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Abstract

This thesis proposes a simplification of the model for dependent Bernoulli
variables presented in Cox and Snell (1989). The simplified model, re-
ferred to as the simplified Cox model, is developed for identically dis-
tributed and dependent Bernoulli variables.
Properties of the model are presented, including expressions for the log-
likelihood function and the Fisher information. The special case of a bi-
variate symmetric model is studied in detail. For this particular model,
it is found that the number of design points in a locally D-optimal design
is determined by the log-odds ratio between the variables. Under mutual
independence, both a general expression for the restrictions of the pa-
rameters and an analytical expression for locally D-optimal designs are
derived.
Focusing on the bivariate case, score tests and likelihood ratio tests are
derived to test for independence. Numerical illustrations of these test
statistics are presented in three examples. In connection to testing for
independence, an E-optimal design for maximizing the local asymptotic
power of the score test is proposed.
The simplified Cox model is applied to a dental data. Based on the
estimates of the model, optimal designs are derived. The analysis shows
that these optimal designs yield considerably more precise parameter
estimates compared to the original design. The original design is also
compared against the E-optimal design with respect to the power of the
score test. For most alternative hypotheses the E-optimal design provides
a larger power compared to the original design.
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Chapter 1

Introduction

This thesis considers a model for dependent Bernoulli variables. The
starting point is that independent observations are made on a cluster or
batch of Bernoulli variables. In general the Bernoulli variables within a
batch are assumed to be dependent. Although the size of the batch can
be large in some applications, models for pairs of dependent Bernoulli
variables are studied in more detail. The key property in the models is
that the univariate marginal probabilities are identical for all Bernoulli
variables within a batch. Note that this does not impose Bernoulli vari-
ables from different batches to have the same marginal probabilities. An
advantage with the model, compared to other more general models for
dependent Bernoulli variables, is that the expressions for the likelihood
as well as the Fisher information matrix are relatively uncomplicated.
Consequently, parameter estimators are obtained quite readily even for
a model with many parameters to estimate. Examples with identically
distributed dependent Bernoulli variables exist in several sciences includ-
ing both observational and experimental studies.

One example of an application is the analysis of visual impairment data.
The probability for visual impairment on the left eye is assumed to be
equal to the probability of visual impairment on the right eye, for a
particular individual. There is also a dependence between the eyes. To
further improve the analysis, explanatory variables (covariates) such as
intraocular pressure or age could be incorporated. These kinds of data
have been studied by Rosner (1984), Tielsch et al. (1991), and Liang
et al. (1992).

Another example is an experiment where fry (of fish) are studied. The
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2 Chapter 1. Introduction

objective of the experiment is to determine how different types of food
(treatments) affect some property of the fish. Fry that are assigned to
a certain treatment are therefore kept isolated. The fry can be further
specified by other covariates. It is clear that the responses from the
fry that are kept in the same isolation box are dependent. The model
with identical marginal probabilities can be applied if the fry within a
treatment are homogeneous.

In a third example, groups of plants grow in common soil. Different
batches of plants are then exposed to different amounts of some fertilizer.
Since the plants share soil, the condition of each plant is dependent of
the other plants within the same batch. If the response variable is binary
or coded as binary, the model applies to this kind of experiment. In this
kind of applications it is natural to include a distance covariate for the
spatial dependence between plants within a batch.

Mandel et al. (1982) describe a clinical trial using ear data. Briefly, this
study is a double-blind randomized clinical trial in which two antibiotics
are compared. The subjects of the experiment are children, divided
into age groups, with acute otitis media in both ears. After 14 days of
treatment the number of cured ears were recorded for each child. The
response from each ear is a Bernoulli variable, ”cured” or ”not cured”.
Moreover, it is reasonable to assume that the responses of the left and
right ears are dependent.

Andrews and Herzberg (1985) present a clinical trial using dental data.
In the experiment rats are randomly assigned to different diets to see
if the cariogenic effect can be reduced. At the end of the experiment,
occlusal surfaces in each rat were examined with two possible responses:
”caries” and ”no caries”. The responses from the occlusal surfaces within
a certain rat are dependent and assumed to be identically distributed.
This example is considered in greater detail in Chapter 9.

A last example involves a company that produces a certain product.
The company wants to evaluate the test procedure for quality control of
the product. Employees therefore perform repeated measurements on a
sample of products to investigate whether the product pass the quality
control test or not. The company wants to investigate to what degree
the results in the different measurements are equal. The probability
that the product pass the test is assumed to be constant for different
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measurements. Hence, a model for identically distributed dependent
Bernoulli variables is suitable for this situation.

More applications with dependent Bernoulli variables exist in biology
and in the medical sciences. Some examples given in Zucker and Wittes
(1992) include, development of tumor in animals within a litter, presence
of arthritic pain in different joints, and occurrence of plaque progression
in each of several vein grafts in patients with prior coronary artery bypass
surgery.

The above examples with fry allocated to different treatments, plants
growing in common soil, children with otitis media, and cariogenic effect
of diets are examples of planned experiments. In a planned experiment
the design of the experiment needs to be determined. The design of
an experiment includes choosing the treatments and choosing the corre-
sponding number of observations to be allocated to each treatment. The
design is important since all analysis is based on the design. A design
that optimizes some inferential property of the model, according to some
criterion, is referred to as an optimal design.

The main aim of this thesis is to present a model for k identically dis-
tributed and possibly dependent Bernoulli variables, called the simplified
Cox model. Different properties of the model are explored, including the
loglikelihood function and the Fisher information. When exploring the
model, suggestions for relevant generalizations of the model are made.
The extensions include a covariate for the distance between observed
subjects within a batch and a generalization from binary data to poly-
tomous data.Furthermore the aim is to derive analytical and numerical
results for locally D-optimal designs.

The simplified Cox model is a special case of the more general Cox model,
given in Cox and Snell (1989). When it can be assumed that the Bernoulli
variables are identically distributed, the Cox model has an unnecessary
complex structure with too many response categories, compared to the
simplified Cox model. This follows since under the assumption of iden-
tical marginal distributions, the models are the same. Hence, the sim-
plified Cox model is preferable since it is parsimonious compared to the
Cox model.
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The thesis also addresses test procedures for tests of mutual indepen-
dence between the variables. The aim is further to propose and motivate
optimal designs for maximizing the power of these tests. A numerical ex-
ample is included to illustrate the optimal properties of one of the tests.
When the Bernoulli variables are mutually independent, the simplified
Cox model is estimated with just two parameters. This simple struc-
ture makes it important to test if mutual independence can be assumed.
Therefore, parameter restrictions for mutual independence are derived.

