.3. The standardized variance of the predicted response for design
ξ∗, d(x, ξ∗).

4.2 E-optimal designs

E-optimal designs minimize the variance of the worst estimated linear contrast,
aTθ. An E-optimal design satisfy

min max
i=1,...,p

1

λi
,

where 1
λi

is an eigenvalue to M (θ, ξ)−1. The E-optimal design is interpreted as the
design that minimizes the length of the long axis of the confidence ellipsoid of the
parameters.
The directional derivative of the criterion function for an E-optimal design is

φ (x, ξ) = λmin − rT I (θ, x) r, (2)
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where λmin is the smallest eigenvalue to M (θ, ξ) and rT is the corresponding eigen-
vector. The expression in (2) can be used to verify that a design is E-optimal.

Example 2 Assume that the parameters are α1 = −2, α2 = −5.3863, β1 =
1, and β2 = 2, respectively. The corresponding locally E-optimal design, denoted
ξ∗, is a 3−point design with unequal design weights.

ξ∗ =

{
0.1741 2.2049 5.7469
0.4414 0.3706 0.1880

}

The directional derivative for ξ∗ is given in Figure 3. Figure 3 shows that φ (x, ξ∗)
achieves its minimum at the design points. and that the minimum value is equal
to zero. ξ∗ is therefore E-optimal, according to the general equivalence theorem.
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Figure 3: Directional derivative function, φ(x, ξ∗), for the E-optimal design ξ∗. The
parameters are α1 = −2, α2 = −5.3863, β1 = 1 and β2 = 2, respectively.

Many articles have been written about optimal designs for multinomial models.
Most authors address the situation where the binary responses "efficacy" (yes/no)
and "toxicity" (yes/no) have a joint distribution. Heise and Myers (1996) derive lo-
cally D-optimal designs for this situation using the Gumbel model described above.
The locally D-optimal designs are derived for different values on the parameters.
The results show that the design points often are symmetrically allocated about
some ratio of the parameters. They also study locally Q-optimal designs. The
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Q-optimal designs minimize the predicted variance of the response ("efficacy","no
toxicity"). Dragalin and Fedorov (2006) present locally D-optimal designs based
on Cox bivariate binary model. They include a penalty function in the criterion
function in order to avoid situations where the covariate attains the wrong values.
Other authors have used the trinomial model with response categories "no re-
sponse", "efficacy", and "adverse reaction". Puu (2003) considers locally D- and
DA-optimal designs for a multinomial logit model.
Appelgren (2004) derives locally D-optimal designs for the bivariate logistic re-
gression model, (McCullagh and Nelder (1989)). He studied both models with
independent margins and models with dependent margins. Results show that the
parameters for the margins are most important for the location of the design points.
The locally D-optimal designs have two, three, or four design points.

Since the D-optimal designs are only locally optimal designs, the designs can have
a low efficiency given wrong parameter values. An optimal in average design, also
known as Bayesian design, average the criterion function over a "prior" distribution
of the parameters. In general D-optimal in average designs are therefore more robust
than locally D-optimal designs. Optimal in average designs in general are treated in
Chaloner and Larntz (1989), Pettersson (2001), and Pettersson and Nyquist (2003).
Zocchi and Atkinson (1999) derive D-optimal in average designs and compare them
with locally D-optimal designs for a trinomial model. Fan (1999) and Fan and
Chaloner (2004) consider locally D-optimal designs, D-optimal in average designs,
and locally c-optimal designs for a continuation-ratio logit model. They derive an
analytical expression for a design which is approximately locally D-optimal. The
number of design points as well as the location of the design points depend on the
values of some of the parameters.

5 Bivariate symmetric model

In general, a model for two variables does not have any symmetry properties. How-
ever it is possible to define a model with symmetry properties where S1 and S2
are still dependent. In such a model, β2 = 2β1. The model is a particular case of
the modified Cox model, but because β2 = 2β1, some properties are more specific.
Compared with the modified Cox model for two variables the response variable and
the link function are left unchanged. The linear predictor changes to

η =

(
η1
η2

)
=

(
α1 + β1x
α2 + 2β1x

)
= xθ,

where

x =

(
1 0 x
0 1 2x

)

and
θT =

(
α1 α2 β1

)
.

16



Based on the expression derived for the modified Cox model, the log-odds ratio is

lnΩ = ln 4 + α2 − 2α1.

Note that the odds ratio depends neither on β1 nor on x.

The probability distribution for S depends on the parameters α1, α2, and β1 and
the covariate x. In Figure 4 P (S = 0), P (S = 1) and P (S = 2) are plotted for four
different combinations of α1, α2 and β1.
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Figure 4: Probability distribution for S as a function of x. The parameters are
θT1 = (−2,−10, 1), θT2 = (−1,−5, 1), θT3 = (−1,−1, 0.2), and θT4 = (−10,−1, 0.2),
respectively. The corresponding log-odds ratios are lnΩ1 = −4.61, lnΩ2 = −1.61,
lnΩ3 = 2.39, and lnΩ4 = 20.39, respectively.

The maximum value of P (S = 1) decreases as the log-odds ratio increases. In Plot
4 with a log-odds ratio of over 20, P (S = 1) is not possible to see since it is so close
to zero. Since β1 > 0, P (S = 0) decreases with x and P (S = 2) increases with x.

Define x0 as
x0 = argmax

x∈X
P (S = 1).

Property 2

x0 =
−α2
2β1

17



Proof.
dP (S = 1)

dx
=
β1e

η1 − β1eη1+η2
(1 + eη1 + eη2)2

Equating to zero yields

x0 =
−α2
2β1

By applying standard calculus technique one can show that x0 is a global maximum
of P (S = 1).
The term x0 is important in obtaining D-optimal designs and to show the symmetry
properties for this model.

Property 3

P (S = 1;x = x0) =
1

1 +
√
Ω

Proof.

P (S = 1; x = x0) =
eα1+β1x0

1 + eα1+β1x0 + eα2+2β1x0
=

eα1−
α2
2

2 + eα1−
α2
2

=
1

1 +
√
Ω

The value of P (S = 1; x = x0) depends only on the odds ratio Ω. Thus a very large
log-odds ratio gives a very small P (S = 1;x = x0) and vice versa.
The following Property shows that P (S = 0) and P (S = 2) are symmetric around
x0 in the sense that P (S = 0; x = x0 − k) = P (S = 2; x = x0 + k).

Property 4

P (S = 0; x = x0 − k) = P (S = 2;x = x0 + k) for all k

Proof.

P (S = 0;x = x0 − k) =
1

1 + eα1+β1(x0−k) + eα2+2β1(x0−k)
=

1

1 + eα1−
α2
2
−kβ1 + e−2kβ1

P (S = 2; x = x0 + k) =
eα2+2β1(x0+k)

1 + eα1+β1(x0+k) + eα2+2β1(x0+k)
=

1

1 + eα1−
α2
2
−kβ1 + e−2kβ1

Hence P (S = 0) and P (S = 2) are symmetric around x0.

For the current model S1 and S2 are not independent in general. Expressions for
the covariance and the correlation between S1 and S2 are derived below.

Property 5

Cov (S1, S2) =
4eη2 − e2η1

4 (1 + eη1 + eη2)2
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Proof.