The thesis is organized as follows. In Chapter 2 a brief overview over
different models for bivariate Bernoulli variables is given. The simplified
Cox model is presented in Chapter 3. Expressions for the likelihood
function, the score function, and the Fisher information are derived.
An alternative model incorporating a distance covariate as well as a
generalization of the model to polytomous data are outlined as well.

Chapter 4 contains an introduction to the concept of optimal designs.
Short summaries of the different techniques, locally optimal designs, se-
quential optimal designs, optimum in average designs, and minimax de-
signs are given. The different design criteria used throughout the thesis
are illustrated by examples. A symmetric bivariate model is outlined in
Chapter 5. Different symmetry properties for the probability distribution
are given together with examples of D-optimal designs and some general
results on D-optimal designs. In Chapter 6 the model for mutually in-
dependent variables is explored. Analytical expressions for parameter
restrictions as well as for locally D-optimal designs are obtained in two
theorems. In the case of paired data, properties of the model are exam-
ined in more detail.

Likelihood ratio tests and score tests in a test for independence between
the Bernoulli variables are discussed in Chapter 7. Using examples,
test procedures where covariates are incorporated and test procedures
without covariates are both illustrated. In Chapter 8, an expression for
an optimal design that maximizes the local asymptotic power of the score
test is derived. For a particular example the performance of the design in
small samples is examined in a simulation experiment. The robustness
of the optimal design is also examined. Chapter 9 gives an example of
the simplified Cox model including estimation of the model and a test for
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independence. The original design is compared against both a locally D-
optimal design and a locally E-optimal design with respect to precision
in the parameter estimates. A short comparison between the original
design and the E-optimal design with respect to the power of the score
test is performed. Finally, Chapter 10 discusses assumptions made when
using the simplified Cox model. Additionally, suggestions for further
research using the simplified Cox model are given.
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Chapter 2

Overview of Models for

Bivariate Bernoulli Variables

The aim of this chapter is to present different models for dependent
Bernoulli variables. This overview is by no mean comprehensive in the
sense that it treats all families of models. The models presented are given
in the bivariate case and includes just one covariate. This is because it
is easier to get an overview of the model when the number of parameters
and the number of response categories are limited. Nevertheless, several
of the models can be generalized to an arbitrary number of variables as
well as response categories.

Let S1 and S2 denote two possibly dependent Bernoulli variables. More-
over, let x be a covariate associated to the distribution of S1 and S2.
Several ways of modelling the joint distribution of S1 and S2 as a func-
tion of x has been proposed. A summary of different approaches was
given already in Cox (1972). Bonney (1987) presented general loglinear
multivariate logistic models for an arbitrary number of dependent binary
variables. Using the unsaturated model given by Bonney, let η1 and η2

be

η1 = ln
P (S1 = 1 | x)
P (S1 = 0 | x) = α+ βx

η2 = ln
P (S2 = 1 | S1, x)

P (S2 = 0 | S1, x)
= α+ γZ + βx,

where
Z = 2S1 − 1.

7



8 Chapter 2. Overview of Models for Bivariate Bernoulli Variables

If S1 and S2 are independent then γ = 0. Based on

πS1S2 (x) =
2

Π
i=1

eηiSi

1 + eηi
,

the probability of the four possible outcomes of (S1, S2) , (1, 1) , (1, 0) , (0, 1) ,
and (0, 0) are

π(S1=1,S2=1) (x) = π11 (x) =
eα+βx

1 + eα+βx

eα+γ+βx

1 + eα+γ+βx

π10 (x) =
eα+βx

1 + eα+βx

1

1 + eα+γ+βx

π01 (x) =
1

1 + eα+βx

eα−γ+βx

1 + eα−γ+βx

π00 (x) =
1

1 + eα+βx

1

1 + eα−γ+βx
,

respectively. Thus, the bivariate probability distribution of (S1, S2) can
be expressed as products of ordinary logistic functions. Therefore the
loglikelihood function and the information matrix can be obtained quite
readily. The saturated model allows for different intercepts α and differ-
ent slopes β in the linear predictors η1 and η2.

Murtaugh and Fisher (1990) utilized the bivariate logistic cumulative
distribution function (cdf) given by Gumbel (1961). Define

η1 = α1 + β1x

η2 = α2 + β2x.

The bivariate Gumbel distribution has cdf

FU,V (u, v) =
1

1 + e−u

1

1 + e−v

{
1 +

γe−u−v

(1 + e−u) (1 + e−v)

}
,

and U and V are considered as continuous latent variables. The binary
variables S1 and S2 are assumed to be indicators, indicating whether U
and V exceeds a certain threshold:

S1 = 1 iff U ≤ η1

S2 = 1 iff V ≤ η2.
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The parameter γ incorporates the possible dependence between S1 and
S2 in the model. Using FU,V (u, v) , the probabilities

π11 (x) =
1

1 + e−η1

1

1 + e−η2
+

γe−η1−η2

(1 + e−η1)2 (1 + e−η2)2 (2.1a)

π10 (x) =
1

1 + e−η1
− 1

1 + e−η1

1

1 + e−η2
− γe−η1−η2

(1 + e−η1)2 (1 + e−η2)2(2.1b)

π01 (x) =
1

1 + e−η2
− 1

1 + e−η1

1

1 + e−η2
− γe−η1−η2

(1 + e−η1)2 (1 + e−η2)2 (2.1c)

π00 (x) = 1 − 1

1 + e−η1
− 1

1 + e−η2
+

1

1 + e−η1

1

1 + e−η2
(2.1d)

+
γe−η1−η2

(1 + e−η1)2 (1 + e−η2)2

are obtained. It follows directly that S1 and S2 are independent if and
only if γ = 0. As Murtaugh and Fisher (1990) point out, the marginal
probabilities of S1 and S2 are logistic in η1 and η2, respectively. The
likelihood function follows directly from (2.1a), (2.1b), (2.1c), and (2.1d).
Maximum likelihood estimation of (α1, β1, α2, β2, γ) are conducted by
numerical maximization of the likelihood function. Heise and Myers
(1996) and Dragalin and Fedorov (2006) also used the Gumbel model in
bivariate logistic regression models.

Murtaugh and Fisher (1990) and Dragalin and Fedorov (2006) also used
the Cox bivariate binary model, given in Cox and Snell (1989), to model
dependent binary variables. This model treats each possible outcome
as a separate response category. In the bivariate case, the model has
four response categories. The corresponding probability of each response
category is

π11 (x) =
eη11

1 + eη10 + eη01 + eη11

π10 (x) =
eη10

1 + eη10 + eη01 + eη11

π01 (x) =
eη01

1 + eη10 + eη01 + eη11

π00 (x) =
1

1 + eη10 + eη01 + eη11
,
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where

η11 = α11 + β11x

η10 = α10 + β10x

η01 = α01 + β01x.

The model can be written in a more compact form as

πij (x) =
ei(1−j)η10+j(1−i)η01+ijη11

1 + eη10 + eη01 + eη11
i, j = 0, 1.

The marginal probabilities of S1 and S2 are not logistic in η11, η10, and
η01. Instead it is the conditional probabilities for one of the variables
given the other variable that are logistic in η11, η10, and η01, Murtaugh
and Fisher (1990). Throughout the thesis, the Cox binary model will be
referred to as the Cox model. This simple illustration of the Cox model
can be directly generalized to model k Bernoulli variables. Hirji (1994)
suggested a similar model. He extended the model to include subject
specific covariates.

In some applications it is reasonable or natural to assume that the
Bernoulli variables have the same univariate marginal distribution. Un-
der such an assumption it is irrelevant whether the event (1, 0) or the
event (0, 1) occurred. By imposing such a restriction on the Cox model,
the joint probability function for (S1, S2) becomes as shown in Table 2.1.
Note that π10 = π01 and that the linear predictors η10 and η01 have been
replaced by one new linear predictor η1. This is because the only in-
formation incorporated in the model is the number of ”success”. In the
bivariate case the restriction of identical marginal distributions implies
that S1 and S2 are exchangeable.

The situation outlined in Table 2.1 describes a special case of the Cox
model which is central throughout this thesis. When all the Bernoulli
variables have the same marginal distribution the Cox model is therefore
denoted the simplified Cox model.

In the Cox model there are four possible outcomes (1, 1) , (1, 0) , (0, 1) ,
and (0, 0) . Under the simplified Cox model, the two outcomes (1, 0) and
(0, 1) are merged into one outcome. Thus it is sufficient to model the
joint probability of (S1, S2) through the random variable S = S1 + S2,
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S2

0 1

0 π00 =
1

1 + eη1 + eη2
π01 =

eη1/2

1 + eη1 + eη2
1 − π·=

1 + eη1/2

1 + eη1 + eη2

S1

1 π10 =
eη1/2

1 + eη1 + eη2
π11 =

eη2

1 + eη1 + eη2
π·=

eη1/2 + eη2

1 + eη1 + eη2

1 − π·=
1 + eη1/2

1 + eη1 + eη2
π·=

eη1/2 + eη2

1 + eη1 + eη2
1

Table 2.1: Joint probability function for (S1, S2) and marginal dis-
tributions for S1 and S2.

where s = 0, 1, or 2. Under a simplified Cox model the joint probability
of (S1, S2) is described by the probabilities

π(S=2) (x) = π2 (x) =
eη2

1 + eη1 + eη2

π1 (x) =
eη1

1 + eη1 + eη2

π0 (x) =
1

1 + eη1 + eη2
,

where

η1 = α1 + β1x

η2 = α2 + β2x.

As for the Cox model, the simplified Cox model can in the bivariate case
be defined in a more compact form as

πi+j (x) =
e|i−j|η1+ijη2

1 + eη1 + eη2
i, j = 0, 1.

The conditional probabilities for S1 given S2 and vice versa are logistic
in η1 and η2 assuming the covariate x is held constant. For example,

P (S1 = 1 | S2 = 0) =
eη1

2 + eη1
,
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is logistic in η1.

In the sequel, the probabilities π0 (x), π1 (x), and π2 (x) will be written
in the shorter form π0, π1, and π2 although, they are usually governed by
a covariate. Since the simplified Cox model is a special case of the Cox
model, the two models have a similar structure. Assuming a bivariate
model and that π10 = π01, the Cox model reduces to the simplified Cox
model if

π10 + π01 = π1

This is equivalent to imposing the restrictions

η10 = η01 = η1 − ln 2,

on the bivariate Cox model.

Using the expression for the linear predictors above, the following con-
nection between the parameters in the models appear





α10 = α01 = α1 − ln 2
α11 = α2

β10 = β01 = β1

β11 = β2.

Thus the simplified Cox model is a special case of the original Cox model.
The advantage with the simplified Cox model compared to the Cox model
is that the number of response categories as well as the number of pa-
rameters is considerably reduced. In the bivariate case the number of
response categories is reduced from four to three as shown above. More-
over the number of parameters is reduced from six to four. For a general
model with k variables the number of response categories is reduced from
2k to k + 1 and the number of parameters is reduced from 2

(
2k − 1

)
to

2k.

This paragraph considers the general simplified Cox model with k vari-
ables. Due to the assumption that S1, S2, . . . , Sk are treated as dependent
and identically distributed variables under the simplified Cox model, the
correlation structure of the simplified Cox model needs some additional
comments. Within an observation on (S1, S2, . . . , Sk), the correlation be-
tween any pair (Si, Sj) has the same value for any i 6= j. In addition, any
two variables from different observations on (S1, S2, . . . , Sk) are assumed
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to be independent. In Chapter 3 the simplified Cox model is outlined
including a discussion on the correlation structure.

Consider again the bivariate case and a model for S1 and S2. In an-
other class of models, S = S1 + S2 is assumed to follow a beta-binomial
distribution. Let π· denote the marginal probability of ”success”, i.e.

P (S1 = 1) = P (S2 = 1) = π·

Further, assume that S = S1+S2 given π· follows a binomial distribution,

P (S = s | π·) =
(
2
s

)
πs
· (1 − π·)

2−s , s = 0, 1, 2.

The probability of ”success” may vary between different batches or pairs,
not only because different batches are assigned to different treatments
but also because different batches may have different correlation struc-
ture. Skellam (1948) suggested that the probability of ”success” should
be described by a beta distribution. Williams (1975) used this to obtain
a beta-binomial distribution for the probability distribution of S. By let-
ting π· be beta distributed with the parameters α and β, the probability
distribution of S becomes beta-binomial distributed with

P (S = s) =

(
2

s

)
B (s+ α, 2 − s+ β)

B (α, β)
s = 0, 1, 2,

where B (α, β) is the beta function with the parameters α and β. In
addition, different treatments usually have different α and β. The beta-
binomial distribution is obtained by assuming that the Bernoulli vari-
ables are from an infinite sequence of exchangeable Bernoulli variables,
George and Bowman (1995a). This requirement imposes the correlation
between the Bernoulli variables to be positive.