Cov (S1, S2) =
eη2

1 + eη1 + eη2
− π1·π·1

=
4eη2 − e2η1

4 (1 + eη1 + eη2)2
,

since β2 = 2β1.

Property 6

Corr (S1, S2) =
4eα2 − e2α1

(2 + eα1+β1x) (2eα2 + eα1−β1x)

Proof.

Corr (S1, S2) =
Cov (S1, S2)√
π1·π0·

√
π·1π·0

=

4eη2−e2η1
4(1+eη1+eη2 )2

(2+eη1 )(2eη2+eη1 )

4(1+eη1+eη2 )2

=
4eα2 − e2α1

(2 + eα1+β1x) (2eα2 + eα1−β1x)
,

since β2 = 2β1.
The variance of S is given by

Property 7

V ar (S) =
4eη2 + eη1 (1 + eη2)

(1 + eη1 + eη2)2
.

Proof.

V ar (S) = π1·π0· + π·1π·0 + 2
4eη2 − e2η1

4 (1 + eη1 + eη2)2

=
4eη2 + eη1 (1 + eη2)

(1 + eη1 + eη2)2

Consider the following expression for the covariance between S1 and S2.

Cov (S1, S2) =
∑

s1=0,1

∑

s2=0,1

(s1 − π1·) (s2 − π·1)P (S1 = s1, S2 = s2)

It was stated previously that P (S = 0) is a decreasing function in x and P (S = 2)
is an increasing function in x if β1 > 0. For very small x, P (S1 = s1, S2 = s2) is
close to zero for all s1, s2 except for s1 = s2 = 0. Since π1· is close to zero for very
small x, Cov (S1, S2) is close to zero for very small x. In a similar way Cov (S1, S2)
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is close to zero for very large x. Hence, the correlation tends to zero when x tends
to minus or plus infinity.

Figure 5 includes four plots of the correlation between S1 and S2 for the same
parameter values as in Figure 4. In Plot 1 and Plot 2 the parameter values generate
a negative log-odds ratio, hence the correlation is also negative. Plot 4 is based on
parameter values that generate a large log-odds ratio. The correlation is therefore
close to one for values of x in the interval −30 to 30. In all plots the correlation
tends to zero for very large and for very small values on x.
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Figure 5: Correlation between S1 and S2 for different sets of parameter values. The
parameters are θT1 = (−2,−10, 1), θT2 = (−1,−5, 1), θT3 = (−1,−1, 0.2), and θT4 =
(−10,−1, 0.2), respectively. The corresponding log-odds ratios are lnΩ1 = −4.61,
lnΩ2 = −1.61, lnΩ3 = 2.39, and lnΩ4 = 20.39, respectively.

Property 8 Corr (S1, S2) has a global minimum or maximum at x = x0

Proof.

d

dx
Corr (S1, S2) =

β1 (e
2α1 − 4eα2)

(
eα1−β1x

(
2 + eα1+β1x

)
− eα1+β1x

(
2eα2 + eα1−β1x

))

(2 + eα1+β1x)2 (2eα2 + eα1−β1x)2

Equating to zero yields

x = x0 =
−α2
2β1

.
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By applying standard calculus technique one can show that x0 is a global minimum
or maximum of Corr (S1, S2).

The conditional probability that S1 = 1 given that S2 = 1 is derived below.

Property 9

P (S1 = 1 | S2 = 1) =
2

2 + eα1−α2−β1x

Proof.

P (S1 = 1 | S2 = 1) =
P (S1 = 1, S2 = 1)

P (S2 = 1)

=

eη2

1 + eη1 + eη2
2eη2 + eη1

2 (1 + eη1 + eη2)

=
2

2 + eα1−α2−β1x

If β1 is positive the conditional probability that S1 = 1 given that S2 = 1 tends to
one when x tends to infinity and to zero when x tends to minus infinity. Figure
6 presents the conditional probability, P (S1 = 1 | S2 = 1) , for the same parameter
values as in Figure 4 and Figure 5.
Assuming that β1 is positive, P (S = 2) is an increasing function in x and conse-
quently P (S1 = 1 | S2 = 1) increases with x. This property is illustrated in Figure
6. The conditional probability in Plot 4 is close to one for so small values on x as
−30. This is explained by a strong dependence between S1 and S2. Plot 1 and Plot
2 are generated with a larger β1 compared with Plot 3 and Plot 4. Therefore the
conditional distribution increases more rapidly in Plot 1 and Plot 2.

Since the distribution of the response variable for the modified Cox model belongs
to the exponential family, it follows immediately that also the response variable
under the symmetric model is an exponential family. The likelihood function is
basically the same likelihood function as for the modified Cox model,

L (θ|y) =
N

Π
i=1

{
πy1i1i π

y2i
2i (1− π1i − π2i)(1−y1i)(1−y2i)

}
.

The loglikelihood function is

l (θ|y) =
N∑

i=1

(y1iη1i + y2iη2i − ln (1 + eη1i + eη2i)) .

Also the score function is similar to the score function under the modified Cox
model. The only difference is that the matrix x is different.
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Figure 6: P(S1 = 1 | S2 = 1) for different sets of parameter values. The pa-
rameters are θT1 = (−2,−10, 1), θT2 = (−1,−5, 1), θT3 = (−1,−1, 0.2), and θT4 =
(−10,−1, 0.2), respectively. The corresponding log-odds ratios are lnΩ1 = −4.61,
lnΩ2 = −1.61, lnΩ3 = 2.39, and lnΩ4 = 20.39, respectively.



uα1 . (θ)
uα2 . (θ)
uβ1 . (θ)


 =

N∑

i=1




(y1i − π1i)
(y2i − π2i)

xi (y1i − π1i + 2y2i − π2i)


 =

N∑

i=1

xTi (yi − µi)

The Fisher information for one observation is partly the same compared with the
modified Cox model.

I (θ, x) = xTDx

=




π1 (1− π1) −π1π2 x (π1 (1− π1)− 2π1π2)
−π1π2 π2 (1− π2) x (2π2 (1− π2)− π1π2)

x (π1 (1− π1)− 2π1π2) x (2π2 (1− π2)− π1π2) x2 (π1 (1− π1)− 4π1π2 + 4π2 (1− π2))




5.1 Locally D-optimal designs

The example of a D-optimal design for the modified Cox model indicates that there
are no symmetry properties in the design. For instance, no design weights are
equal. For the symmetric model in this chapter the number of design points and
the design weights change with different parameter values. Nevertheless D-optimal
designs have some symmetry properties under this model.
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# α1 α2 β1 lnΩ x0 D-optimal design

1 -2 -10 1 -4.61 5

{
1.176 3.680 6.320 8.824
0.269 0.231 0.231 0.269

}

2 -1 -5 1 -1.61 2.5

{
0.132 2.5 4.868
0.255 0.49 0.255

}

3 -1 -1 0.2 2.39 2.5

{
−1.487 6.487
0.5 0.5

}

4 -10 -1 0.2 20.39 2.5

{
−0.889 5.889
0.5 0.5

}

Table 2: D-optimal design for different sets of parameter values. The parameter
values are the same as in Figure 4, Figure 5 and Figure 6.