The beta-binomial model was extended by Rosner (1984) and Prentice
(1986). Rosner (1984) worked specifically with the bivariate case, in-
corporating covariates via a polychotomous logistic regression model.
Prentice (1986) suggested an extended beta-binomial model, allowing
the correlation within a batch to be negative. Zucker and Wittes (1992)
compared the beta-binomial model with a model denoted Markov-like
susceptibility model which is another conditional binomial model. As
for the simplified Cox model, the beta-binomial model allows the corre-
lation between (S1, S2) to vary across treatments.



14 Chapter 2. Overview of Models for Bivariate Bernoulli Variables

In a series of papers, George and Bowman and George and Kodell re-
spectively, proposed and discussed a model which, at least in terms of
estimation of P (S1 = s1, S2 = s2) , is similar to the simplified Cox model,
George and Bowman (1995a,b); George and Kodell (1996). Let S1 and
S2 be exchangeable and let





λ2 = P (S1 = 1, S2 = 1)
λ1 = P (S1 = 1)
λ0 = 1.

George and Bowman (1995a) showed that

πs =
(
2
s

) 2−s∑

j=0

(−1)j
(

n−s

j

)
λs+j, s = 0, 1, 2,

which yields 



π2 = λ2

π1 = 2 (λ1 − λ2)
π0 = 1 − 2λ1 + λ2.

When S1 and S2 are independent

λ2 = λ2
1,

so that S has a binomial distribution with parameters n = 2 and λ1. The
maximum likelihood estimators under the restriction of independence
and the unrestricted estimators are derived in George and Kodell (1996).
These estimators are equivalent to the corresponding estimators for the
simplified Cox model derived in Chapter 7.

In George and Bowman (1995a), πs is linked to a covariate using the
logistic function,

λs (α, β) =
2

1 + exp {(α+ βx) ln (s+ 1)} .

They compared estimates of this model with the beta-binomial model
discussed above and with a third estimating procedure. The third pro-
cedure estimates their proposed model using a quasi-likelihood technique
where a generalized estimating equations procedure is used. Generalized
estimating equations for correlated binary data are treated in, e.g. Pren-
tice (1988) and Liang et al. (1992).
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A different class of models are the loglinear models. A loglinear model
for two Bernoulli variables is defined by

lnNπij = λ+ αi + βj + (αβ)ij , i, j = 0, 1,

where Nπij is the expected frequency under the current model. The
model is analogous to a model for analysis of variance. To model the
probabilities π11, π10, π01, and π00 a four factor model is required.
Agresti (2002) points out that loglinear models focus on association
and interaction in the joint distribution of categorical response variables.
Logit models are preferable if a single categorical response variable de-
pends on explanatory variables. This thesis focuses on the latter situa-
tion where the probability of the different outcomes of S depend on an
explanatory variable, x. Loglinear models are presented in e.g. Bishop
et al. (1975) , Christensen (1997), and Agresti (2002).

Another type of model utilizes the odds ratio as a measure of the depen-
dence between S1 and S2. This type of model is based on the cross-
ratio model, see e.g. Dale (1986), Palmgren (1991), Le Cassie and
Van Houwelingen (1994), and Appelgren (2004) used this model for bi-
variate binary responses. Let π1· = π11 + π10 and π·1 = π11 + π01 de-
note the marginal probabilities P (S1 = 1) and P (S2 = 1), respectively.
Moreover, let Ω denote the odds ratio between S1 and S2, defined as

Ω =
π11π00

π10π01

.

Using the expression from Palmgren (1991)

π11 =

{
1
2
(Ω − 1)−1 {a−

√
a2 + b

}
if Ω 6= 1

π1·π·1 if Ω = 1
,

where

a = 1 + (π1· + π·1) (Ω − 1)

b = −4Ω (Ω − 1) π1·π·1.

The other probabilities π10, π01, and π00 follow from the marginal proba-
bilities π1· and π·1. These probabilities can be associated with covariates
using the bivariate logistic regression model given by McCullagh and
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Nelder (1989). One example is obtained if

ln
π1·

1 − π1·
= η1 = α1 + β1x

ln
π·1

1 − π·1
= η2 = α2 + β2x

ln Ω = η12 = α12 + β12x.

In this model S1 and S2 are independent if and only if ln Ω = 0.

In some situations the data have a hierarchical structure. A class of mod-
els that utilizes this is multilevel models. A multilevel model has several
levels, in which different factors enter at different levels. In Agresti
(2002), an example with students writing a battery of exams is given.
For each exam the response is binary, the student can either pass or fail.
Suppose that a model is to be set up in order to estimate the probability
that a student passes an exam. In this model other factors not necessary
related to the student might be of interest. Such a factor could be the
student’s school. In the example, the exam is a level 1 factor and stu-
dent is a level 2 factor, accounting for the variability among students in
ability. School is a factor at level 3, accounting for factors such as per-
capita expenditure in the school’s budget. Multilevel models in general
are treated in e.g. Goldstein (2003).

The simplified version of the Cox model can be represented in terms
of a model often referred to as multinomial logistic model. Models for
multinomial responses can be categorized depending on the type of data.
Zocchi and Atkinson (1999) argued that there are different models for
nominal, ordinal and hierarchical data. Agresti (2002) divided the mod-
els in a similar way. Models for nominal data have been explored by
Fahrmeir and Tutz (2001), Agresti (2002), and Puu (2003). This kind
of models is sometimes called simple multinomial logit models. When
there is an ordering between the outcomes of a response, several models
exist. Zocchi and Atkinson (1999), Fahrmeir and Tutz (2001), Agresti
(2002), and Dobson (2002) have presented some models, examples in-
clude the cumulative logit model, the proportional odds model and the
continuation-ratio logit model. The continuation-ratio logit model is
further explored in Fan (1999) and Fan and Chaloner (2004). Another
model which resembles the continuation-ratio logit model is the contin-
gent response model, discussed in Rabie (2004). The models for ordered
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responses are especially useful for efficacy-toxicity responses where a nat-
ural order among the different responses exist.

All the models above use the same link function, the logit link. Other
link functions such as probit link and complementary log-log link are dis-
cussed in Fahrmeir and Tutz (2001), Agresti (2002), and Dobson (2002).
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Chapter 3

The Simplified Cox Model

In the last chapter the simplified Cox model was briefly introduced. In
this chapter the simplified Cox model is outlined in more detail. The
main part of Section 3.1, Section 3.2, and Section 3.3 is presented in
Bruce (2008).

3.1 The Model

Let S1, S2, . . . , Sk denote k identically distributed Bernoulli variables.
Let

S =
k∑

i=1

Si,

and
P (S = s) = πs s = 0, 1, . . . , k.

A model for S can be viewed as a multivariate generalized linear model
(MGLM). In a MGLM the response variable, the linear predictor, and the
link function are vector-valued functions, see Fahrmeir and Tutz (2001).
The response vector is

Y =
(
Y1 Y2 . . . Yk

)T
,

where

Ys =

{
1, if S = s
0, otherwise

s = 1, 2, . . . , k.

Hence, the expected value of Y is

19
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µ = E
[(
Y1 Y2 . . . Yk

)T]
=
(
π1 π2 . . . πk

)T
.

In a multivariate logit model, one of the response categories is chosen
to be a reference category. Because of the way Y is defined, the event
S = 0 is chosen to be reference category. Given the reference category,
the logit link function g (π1, π2, ..., πk) is

g (π1, π2, . . . , πk)
T =

(
ln π1

π0
ln π2

π0
. . . ln πk

π0

)T
= η,

where η is the linear predictor. With just one covariate, η is

η =
(
η1 η2 . . . ηk

)T
=
(
α1 + β1x α2 + β2x . . . αk + βkx

)T
= xθ,

where

x =




1 0 . . . 0 x 0 . . . 0

0
. . .

... 0
. . .

...
...

. . . 0
...

. . . 0
0 . . . 0 1 0 . . . 0 x




and

θ =
(
α1 . . . αk β1 . . . βk

)T
.

Note that η0 = 0 by definition.

x is a (k × 2k) matrix and θ is a size 2k vector. The probabilities
π0, π1, . . . , πk as functions of x are

πs =
eηs

∑k

i=0 e
ηi

s = 0, 1, . . . , k. (3.1)

No simple and direct interpretation of the parameters exist. The param-
eters αs and βs in ηs are interpreted from the expression ηs = ln πs

π0
, s =

1, . . . , k. Thus it is difficult to interpret how different parameters affect
the joint probability distribution of S1, S2, . . . , Sk.

When there are only two dependent variables (S1, S2), the (marginal)
odds ratio can be given by just one expression.

Property 3.1 The odds ratio for S1 = 1 is 4eη2−2η1 .
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Proof. Denote the odds ratio for S1 = 1 | S2 = 1 relative to S1 = 1 |
S2 = 0 by Ω.

Ω =
π11

π01

π10

π00

=
π11π00

π10π01

=
1

1+eη1+eη2

eη2

1+eη1+eη2

eη1

2(1+eη1+eη2 )
eη1

2(1+eη1+eη2 )

= 4eη2−2η1 .

Hence the log-odds ratio is

ln Ω = ln 4 + α2 − 2α1 + x (β2 − 2β1) . (3.2)

In general the log-odds ratio depends on the value of x. A model for
(S1, S2) contains the four parameters,

θT =
(
α1 α2 β1 β2

)
.

The parameters can be interpreted using ln π1

π0
and ln π2

π0
as described

above. Another way of interpreting the parameters is to use the expres-
sion for ln Ω. For example, the effect of the covariate on ln Ω is controlled
by β1 and β2.

To see how the probability distribution of S changes with x, four plots
with different parameter values are shown in Figure 3.1. Although the
plots differ a lot, they share some general properties. Since β1 and β2

are larger than zero, π0 decreases with x and π2 increases with x.

3.2 The Simplified Cox Model viewed as a

Multidimensional Table

The joint probability distribution of S1, S2, . . . , Sk can also be viewed as
a k−dimensional 2× 2× . . .× 2 table. Each cell in this table represents
a unique sequence of S1, S2, . . . , Sk, where Si = {0 or 1}, i = 1, 2, . . . , k.
Moreover there are

(
k

s

)
cells in which

∑k

i=1 Si = s. This follows from the

fact that there are
(

k

s

)
ways of observing s ”successes” among a total

of k variables. The restrictions of the simplified Cox model state that
S1, S2, . . . , Sk are identically distributed so that every outcome resulting
in s ”successes” among k variables have the same probability. Since πs
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Figure 3.1: Four examples of the probabilities π0, π1, and π2 as
functions of x. The parameters are θT

1 = (−2,−9, 0.3, 1), θT
2 =

(−1,−9, 1.1, 1.3), θT
3 = (−1,−5, 1, 2), and θT

4 = (−3,−1, 0.5, 1),
respectively.

denotes the probability of obtaining s ”successes”, this imposes all cell
probabilities where

∑k

i=1 Si = s to be equal to

πs(
k

s

) .

From the 2 × 2 × . . . × 2 table, local tables can be formed. A local
table for any two of the variables S1, S2, . . . , Sk is a 2×2 subset from the
2×2× . . .×2 table. The local table is formed so that the outcomes of the
other k − 2 variables are the same in all four cells. Since S1, S2, . . . , Sk

are identically distributed there are only k − 1 unique local tables. As
an example, consider the case with k = 3. The 2 × 2 × 2 table for
(S1, S2, S3) is given in Figure 3.2. The left and right box shows the
local table for (S1, S2) when S3 = 0 and the local table for (S1, S2) when
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S3 = 1, respectively. Note that a local table is not formed by conditioning
on the other k − 2 variables.

S3 = 0 S3 = 1

S2 = 0 S2 = 1 S2 = 0 S2 = 1
S1 = 0 π0

π1

3
S1 = 0 π1

3
π2

3

S1 = 1 π1

3
π2

3
S1 = 1 π2

3
π3

Figure 3.2: The joint probabilities for (S1, S2, S3) viewed as a 2 ×
2 × 2 table. The two local tables for (S1, S2) when S3 = 0 and
S3 = 1 are enclosed by boxes.

An arbitrary local table is given by

Sj = 0 Sj = 1
Si = 0 πs−2(

k

s−2

) πs−1(
k

s−1

)

Si = 1 πs−1(
k

s−1

) πs(
k

s

)
,

where s is determined by the value of the k−2 variables that are held con-
stant,

∑k−2
i=1 si = s−2. The possible values for s are therefore 2, 3, . . . , k.