Example 1 Four D-optimal designs are presented in Table 2.
Although the number of design points are different for the designs there are some
general properties. The design points are placed symmetric around x0. In a plot
over d (x, ξ), the function should have maximum points at the design points. d (x, ξ)
at these maximum points should also be equal to 3. These properties are illustrated
in Figure 7 where it is also possible to see x0 as a local minimum or maximum point.
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Figure 7: d(x, ξ∗) for the different sets of parameter values described in Table 2.

The results in the example are in line with Fan (1999) and Fan and Chaloner
(2004). They also found optimal designs with two, three or four design points
although they had a different model. Fan (1999) argues that the differences in the
number of design points and design weights can be explained by certain differences
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and ratios between parameters. The differences in the number of design points
can also be explained using the log-odds ratio. Several plots have shown that the
value of the log-odds ratio determines the number of design points in the D-optimal
design. For example when the log-odds ratio is large it is sufficient with two design
points. This is because it is sufficient to gather most information about the model
using only two design points. When the log-odds ratio decreases, P (S = 1; x = x0)
increases and a design with two design points is no longer optimal. The design
points giving the most information about P (S = 0) do not give any information
about P (S = 2) and vice versa. Therefore the optimal design contains three or
more design points.

The relationship between the log-odds ratio and the number of design points is
illustrated in Figure 8. The result has been derived by determining the D-optimal
design for a number of different values on the parameters. Given two vectors of
values on α1 and α2, the log-odds ratio is determined for each combination of
(α1, α2). Depending on the log-odds ratio, a 2−point, 3−point, or 4−point design
is then derived. The optimality of the proposed design is checked by calculating
max(d(x, ξ)).

�
4-point design 3-point design 2-point design lnΩ

-4.07 -0.15

Figure 8: Number of design points given the log-odds ratio.

Using Figure 8 as a starting point it is possible to derive some more results on
D-optimal designs.

5.1.1 Locally D-optimal designs when the log-odds ratio is large

For models with a large log-odds ratio it is reasonable to assume that a D-optimal
design has two design points. A design is in general given by

ξ =

{
x0 − c

β1
x0 +

c
β1

0.5 0.5

}
.

The design points are placed symmetric around x0 with equal design weights. Equal
design weights are assumed because P (S = 0) and P (S = 2) are symmetric around
x0. The question is if there is a way to find an expression for c. In this section the
particular case when α2 = 0 and β1 = 1 is examined. The restriction on α2 and
β2 simplifies the coming calculations considerable. The standardized information
matrix for a 2−point design under the restriction is

M (α1, c) =
1

2
(I(α1,−c) + I (α1, c)) .
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The determinant of M is

|M (α1, c)| =
c2eα1−6c (eα1 + eα1+2c + 4ec)

(1 + eα1−c + e−2c)5

Using this expression the derivative of the determinant of M with respect to c is

d |M (α1, c)|
dc

= {ceα1−4c[2
(
1 + eα1−c + e−2c

) [
e−2c

(
eα1 + eα1+2c + 4ec

)
− c

(
3eα1−2c + 2eα1 + 10e−c

)]

+5ce−3c
(
eα1 + 2e−c

) (
eα1 + eα1+2c + 4ec

)
]}/

(
1 + eα1−c + e−2c

)6
.

There is no general expression for c. Nevertheless an asymptotic result can be
derived. If α2 = 0 then

lnΩ→∞ when α1 → −∞.

Setting
d |M (α1, c)|

dc
= 0

yields,

2
(
1 + eα1−c + e−2c

) [
e−2c

(
eα1 + eα1+2c + 4ec

)
− c

(
3eα1−2c + 2eα1 + 10e−c

)]

+5ce−3c
(
eα1 + 2e−c

) (
eα1 + eα1+2c + 4ec

)
] = 0.

Let α1 → −∞ and it follows that

c =
2 (1 + e−2c)

5 (1− e−2c) .

c ≈ 0.6778

In Figure 9 the value of c is plotted as a function of the log-odds ratio. For the
same c and the same log-odds ratio

max
x∈X

d (x, ξ (c))

is plotted. d (x, ξ (c)) is used since it is an easy way to verify if a design is D-
optimal or not. In the plot over c note that when the log-odds ratio becomes
smaller c increases. When the log-odds ratio is less than −0.15 a 2−point design is
no longer optimal. That is why d (x, ξ (c)) is larger than three when the log-odds
ratio is less than −0.15.
For a log-odds ratio of approximately 10 and larger c is constant. This value of c
is around 0.6778. One of the examples shown previously had a log-odds ratio of
around 20. It is possible to verify that c is around 0.6778 in that example1.

1In the example a1 = −10 and a2 = −1. This gives a log-odds ratio, lnΩ = ln4 + 19. The
symmetry point x0 =

1

0.4
= 2.5. The design points are located 5.889− 2.5 = 3.389 from x0. So in

this example c is equal to 3.389β1 ≈ 0.6778.
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Figure 9: a) The value of c that maximizes | M(α1, ξ) | for different values of the
log-odds ratio. b) Maximum of d(x, ξ(c)) as a function of both c and the log-odds
ratio.

Designs based on c = 0.6778 can be evaluated using D-efficiency, see Atkinson and
Donev (1992).

Deff =

( |M (θ, ξ (c))|
|M (θ, ξ∗)|

) 1
p

Figure 10 presents the D-efficiency for designs with c = 0.6778 given different
parameter values (different log-odds ratios).
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Figure 10: D-efficiency for designs with c=0.6778 for different parameter values.

For parameter values with a log-odds ratio of approximately larger than five the
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designs are optimal or almost optimal. When the log-odds ratio is negative a
2−point design is not optimal and the D-efficiency decreases rapidly.

5.1.2 Locally D-optimal designs when the log-odds ratio is large nega-

tive

For parameters with a large negative log-odds ratio a 4−point design is optimal.
A plot of the probability distribution of S as a function of x for such parameter
values is given in Figure 11.
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x

Figure 11: An example of the probability distribution of S when the log-odds ratio
is large negative. The parameters are θT = (20, 0, 1) and the log-odds ratio is
lnΩ = −38.61.

Based on Figure 11 it is reasonable that the design points are located around two
symmetry points. These symmetry points are where P (S = 0) equals P (S = 1)
and where P (S = 1) equals P (S = 2). When P (S = 0) equals P (S = 1), η1 = 0
and hence

α1 + β1x = 0 so that x =
−a1
β1

.

In the same way, when P (S = 1) equals P (S = 2), η1 = η2 and hence

α1 + β1x = α2 + 2β1x so that x =
a1 − α2
β1

.

The proposed 4−point design is therefore

ξ =

{ −α1
β1
− c

β1

−α1
β1
+ c

β1

α1−α2
β1

− c
β1

α1−α2
β1

+ c
β1

0.25 0.25 0.25 0.25

}
. (3)
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This 4−point design has a more complex expression for the determinant of M
compared with the 2−point design. In the particular case when α2 = 0 and β1 = 1
one can numerically find the value of c that maximizes |M |. M is then

M (α1, c) =
1

4
{I(−α1,−c) + I (−α1, c) + I(α1,−c) + I (α1, c)} .

In Figure 12 the value of c that maximizes |M (α1, c)| is plotted versus lnΩ.
For designs with a log-odds ratio less than −10, c ≈ 1.2229. A design based on (3)
with c = 1.2229 is an approximation of the locally D-optimal design. The approx-
imation is evaluated using D-efficiency. The D-efficiency for different parameter
values are shown in Figure 13.
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Figure 12: a) The value of c that maximizes |M(α1, ξ) | for different values of the
log-odds ratio. b) Maximum of d(x, ξ(c)) as a function of both c and the log-odds
ratio.

If the log-odds ratio is approximately −10 or smaller c = 1.2229 yields very effi-
cient designs. A 3−point design is D-optimal when the value of the log-odds ratio
is between −4.07 and −0.15. Nevertheless the D-efficiency for the proposed de-
sign does not decrease when the log-odds ratio is between −4.07 and −0.15. The
explanation is that two design points are almost equal for the proposed 4−point
design. Hence, the proposed design has almost the same D-efficiency as a D-optimal
3−point design. For positive log-odds ratios the D-efficiency decreases fast.

6 Bivariate independent model

In this chapter it is assumed that S1 and S2 are independent. Independence between
S1 and S2 is equivalent to a log-odds ratio that is zero. Given the expression for
the log-odds ratio an independent model has the restrictions
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Figure 13: D-efficiency for designs with c=1.229 for different parameter values.

• α2 = 2α1 − ln 4,

• β2 = 2β1.

Because S1 and S2 are independent the distribution for S is simply

S ∼ Bin (2, π) ,

where π is the common probability for observing a "success". In this model S is
the response variable, and using the restrictions for the model

π =
eη1

2 + eη1
.

The variance of S is
V ar(S) = 2π (1− π) .

Figure 14 presents an example of the probability distribution for S as a function of
x.
In the remaining part of this chapter different properties of the probability distrib-
ution for S are analyzed. As for the previous model x0 is important when deriving
symmetry properties for this model.

Property 10

x0 =
ln 2− α1

β1
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Figure 14: Probability distribution for S with parameters α1 = −4 and β1 = 1.

Proof. Differentiate P (S = 1) with respect to x.

dP (S = 1)

dx
=
8β1e

η1 − 4β1e2η1
(2 + eη1)3

Equating to zero yields
2 = eη1

and hence

x0 =
ln 2− α1

β1
.

By applying standard calculus technique it is easy to verify that x0 is a global
maximum of P (S = 1).

Property 11

P (S = 1;x = x0) =
1

2

Proof.

P (S = 1; x = x0) =
4eη1

(2 + eη1)2
=
1

2

Hence the maximum value of P (S = 1) is always equal to 1
2
in this model.

As for the previous model, P (S = 0) and P (S = 2) are symmetric around x0 in the
sense that P (S = 0;x = x0 − k) = P (S = 2; x = x0 + k)

Property 12

P (S = 0; x = x0 − k) = P (S = 2;x = x0 + k) for all k
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Proof.

P (S = 0; x = x0 − k) =
4

(2 + eα1+β1(x0−k))
2 =

1

(1 + e−kβ1)2

P (S = 2;x = x0 + k) =
e2(α1+β1(x0+k))

(2 + eα1+β1(x0+k))
2 =

1

(1 + e−kβ1)2

Hence P (S = 0; x = x0 − k) = P (S = 2; x = x0 + k).

Since S has a binomial distribution the probability distribution for S belongs to
the exponential family of distributions. The likelihood is well determined

L (α1, β1|s) =
N

Π
i=1

(
2

si

)
πsii (1− πi)2−si ,

lnL (α1, β1|s) =
N∑

i=1

{
ln

(
2

si

)
+ si ln

(
πi

(1− πi)

)
+ 2 ln (1− πi)

}
.

The score function is determined by applying the chain rule.

(
uα1 . (θ)
uβ1 . (θ)

)
=

N∑

i=1

(
(si − 2πi)
xi (si − 2πi)

)

The Fisher information is

I. (θ, x) = E
[
u (θ) uT (θ)

]

=
N∑

i=1

2πi (1− πi)
(
1 xi
xi x2i

)
.

Locally D-optimal designs for independent binary variables are easily found, see for
example Kalish and Rosenberger (1978).

Theorem 1 For the independent model in this chapter the locally D-optimal design

is

ξ∗ =

{
x0 − c

β1
x0 +

c
β1

0.5 0.5

}
,

where c is the solution to the equation

c =
ec + 1

ec − 1 .

c ≈ 1.5434
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Proof. In order to show that the locally D-optimal design is given by ξ∗ the value
of c that maximizes |M (θ, ξ∗)| is first found. Second, it must be shown that the
design that maximizes |M (θ, ξ∗)| is the locally D-optimal design. This is done
by checking that maximum of d(x, ξ∗) is achieved at the design points and that
d(x, ξ∗) ≤ 2 for all x.
The standardized information matrix for the design ξ∗ is

M (θ, ξ∗) =
2ec

(1 + ec)2

(
1 ln 2−α1

β1
ln 2−α1
β1

1
β21

(
(ln 2− α1)2 + c2

)
)
.

|M (θ, ξ∗)| = 4c2e2c

β21 (1 + e
c)4

d |M (θ, ξ∗)|
dc

=
8cec (1 + ec + c− cec)

β21 (5 + 10e
c + 10e2c + 5e3c + e4c)

Equating to zero yields

c =
ec + 1

ec − 1 .

The solution to the equation, c ≈ 1.5434 maximizes |M (θ, ξ∗)|.
The standardized variance of the predicted response

d(x, ξ∗) =

(
∂µ

∂θ

)T
M (θ, ξ∗)−1

(
∂µ

∂θ

)
V ar (S) ,

where (
∂µ

∂θ

)
= V ar (S)

(
1
x

)

and

M (θ, ξ∗)−1 =
(1 + ec)2

2ec
β1
c2

(
1
β21

(
(ln 2− α1)2 + c2

)
− ln 2−α1

β1

− ln 2−α1
β1

1

)

d(x, ξ∗) =
(
1 x

)
(

1
β21

(
(ln 2− α1)2 + c2

)
− ln 2−α1

β1

− ln 2−α1
β1

1

)(
1
x

)
4eα1+β1x

(2 + eα1+β1x)2
(1 + ec)2

2ec
β21
c2

Which simplifies to

d(x, ξ∗) =

[(
ln 2− α1

β1
− x

)2
+
c2

β21

]
4eα1+β1x

(2 + eα1+β1x)2
(1 + ec)2

2ec
β21
c2
.