The local log-odds ratio for an arbitrary local table is

ln Ωs = ln





πs(
k

s

) πs−2(
k

s−2

)

π2
s−1(
k

s−1

)2





= ln

{
πsπs−2

π2
s−1

s (k − s+ 2)

(s− 1) (k − s+ 1)

}
. (3.3)

In Agresti (2002), different types of independence for multidimensional
tables are compared. As Agresti points out, mutual independence is the
strongest type of independence. When S1, S2, . . . , Sk are mutually inde-
pendent, every cell probability is equal to the product of its respective
marginal probabilities. Let π· denote the univariate marginal probability
of ”success” for S1, S2, . . . , Sk. Under mutual independence an arbitrary
cell probability is

πs(
k

s

) = πs
· (1 − π·)

k−s .
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Moreover, ln Ωs is then equal to

ln Ωs = ln

{
πs
· (1 − π·)

k−s πs−2
· (1 − π·)

k−s+2

π
2(s−1)
· (1 − π·)

2(k−s+1)

}

= ln

{
π

2(s−1)
· (1 − π·)

2(k−s+1)

π
2(s−1)
· (1 − π·)

2(k−s+1)

}

= 0.

Hence, mutual independence among S1, S2, . . . , Sk implies that ln Ωs = 0
for all local tables.

3.3 Likelihood and Fisher Information

The loglikelihood function and the Fisher information for the simplified
Cox model are similar as compared to the Cox model. For the Cox model
the loglikelihood function and the Fisher information matrix are outlined
in Dragalin and Fedorov (2006).

The probability function of a single observation on Y under the simplified
Cox model is

P (Y = y; θ) = πy1

1 π
y2

2 . . . πyk

k (1 − π1 − π2 − . . .− πk)
(1−y1)(1−y2)...(1−yk) .

From the expression for the probability distribution of Y it follows that
the distribution of Y is an exponential family. Assuming that the sample
consists of N independent observations on (S1, S2, . . . , Sk) , the likelihood
function for a whole sample is

L (θ;y) =
N

Π
i=1

{
πy1i

1i π
y2i

2i . . . π
yki

ki (1 − π1i − π2i − . . .− πki)
(1−y1i)(1−y2i)...(1−yki)

}
,

where y is a matrix with the responses fromN observations on y0, y1, . . . , yk.
The loglikelihood function is

l (θ;y) =
N∑

i=1

{y1iη1i + . . .+ ykiηki − ln (1 + eη1i + . . .+ eηki)} .



3.3. Likelihood and Fisher Information 25

The score function of a single observation can be derived using the chain
rule,

u (θ) =

(
∂η

∂θ

)T (
∂π

∂η

)T (
∂l

∂π

)T

.

The derivatives are given by

(
∂η

∂θ

)T

= xT =




∂η1

∂α1

∂η1

∂α2
. . . ∂η1

∂αk

∂η1

∂β1

∂η1

∂β2
. . . ∂η1

∂βk

∂η2

∂α1

. . . ∂η2

∂αk

∂η2

∂β1

. . . ∂η2

∂βk

...
. . .

...
...

. . .
...

∂ηk

∂α1

∂ηk

∂α2
. . . ∂ηk

∂αk

∂ηk

∂β1

∂ηk

∂β2
. . . ∂ηk

∂βk




T

,

(
∂π

∂η

)T

= D =




∂π1

∂η1

∂π2

∂η1
. . . ∂πk

∂η1
∂π1

∂η2

∂π2

∂η2

∂πk

∂η2

...
. . .

...
∂π1

∂ηk

∂π2

∂ηk
. . . ∂πk

∂ηk




=




π1 (1 − π1) −π1π2 . . . −π1πk

−π1π2 π2 (1 − π2) −π2πk

...
. . .

−π1πk −π2πk πk (1 − πk)


 ,

and

(
∂l

∂π

)T

=




y1

π1
− (1−y1)(1−y2)...(1−yk)

(1−π1−π2−...−πk)
...

yk

πk
− (1−y1)(1−y2)...(1−yk)

(1−π1−π2−...−πk)


 .

The matrix D is symmetric. Moreover D is equal to Var(Y ). Using the
fact that

D

(
∂l

∂π

)T

= (y − µ)

yields the score function for a whole sample

u. (θ) =




uα1 . (θ)
...

uαk
. (θ)

uβ1 . (θ)
...

uβk
. (θ)




=
N∑

i=1

xT
i (yi − µi) =

N∑

i=1




(y1i − π1i)
...

(yki − πki)
xi (y1i − π1i)

...
xi (yki − πki)




.
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The Fisher information matrix for a single observation is denoted I (θ, x)
to stress that it depends on x. The Fisher information matrix is derived
using the score function.

I (θ, x) = E
[
u (θ)uT (θ)

]

= E
[
xT (y − µ) (y − µ)T

x
]

= xTDx

=




π1 (1 − π1) −π1π2 . . . −π1πk xπ1 (1 − π1) −xπ1π2 . . . −xπ1πk

−π1π2 π2 (1 − π2)
..
. −xπ1π2 xπ2 (1 − π2)

..

.
.
.
.

. . . −πk−1πk

.

.

.
. . . −xπk−1πk

−π1πk −π2πk . . . πk (1 − πk) −xπ1πk −xπ2πk . . . xπk (1 − πk)
xπ1 (1 − π1) −xπ1π2 . . . −xπ1πk x2π1 (1 − π1) −x2π1π2 . . . −x2π1πk

−xπ1π2 xπ2 (1 − π2)
.
.
. −x2π1π2 x2π2 (1 − π2)

.

.

.
.
.
.

. . . −xπk−1πk

.

.

.
. . . −x2πk−1πk

−xπ1πk −xπ2πk . . . xπk (1 − πk) −x2π1πk −x2π2πk . . . x2πk (1 − πk)




= x∗ ⊗D,

where

x∗ =

(
1 x
x x2

)
.

Although the likelihood function for the simplified Cox model can be
expressed explicitly with a relatively simple expression, it is sometimes
problematic to numerically obtain maximum likelihood estimates. If the
data are such that all observations on Y fall in the same response cate-
gory, no estimates can be obtained. As an example in the bivariate case,
this means e.g. that S = 2 for all i = 1, 2, . . . , N, observing only pairs of
”successes”. Then no information about the relationship between θ, and
(π0, π1, π2) is provided, and therefore no maximum likelihood estimates
can be obtained. In general the estimation procedure is sensitive against
situations where the number of observations falling into a particular re-
sponse category is close to zero.
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3.4 A Distance Covariate

In the Introduction, an experiment with plants growing in common soil
was briefly described. Assume that the plants grow in pairs, so that
independent observations are made on (S1, S2). In this situation it is
realistic to include both a covariate for a fertilizer (x) and a covariate for
the distance between the plants (z). Alternatively, z can also represent
differences in time.