Next it is shown that d(x, ξ∗) achieves its maximum at the design points.

d

dx
d(x, ξ∗) =

{
4eα1+β1x

(2 + eα1+β1x)2

[
2x− 2 (ln 2− α1)

β1

]
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+
4β1e

α1+β1x
(
2− eα1+β1x

)

(2 + eα1+β1x)3

[(
ln 2− α1

β1
− x

)2
+
c2

β21

]{
(1 + ec)2

2ec
β21
c2

=

{
β1
(
2− eα1+β1x

)

(2 + eα1+β1x)

[(
ln 2− α1

β1
− x

)2
+
c2

β21

]

+2x− 2 (ln 2− α1)
β1

4eα1+β1x

(2 + eα1+β1x)2

{
(1 + ec)2

2ec
β21
c2

Substituting ln 2− α1 − β1x = ±c and using the expression c = ec+1
ec−1 yields

d(x, ξ∗) =

{
β1 (1− ec)
(1 + ec)

2c2

β21
+
2c

β1

}
2ec

(1 + ec)2
(1 + ec)2

2ec
β21
c2

=

{−2c
β1

+
2c

β1

}
2ec

(1 + ec)2
(1 + ec)2

2ec
β21
c2
= 0

Hence, ξ∗ satisfy the condition that d(x, ξ∗) attains its maximum at the design
points.
Next it is shown that d(x, ξ∗) ≤ 2. The maximum value of d(x, ξ∗) is obtained by
inserting x = ln 2−α1±c

β1
in d(x, ξ∗),

d

(
ln 2− α1 ± c

β1
, ξ∗

)
=
2c2

β21

8ec

4 (1 + ec)2
(1 + ec)2

2ec
β21
c2
= 2

Thus, the proposed design is locally D-optimal.

Example 1 For the parameters α1 = −4 and β1 = 1 a D-optimal design is given
by

ξ∗ =

{
3.1497 6.2365
0.5 0.5

}
.

In Figure 15, d(x, ξ∗) is plotted. Note that d(x, ξ∗) has two maximum points ap-
pearing at the two design points 3.1497 and 6.2365. If ξ∗ is a D-optimal design
the criterion function, ψ, has minimum value for this design. However ξ∗ is also
optimal if the determinant of the standardized information matrix, |M (θ, ξ∗)|, has
maximum points at the design points. Figure 15 shows that this is true for the
current example.
The plot shows |M (θ, ξ)| for the design

ξ =

{
ln 2 + 4− c ln 2 + 4 + c

0.5 0.5

}
.

The maximum value of |M (θ, ξ)| is attained for c ≈ 1.543. Thus the optimal design
points are approximately 3.150 and 6.236.
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Figure 15: a) d(x, ξ) for parameters α1 = −4 and β1 = 1. b) Determinant of the
information matrix for different choices of design points given the same parameters.

7 Testing for independency

The previous chapters show that a model for independent variables is less complex
and thus easier to estimate. Locally D-optimal designs are also easier to derive.
Test procedures for testing the null hypothesis that the variables S1 and S2 are
independent are therefore of interest. In this thesis the score test and the likelihood
ratio test are considered. This chapter is based on Bruce and Nyquist (2005).

7.1 Models without covariates

If no covariate is included in the model, the log likelihood as a function of π0, π1, and
π2 is

ℓ (π;y) =
N∑

i=1

y0i ln π0 + y1i ln π1 + y2i ln π2, (4)

yji =

{
1, if Si = j
0, otherwise

for j = 0, 1, 2 and i = 1, 2, . . . , N.

The test statistic for the score test is defined as

TS = uT . (π̃) I−1 (π̃)u. (π̃) , (5)

where π̃ = (π̃1, π̃2)
T is the estimated vector of probabilities under the null hy-

pothesis. The hypothesis of independence implies the restrictions π0 = (1− π1·)2,
π1 = 2π1· (1− π1·), and π2 = π21·, where π1· = P (S1 = 1) = P (S2 = 1) is the mar-
ginal probability to observe a "success". Under the hypothesis of independence,
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the maximum likelihood estimator of π1· is evidently

π̃1· = (2N)
−1

N∑

i=1

(y1i + 2y2i) =
r1 + 2r2
2N

, (6)

where rj is the number of observed pairs that result in yj = 1. Hence, the estimator
π̃1· equals the total number of observed "successes" divided by the number of ob-
served variables. Maximum likelihood estimators of π0, π1, and π2 are accordingly

π̃0 = (1− π̃1·)2 , π̃1 = 2π̃1· (1− π̃1·) , and π̃2 = π̃21·. (7)

By deriving expressions for the scores and the information matrix from (4) and
inserting these expressions in (5), the score test statistic becomes

TS =
2∑

j=0

(rj −Nπ̃j)2
Nπ̃j

. (8)

The test statistic coincides with the χ2-test statistic for testing the goodness of fit of
a trinomial distribution with probabilities restricted as described above. Asymptot-
ically, TS has a χ2 distribution with 1 degree of freedom, the approximation being
good provided the expected frequencies, Nπ̃j, j = 0, 1, 2, are sufficiently large.
The test statistic for the likelihood ratio test is defined as

TLR = 2 (ℓ (π̂;y)− ℓ (π̃;y))

= 2
2∑
j=0

rj ln
π̂j
π̃j
,

where π̂j =
rj
N

is the unrestricted maximum likelihood estimator of πj, j = 0, 1, 2.

This simple case generalizes straightforwardly to the case with several, say K,
groups with Nk observations in each group. The distribution of the trinomial re-
sponse vector in each group is here defined by the vector (π0k, π1k, π2k)

T , k =
1, 2, . . . , K, of probabilities. The test statistic for the score test now becomes

TS =
K∑

k=1

2∑

j=0

(rjk −Nkπ̃jk)
2

Nkπ̃jk
, (9)

where rjk is the observed frequency of category j, j = 0, 1, 2, in group k, k =
1, 2, . . . , K,

π̃0k = (1− π̃1·k)2 , π̃1k = 2π̃1·k (1− π̃1·k) , π̃2k = π̃21·k, (10)

and

π̃1·k = (r1k + 2r2k) / (2Nk) . (11)
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Similarly, the test statistic for the likelihood ratio test becomes

TLR = 2
K∑

k=1

2∑

j=0

rjk ln
π̂jk
π̃jk

. (12)

where the unrestricted estimator is

π̂jk =
rjk
Nk

.

The test statistics TS and TLR are asymptotically equivalent and has a χ2 distri-
bution with K degrees of freedom, asymptotically. Here it is important for the
approximation to be good that each Nkπ̃jk is sufficiently large.

7.2 Models with covariates

A more structured model is obtained if the vector of probabilities π is governed by
a vector of explanatory variables x. Assume that a modified bivariate Cox model
as described in Chapter 3 is used. The vector valued linear predictor, η = (η1, η2)

T

is then
ηj = xTj θj, j = 1, 2,

where xj and θj are vectors of explanatory variables and associated parameters used
for determining the probability πj. Denoting the maximum likelihood estimator of

the parameter vector θ under H0 by θ̃, the score test statistic becomes

TS = uT .
(
θ̃
)
I−1

(
θ̃
)
u.
(
θ̃
)
. (13)

The test statistic can be calculated using the previously derived expressions for the
score vector and the information matrix.
Denote the maximum likelihood estimator without restrictions by θ̂. The likelihood
ratio test statistic is then obtained by evaluating the log likelihood function at θ̃
and θ̂

TLR = 2
(
l
(
β̂;y

)
− l

(
β̃;y

))
. (14)

Both the expression for the likelihood under H0 and the expression for the unre-
stricted likelihood have been given above. The score test statistic and the likelihood
ratio test statistic have the same χ2-distribution asymptotically.

Suppose that data exist for K independent groups with Nk observations in each
group. Then the two vectors of explanatory variables are identical and consist
of dummy variables x1 = x2 = (d1, d2, . . . , dK)

T , where each dk is either 1 or
0, indicating if an observation comes from response group k or not, respectively,
j = 1, 2, . . . , K. In this case the model reduces to the case with K response groups
discussed above and the test statistics for independence are (9) and (12), respec-
tively.
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Example 1

The data for this example are taken from Liang et al. (1992). 5199 people are
subject to a visual examination, measuring if the left eye and/or the right eye has a
visual impairment or not. The outcome for each eye is binary, where ”+” indicates
visual impairment and ” − ” no visual impairment. Age is used as explanatory
variable, see Table 3. In Table 3 there are, for example, 3627 out of 3958 people in
age 40− 70 that have no visual impairment.

Left Right Age: 40− 70 Age: 71+ Total
− − 3627 913 4540
+ − 122 89 211
− + 133 104 237
+ + 76 135 211

Total 3958 1241 5199

Table 3: Joint distribution of visual impairment for both eyes, for the two age
groups 40− 70 and over 70, respectively. Data are taken from Liang et al. (1992).

The probability that the left eye is visually impaired is assumed to be equal to the
probability that the right eye is visually impaired. This assumption is reasonable
since the risk of visual impairment (in percent) is similar for the left and the right
eye in both groups.
Let S1 and S2 be Bernoulli variables for visual impairment of the left eye and the
right eye, respectively. The elements of the response vector yi = (y1i, y2i)

T , i =
1, 2, . . . , 5199, are the corresponding indicator variables. The vector of explanatory
variables consists of the dummy variables d1 and d2 denoting the two age groups.
The link function is therefore

η =

(
η1
η2

)
=

(
β11d1 + β12d2
β21d1 + β22d2

)
.

Suppose now that primary interest is in the possible dependency between S1 and
S2. In this model S1 and S2 are independent if the parameter restrictions

β2j = 2β1j, j = 1, 2

are satisfied. As stated previously the score test statistic is given by (9). The
test statistic has a χ2 distribution with 2 degrees of freedom, asymptotically. The
observed test statistic for the data material in Table 3 becomes, using (9),

TS ≈ 751.22.

Hence the hypothesis about independence is rejected since the critical value on 5%
level is 5.991. The observed likelihood ratio test statistic is derived from (12). The
value on the test statistic is

TLR ≈ 465.35,
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so the hypothesis about independence is rejected when using the likelihood ratio
test as well.

Another model is used when the linear predictors consist of an intercept and a
single explanatory variable, z, the same variable in both linear predictors, so that

ηj = xTθj , x = (1, z)
T and θj =

(
αj , βj

)T
, j = 1, 2. In this model, the explanatory

variable z may influence the success probabilities π1 and π2 differently. In this sit-
uation S1 and S2 are independent if β2 = 2β1 and α2 = 2α1− ln 4. Asymptotically,
both TS and TLR are χ2-distributed with 2 degrees of freedom. The test statistics
are now derived for two artificially created data materials.

Example 2

Data consists of 100 pairs of Bernoulli variables. Each pair is associated with a
single covariate, z, ranging between zero and ten, see Figure 16. Ignoring the
covariate z, the observed frequencies for S = 0, 1, 2 are 49, 17, and 34, respectively.
By only looking at the observed frequencies S1 and S2 seem to be dependent. The
goodness of fit test given in (8) confirms this. The observed test statistic when the
covariate is ignored is

χ2obs ≈ 42.54.
Clearly, the conclusion based only on this test would be that S1 and S2 are depen-
dent. However, it is not sufficient to look at observed marginal frequencies only.
When testing for independency one has to study how the probabilities π0 (z) , π1 (z) ,
and π2 (z) change when taking account of the covariate, z. The relative low fre-
quency of pairs where S = 1 is explained by the fact that many observations are
taken at z-values where π1 (z) is small.
The score test statistic and the likelihood ratio test statistic, given in (13) and (14),
take covariates into account in the test procedures. The observed test statistics for
the two tests become

TS ≈ 0.0340
and

TLR ≈ 0.0338,
respectively. Because the critical value at the 5% level is 5.991, the hypothesis of
independence can not be rejected in neither of the tests.
Another good indicator of the possible dependency between S1 and S2 is the esti-
mated probability distribution of S, given in Figure 16.
The probability distribution closely resembles the appearance of a distribution for
independent Bernoulli variables, see Chapter 6. A model for independent data
has several characteristic properties. Two of these properties are clearly shown in
Figure 16. First the maximum value of π̂1 (z) is close to 0.5, and secondly π̂1 (z)
is a symmetric function around argmax

z
P (S = 1). This example emphasizes the

importance of including existing covariates in the analysis.
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Figure 16: a) The 100 observations on S for Example 2. b) Probability distribution
for S as a function of z. The parameters used are the estimator of the unrestricted
likelihood, θ̂.

Example 3

The data in the third example have a similar structure as the data in Example 2.
Data consist of 100 pairs of Bernoulli variables, where each pair is associated with a
single covariate. Thus, the same model can be fitted to this data material as to the
previous data material. Figure 17 shows that the data in Example 3 resemble the
data in Example 2. Nevertheless, the observed score test statistic and the observed
likelihood ratio test statistic are given by

TS ≈ 6.3066

and
TLR ≈ 7.7791,

respectively. The hypothesis of independence is rejected in both tests because
the observed test statistics exceed the critical value at the 5% level. Figure 17
presents the probability distribution of S based on the estimator of the unrestricted
likelihood, θ̂.
The probability distribution does not share the properties that independent Bernoulli
variables would have generated. The maximum value of π̂1 (z) is relatively far from
0.5 and π̂1 (z) is not a symmetric function around argmax

z
P (S = 1).
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Figure 17: a) The 100 observations on S for Example 3. b) Estimated probability
distribution for S as a function of z.

8 Optimal designs for testing for independency

of Bernoulli variables

The previous chapter showed that an available covariate that is important in ex-
plaining the probability distribution of S should be included when testing for in-
dependency between S1 and S2. Examples showed that the response probabilities,
π0, π1, and π2, clearly depend on the covariate in this case. In an experimental
study the values of the covariate can be controlled. Therefore it is interesting to
find values of the covariate so that properties of the test are optimized. In particu-
lar, different sets of values of the covariate generate different power of the test. In
this framework, a favourable power function can be generated if the values of the
covariate, i.e. the design, are chosen in an appropriate way. This chapter considers
the problem of finding optimal designs such that the local asymptotic power of the
score test is maximized.

For determining an approximation to the power of the test at an alternative hy-
pothesis close to H0, let θ be the true value of the parameter vector and θ0 the
value under H0. Let further δ =

√
N (θ − θ0) be fixed so that θ converges to θ0 as

N tends to infinity. The first-order expansion of 1√
N
u. (θ0) around θ is

1√
N
u. (θ0) =

1√
N
u. (θ) +

1

N
H
√
N (θ0 − θ) ,

where H is the matrix of second-order derivatives of the log likelihood function.
Now, the first term in this expression converges to a normally distributed random
variable with zero mean and variance M (θ0), and the second term converges to
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M (θ0) δ. Hence, the distribution of 1√
N
u. (θ0) is approximately normal with expec-

tation M (θ0) δ and variance M (θ0), in large samples. This makes that the distri-
bution of TS can be approximated in large samples by a noncentral χ2-distribution
with 2 degrees of freedom and non-centrality parameter

ϕ = δTM (θ0) δ. (15)

The power of the test is found as the probability that TS exceeds the critical value
Tc. Obviously, the power depends on ϕ and is smallest in the direction δ in which
δTM (θ0) δ is minimized. The smallest possible value of ϕ is the smallest eigenvalue
of M (θ0) and δ is the eigenvector associated to the smallest eigenvalue.