For a bivariate simplified Cox model, the dependence between (S1, S2)
is described by the log-odds ratio, ln Ω. When a distance covariate is
included, it is natural to let ln Ω depend on z. For example, if the
distance between two plants is small, the dependence between them is
strong. In general the dependence between the variables is a function of
both the treatment x and the distance z. The linear predictors are then
given by

η1 = α1 + β1x

η2 = α2 + β2x+ h (z, γ) ,

where h (z, γ) is a function of z and the parameter γ. Usually h (z, γ) is a
decreasing function in z. As an example let α2 = 2α1−ln 4, β2 = 2β1, and
h (z, γ) = γ

z
, then the log-odds ratio does not depend on x and the log-

odds ratio becomes

ln Ω =
γ

z
.

In this setup the dependence between S1 and S2 is a function of the
parameter γ and z, z 6= 0. In particular, note that γ = 0 is equivalent to
independence between S1 and S2. Moreover, assuming that γ > 0 and
z > 0 the dependence between the variables decreases as z gets larger.

In order to see how the probabilities π0, π1, and π2 change with z, let
α1 = 0, β1 = 0.5, and x = ln 4 so that π0, π1, and π2 are functions of z
only. Two examples using h (z, γ) = γ

z
but with different values of γ are

given in Figure 3.3. In the upper plot, γ = −3 and hence the correlation
between S1 and S2 is negative. A large negative correlation yields a large
value on π1, as demonstrated in the plot. Given that S1 is a ”success”,
the probability that S2 is a ”failure” is high and the other way around.
Note that both plots use a logarithmic scale on the x-axis.
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A different situation is described in the lower plot where γ = 3. For
values of z close to zero, there is a large positive correlation between S1

and S2. Given that S1 is a ”success”, the probability that S2 is also a
”success” is high and vice versa. Therefore π2 is close to one for z close
to zero. When z gets larger the correlation between S1 and S2 tends to
zero regardless of γ. In other words, a large value on z has little influence
on the dependence between S1 and S2. In both the upper and lower plot,
the right y-axis shows ln Ω as a function of z. The lower plot shows that
a large positive ln Ω has a strong influence on π0, π1, and π2. When ln Ω
is large, the probabilities π0, π1, and π2 are constrained to be around
zero, zero, and one, respectively.
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Figure 3.3: The probabilities π0, π1, and π2 as functions of z for
two different values of γ. For both plots, α1 = 0, β1 = 0.5, and
x = ln 4, respectively. In the upper plot γ = −3 and in the lower
plot γ = 3. In both plots, the x-axis has a logarithmic scale.The
right y-axis shows the log-odds ratio, lnΩ = γ

z
.
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3.5 Extension to the Polytomous Case

In this section the simplified Cox model is generalized to incorporate
polytomous variables, S1, S2, . . . , Sk. As an example, consider the exper-
iment with cariogenic effect of different diets introduced in Chapter 1.
For this experiment it is reasonable that each occlusal surface, Si, has
three possible responses, ”no caries”, ”caries in enamel”, and ”caries in
dentin”. A polytomous model has the same structure as the one for
binary data. Mainly it is just the dimensions of the different compo-
nents such as µ, η, and I that increase. To limit the complexity of the
notation, only the case with three response categories is presented here.
An extension to arbitrarily many response categories follows the same
structure.

Let S1, S2, . . . , Sk be k identically distributed and possibly dependent
variables. Furthermore, let the probability for the different outcomes of
Si be

πj· = P (Si = j) j = 0, 1, 2 and i = 1, 2, . . . , k,

so that each Si has three different response categories. Note that Si

is assumed to be a nominal variable without any ordering among the
outcomes. In some applications, such as the experiment with cariogenic
effects, it is more convenient to use a model that incorporates the order-
ing between the outcomes of responses. Some models for ordinal data
are mentioned in Chapter 2. Henceforth, all properties of the model are
derived for a particular observation on (S1, S2, . . . , Sk). Let Y denote the
response matrix with elements

Yij =

{
1, if Si = j
0, otherwise

j = 1, 2 and i = 1, 2, . . . , k.

The number of outcomes in the respective category is defined by

Yj =
k∑

i=1

Yij j = 1, 2,

so that
Y1 + Y2 ≤ k.

In this model, the probability of the different outcomes of (Y1, Y2) are
associated with a covariate using a multinomial logit model. The vector
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of probabilities for the outcome of (Y1, Y2) is

π10 π20 . . . πk0 π01 π11 . . . πk−1,1 . . . π0k ,

where πy1y2 is the element of the vector corresponding to P (Y1 = y1, Y2 = y2) .
Using the outcome (0, 0) as a reference category, the linear predictor be-
comes,

η = ln




1

π00




π00

π10

π20
...
πk0

π01

π11
...

πk−1,1

π02
...
π0k







=




η00

η10

η20
...
ηk0

η01

η11
...

ηk−1,1

η02
...
η0,k




=




0
α10 + β10x
α20 + β20x

...
αk0 + βk0x
α01 + β01x
α11 + β11x

...
αk−1,1 + βk−1,1x
α02 + β02x

...
α0k + β0kx




.

There are
(

k+2
2

)
response categories and accordingly 2

{(
k+2
2

)
− 1
}

pa-
rameters in the model. The vector of parameters is

θT =
(
α10 α20 . . . α0k β10 β20 . . . β0k

)
.

The probabilities π as functions of x are

πy1y2 =
eηy1y2

∑
i,j≥0

i+j≤k

eηij
y1, y2 ≥ 0 and y1 + y2 ≤ k. (3.4)

As for the model with binary data, the joint probability distribution of
S1, S2, . . . , Sk can also be viewed as a k−dimensional table. The table
has dimensions 3 × 3 × . . . × 3 where each cell corresponds to a unique
sequence of S1, S2, . . . , Sk, where Si = {0, 1, 2}, i = 1, 2, . . . , k. The cell
probability for all cells with (Y1 = y1, Y2 = y2) is equal to

πy1y2(
k

y1 y2

) .
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The denominator is the multinomial coefficient defined as

(
k

y1 y2

)
=

k!

y1!y2! (k − y1 − y2)!
.