If an experiment is to be conducted in order to test H0, it is reasonable to select
a design that makes the power of the test as large as possible. Furthermore, the
smallest power is in the direction of the eigenvector associated to the smallest
eigenvalue ofM (θ0). If no direction is of particular interest, a design that maximizes
the smallest eigenvalue of M (θ0) is proposed. This design is recognized as an E-
optimal design, see Chapter 4 for a description of E-optimal designs.
Unfortunately, the E-optimal design for maximizing the smallest local power de-
pends on the unknown parameter vector, so only a locally optimal design can
be determined. As an example, with α1 = −2 and β1 = 1, and accordingly
α2 = −4− ln 4 ≈ −5.3863 and β2 = 2, the 3−point design

ξ∗ =

{
0.1741 2.2049 5.7469
0.4414 0.3706 0.1880

}

is obtained. The probabilities π0, π1, and π2 are estimated at each design point as
in (10) and (11) and then using the test statistic (9), treating the design points as
different groups. The asymptotic power for a test based on the design ξ∗ is shown
in Figure 18.
It should be noted that this design maximizes the smallest power. This means that
there may be other designs that yield a stronger power at some parameter values but
at some other parameter values yield a smaller power than the E-optimal design.
On the other hand, there is no design that dominates the E-optimal design in that
it provides a larger asymptotic power than that for the E-optimal design for all
parameter values.

8.1 Small sample performances of the test; a simulation

experiment

As mentioned previously it is of interest to test hypotheses about α2 and β2 using
the score test. The proposed design for this test procedure is a locally E-optimal. A
corresponding power function for small samples can be evaluated using simulation.
This section presents a numerical illustration of the power of this score test. Values
of the parameters α1 and β1 are chosen arbitrary to α1 = −2 and β1 = 1. The

41



0.2

0.20.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.
8

0.8

0.8
1

1

1

1

1

1

1

β
2

α 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

Figure 18: Contour plot of the asymptotic power for testing dependency. The power
is given for different alternative hypothesis, i.e. different values of α2 and β2.

power of the score test will depend on the alternative hypothesis. Values of α2
and β2 far away from their restriction under H0 will in general give a large power.
In order to examine the power for different alternative hypotheses, α2 and β2 are
varied over an interval of values. Sample size, N , is chosen to 50, 100, and 400,
respectively. Using simulation a data set is created 5000 times for each value of
α2 and β2. The score test statistic is then calculated based on the simulated data
using the formulas described above. Power is determined as the percentage of score
test statistics larger than the critical value Tc. The significance level is chosen to
be 5% in all studied cases.

For testing the hypothesis

H0 :

{
α2 = 2α1 − ln 4
β2 = 2β1

H1 : α2 �= 2α1 − ln 4 or β2 �= 2β1

the proposed design points are E-optimal and depend only on α1 and β1. The score
test statistic, based on the simulated data, is calculated using (9), (10), and (11).
Contour plots of the power as a function of α2 and β2 for different sample sizes are
given in Figure 19, Figure 20 and Figure 21.

When calculating the power based on simulation two interesting phenomena occur,
both of which may be explained in terms of the log-odds ratio between S1 and
S2. For large values on α2 and β2, lnΩ is large which implies that θ̃ is often
equal to one. As a direct consequence the score test statistic, TS in (9), can not
be computed. Due to this, the right side of the contour plots in Figure 19 and
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Figure 19: Contour plot of the simulated power as a function of α2 and β2 for
N=50.
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Figure 20: Contour plot of the simulated power as a function of α2 and β2 for
N=100.
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Figure 21: Contour plot of the simulated power as a function of α2 and β2 for
N=400.

Figure 20 as well as the lower right corner of the contour plot in Figure 21 are
not smooth. These computational problems are more extensive in small samples,
(N = 50 and N = 100). The power for large values on α2 and β2 is not calculated,
since large computational problems exist together with the fact that S1 and S2
are very dependent. Therefore a test for independency is not meaningful for these
parameter values. Because the computational problems for some values of α2 and
β2, the power is not based on 5000 replicates for all (α2, β2) in the plots.
Under H0 the log-odds ratio is equal to zero since S1 and S2 are assumed to be
independent. Some combinations of α2 and β2 outside H0 generate values on the
log-odds ratio that are close to zero. In those cases the estimated frequencies Nπ̃j
in (9) are similar to the observed frequencies rj for j = 0, 1, 2. This results in low
power, despite the fact that α2 and β2 are far from their restriction under the null
hypothesis. The problem with low power is present in all three contour plots. It
can be seen as an area with low power starting from (α2 ≈ −5, β2 ≈ 2) and going in
the direction where α2 gets smaller and β2 gets larger. Note that the log-odds ratio
in general depends on x. The log-odds ratio may be close to zero for one design
point but not necessary for the other design points.

The score test statistic in small samples is not completely comparable to the
asymptotic distribution of the score test statistic. An important difference is
that the asymptotic power of the test is based only on the cdf of the noncen-
tral χ2−distribution. The expression for the test statistic in small samples is based
on observed data. Therefore, the described situation where the test statistic can
not be computed can only occur in finite samples.
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8.2 Robustness of locally optimal designs

As stated before, the optimal designs depend on the parameters α1 and β1. For that
reason it is of great interest to study how well the optimal designs perform against
incorrect guesses of the parameter values. Especially it is important that the designs
generate a good power function for the test they are suppose to optimize, regardless
of incorrect guesses of the parameter values. The robustness is investigated by
calculating the power of the test for different values of the parameters. A design is
considered robust if the power of the test for fairly incorrect guesses of the parameter
values is close to the power generated by the correct values of the parameters. Note
that all power functions are based on the optimal design under consideration. It
is assumed through out the chapter that the designs are optimal for α1 = −2 and
β1 = 1. Robustness is evaluated for a number of different alternative hypotheses
since power functions also depend on the alternative hypothesis. Because a complete
robustness examination of the optimal design is extensive, only a sample of plots
is shown here.

Consider the E-optimal design for testing both restrictions α2 = 2α1 − ln 4 and
β2 = 2β1. Assume that the alternative hypothesis is given by α2 = 2α1 − ln 4 + a
and β2 = 2β1 + b where a and b are constants. Since the power, given α1 and
β1, is an even function of a and b, only positive values of a and b are considered.
The evaluation of the robustness of the E-optimal design involves α1, β1, a, and b,
making the analysis somewhat immense. Comparing the power as a function of a
and b separately, or as a function of α1 and β1 separately, does not give a complete
description of the robustness of the design. The evaluation of the robustness utilizes
the relative power for different (α1, β1) with respect to (α1 = −2, β1 = 1). Relative
power is used because it gives a direct measure of the robustness.

Figure 22, Figure 23, Figure 24, and Figure 25 show the relative power as a function
of both α1 and β1 given some values on a and b. Note that the relative power in
all figures is equal to one in the point (α1 = −2, β1 = 1).
In general, the design is robust along the diagonal where (α1 > −2; β1 < 1) and
where (α1 < −2; β1 > 1). The contour plots in all figures are parallel to this diag-
onal, verifying that the design is robust for these parameter values. Some values
of α1 and β1 generate a relative power larger than 2, showing that the design is
very robust for these parameter values. But on the other hand, the relative power
decreases fast when the value on α1 or β1 change slightly in the wrong direction.
This kind of sensitivity is demonstrated in several of the Figures, e.g. in Plot 2 in
Figure 22, Figure 23, and Figure 24 (when b = 0.20). The design is least robust
when α1 < −2 and β1 < 1, simultaneously. From Figure 22, Figure 23, Figure 24,
and Figure 25 it is hard to conclude how the alternative hypothesis, i.e. a and b
affects the robustness. Especially for alternative hypothesis quite close to the null
hypothesis no clear relation between power and alternative hypothesis exist.

Figure 26 and Figure 27 illustrate in more detail how the alternative hypothesis
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Figure 22: Contour plots of the relative power with respect to α1 = −2 and β1 = 1.
The alternative hypotheses are (a = 0.05; b = 0.05), (a = 0.05; b = 0.2), (a =
0.05; b = 0.5), and (a = 0.05; b = 1.5), respectively.
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Figure 23: Contour plots of the relative power with respect to α1 = −2 and β1 = 1.
The alternative hypotheses are (a = 0.2; b = 0.05), (a = 0.2; b = 0.2), (a = 0.2; b =
0.5), and (a = 0.2; b = 1.5), respectively.
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Figure 24: Contour plots of the relative power with respect to α1 = −2 and β1 = 1.
The alternative hypotheses are (a = 0.5; b = 0.05), (a = 0.5; b = 0.2), (a = 0.5; b =
0.5), and (a = 0.5; b = 1.5), respectively.
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Figure 25: Contour plots of the relative power with respect to α1 = −2 and β1 = 1.
The alternative hypotheses are (a = 1.5; b = 0.05), (a = 1.5; b = 0.2), (a = 1.5; b =
0.5), and (a = 1.5; b = 1.5), respectively.
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affects the robustness. Figure 26 and Figure 27 show the relative power as a function
of both a and b given some values on α1 and β1.
Based on Figure 26 and Figure 27 the design is robust since the relative power is
sufficiently large for most values on a and b. It should be noted though, that only
one of the parameters is incorrect at the same time in these figures compared to
the previous figures.
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Figure 26: Contour plots of the relative power with respect to α1 = −2 and β1 = 1.
The parameter values are (α1 = −4, β1 = 1) , (α1 = −3, β1 = 1), (α1 = −1, β1 = 1),
and (α1 = 0, β1 = 1), respectively.

9 Conclusions and suggestions for further research

A multinomial logit model for equally distributed Bernoulli variables is examined
in this thesis. In Chapter 3 the modified Cox model for k variables is introduced.
Expressions for the likelihood function, the score function and the information
matrix are derived. How well data are fitted in this model depends on several factors
and assumptions. The model is only applicable to data where equally distributed
Bernoulli variables exist. For a similar model Agresti (2002) argues that data fit
poorly if the marginal distributions of the Bernoulli variables differ substantially.
Hence, it remains to investigate how poorly the model fits when the assumption is
not valid.
Furthermore all observations with a certain value on the covariates are assumed to
be homogeneous in the sense that they have the same parameter values. A further
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Figure 27: Contour plots of the relative power with respect to α1 = −2 and β1 = 1.
The parameter values are (α1 = −2, β1 = 0.5) , (α1 = −2, β1 = 0.8), (α1 =
−2, β1 = 1.2), and (α1 = −2, β1 = 1.5), respectively.

development would be to include, for example random effect parameters in the linear
predictor. These parameters would then account for variations among observations.
Parameters for modelling the heterogeneity among individuals are included in the
general model for dependent binary responses given in Agresti (1997).

Chapter 5 presents a model for two Bernoulli variables, where the log-odds ratio
between the variables is constant. Different symmetry properties for the probability
distribution are given together with some general results about locally D-optimal
designs. All these results can be interpreted in terms of the log-odds ratio. For
situations where the log-odds ratio is large negative or large positive a general ex-
pression for D-optimal designs is given. The theoretical foundation of these general
expressions would be more solid if some analytical results were derived. Foremost,
to derive analytical results that show how D-optimal designs for different parame-
ter vectors with the same log-odds ratio are related. Moreover, to derive analytical
results that show how the information matrix is affected when the values of the
parameters change. In this context, Fan (1999) and Puu (2003) derived analytical
results for the determinant of the information matrix. These results are used to de-
rive general expressions for locally D-optimal designs. Although they worked with
other models, it is of interest to derive similar results for the model in this thesis.
When the variables are independent, the model has several symmetry properties.
Since the information matrix in this case has a relatively simple expression, a general
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expression for locally D-optimal designs can be derived.

Tests for determining if the variables are independent is considered in Chapter 7.
Score tests and likelihood ratio tests for different situations are derived.
In Chapter 8 a design that maximizes the local asymptotic power of the score test is
proposed. A small sample study indicates that the locally optimal design performs
well as long as the log-odds ratio is negative. Problem occurs, though, for large
values of the log-odds ratio. The problem is related to the fact that the expected
frequency for some response categories is small. This affects the performance of the
test statistic in small samples. If the Bernoulli variables are strongly correlated the
value of the test statistic might not exist. On the other hand, other test procedures
for testing independence in 2× 2 contingency tables have the same problem when
small expected cell frequencies appear, see Agresti (2002) and Haberman (1988).
Chapter 8 also contains a section where the robustness of the locally optimal de-
sign is examined. The design is fairly robust against incorrect parameter values.
It should be stated though, that the investigation about robustness is not compre-
hensive since only one parameter setup is examined, i.e. α1 = −2 and β1 = 1. A
complete investigation of the robustness of the designs would require an examina-
tion with a very large number of parameter values and alternative hypotheses. The
robustness could also be evaluated by creating values of the test statistic using sim-
ulations instead of relying on asymptotic results. At least in situations where the
correlation between the variables is strong, the power function based on simulations
does not resemble the asymptotic power function completely. One drawback with
simulations is that the procedure would be very time consuming.

It is clear from Chapter 6 and Chapter 8 that if two variables are independent
certain parameter restrictions must hold. Analogously, parameter restrictions for
k = 3, 4, ... jointly dependent variables could be derived. These restrictions can
then be used in tests for independency as well as in deriving optimal designs that
maximizes the power of such tests.
Finally a comment about the robustness of the various locally optimal designs
derived in this thesis. According to Zocchi and Atkinson (1999) D-optimal designs
for logistic models are dependent on the parameters. Changes in the parameter
values result in different design points, different design weights and sometimes even
different number of design points. Consequently a nonoptimal design can have a
low efficiency. It is therefore of interest to study D-optimal in average designs for
the models in this thesis.
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