In analogy to the case with binary outcomes, the k−dimensional table
can be divided into local tables. In the case of three outcomes, three
different local tables exist. Note that interest is only in the symmetrical
local tables. Thus, out of the possible nine local tables only the three
cases, (Si = 1, Sj = 0) , (Si = 2, Sj = 0) , and (Si = 2, Sj = 1) for i, j =
1, 2, . . . , k and i 6= j are considered. Let S∗ be the set of the other
variables, S∗ = {S1, S2, . . . , Sk\ (Si, Sj)} . Then, the three different local
odds ratios for Si and Sj with S∗ = s∗ are

ln ΩSi=1,Sj=0;s∗ = ln




πy1y2(
k

y1 y2

) πy1−2y2(
k

y1 − 2 y2

)





πy1−1y2(
k

y1 − 1 y2

)





2




, (3.5)

y1 ≥ 2, y2 ≥ 0 and y1 + y2 ≤ k

ln ΩSi=2,Sj=0;s∗ = ln




πy1y2(
k

y1 y2

) πy1y2−2(
k

y1 y2 − 2

)





πy1y2−1(
k

y1 y2 − 1

)





2




, (3.6)

y1 ≥ 2, y2 ≥ 2 and y1 + y2 ≤ k

ln ΩSi=2,Sj=1;s∗ = ln




πy1y2−2(
k

y1 y2 − 2

) πy1−2y2(
k

y1 − 2 y2

)





πy1−1y2−1(
k

y1 − 1 y2 − 1

)





2




, (3.7)

y1, y2 ≥ 2 and y1 + y2 ≤ k + 2.
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Expressions for the likelihood function, the score function, and the Fisher
information matrix follow straight forwardly from the corresponding ex-
pressions for the model with binary outcomes.



Chapter 4

Optimal Designs

4.1 Introduction

In an ideal experimental study, explanatory variables or covariates per-
fectly govern the value of the response variables of the experiment. In
practice though, other unobservable factors also influence the outcome
of the experiment. To minimize the influence of these factors, more co-
variates can be added to the model. Usually some of the techniques
matching, blocking, balancing, blinding, or double blinding are also em-
ployed. What hopefully remains of the unobservable variation is then
just small random errors.

Assuming that the experimenter has chosen one explanatory variable,
the design of the experiment needs to be established. By determining
which levels of the explanatory variable to use and the corresponding
number of observations to be allocated to each level the design of the
experiment is established. A design is therefore usually written in the
form

ξ =

{
x1 x2 . . . xn

N1 N2 . . . Nn

}
,

where x1, x2, . . . , xn are the chosen levels, called design points. N1,
N2, . . . , Nn are the corresponding number of observations to be taken
at the different design points,

∑n

i=1Ni = N . For the design to be realiz-
able all Ni need to be integers. Such a design is referred to as an exact
design. In practice, when deriving optimal designs the restriction that Ni

is an integer is often relaxed yielding a continuous design. The reason
why continuous designs are preferable is that continuous optimization

33



34 Chapter 4. Optimal Designs

problems are usually mathematically and numerically less cumbersome
to work with than discrete optimization problems. For a continuous
design it is more convenient to denote the design as

ξ =

{
x1 x2 . . . xn

w1 w2 . . . wn

}
,

where w1, w2, . . . , wn are design weights, satisfying

wi ≥ 0,
n∑

i=1

wi = 1.

The design weights determine the proportion of observations to be taken
at the different design points. Only continuous designs are considered in
this thesis. In practice, these designs will only be approximate optimal
designs, since the design weights of the continuous design have to be
rounded in order for the design to be realizable. Consequently, the exact
optimal design for the same sample size may differ considerably, making
the efficiency of the rounded design lower.

4.2 Optimality Criteria

A design is optimal according to a specific criterion if it minimizes the
corresponding criterion function, ψ. Formally, the design ξ∗ is ψ−optimal
if

ξ∗ = arg min
ξ∈Ξ

ψ (θ, ξ) ,

where Ξ is the set of all possible designs. The choice of criterion function
is controlled by the objectives of the experiment. These objectives are
usually connected to the precision in the parameter estimators. Given
regularity conditions, see e.g. Casella and Berger (2002), the covariance
matrix of the maximum likelihood estimator is asymptotically equal to
the inverse of the Fisher information matrix for the whole sample. There-
fore, many optimality criteria optimize some function of the Fisher in-
formation matrix. Two of these criteria, D-optimality and E-optimality,
are outlined in the two coming sections. A more comprehensive descrip-
tion of different optimality criteria are given in Atkinson and Donev
(1992). The Fisher information matrix is positive semi-definite, sym-
metric, and additive (for independent observations), Fedorov and Hackl
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(1997). When deriving optimal designs in this thesis, the cost for tak-
ing an observation is not incorporated in the criterion function. If the
criterion function would consider the cost of different observations, the
information matrix at each design point would be weighted with the cost
of taking an observation at that design point.

In order to stress that the information matrix is a sum of independent
observations from the design ξ, the information matrix is denoted

I. (θ, ξ) .

Optimal design theory uses the standardized information matrix, de-
noted

M (θ, ξ) =
I. (θ, ξ)

N
,

rather than the Fisher information matrix.

Let

ξx =

{
x
1

}

denote the design which puts unit mass at the point x. The directional
derivative of ψ {M (θ, ξ)} in the direction of ξ is

φ (θ, x, ξ) = lim
α−→0+

1

α

[
ψ
{
(1 − α)M (θ, ξ) + αM

(
θ, ξx

)}
− ψ {M (θ, ξ)}

]
,

see Atkinson and Donev (1992). The General Equivalence Theorem,
(Kiefer, 1959; Kiefer and Wolfowitz, 1960), states the equivalence of the
following three conditions for ξ∗ to be ψ−optimal.

1. ξ∗ = arg min
ξ∈Ξ

ψ (θ, ξ)

2. min
xǫX

φ (θ, x, ξ∗) > 0

3. φ (θ, x, ξ∗) attains its minimum at all the design points.

X is called design region and specifies the possible values of x. Using
these statements, The General Equivalence Theorem is used to verify
that a design really is optimal.
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4.2.1 Optimal Designs for Nonlinear Models

For nonlinear models, optimal designs generally depend on the true and
unknown values of the parameters. Typically, M (θ, ξ) depends on the
parameter vector θ as well as the design ξ. So in order to get optimal
parameter estimates, it is required that the true values of the parameters
are known. To handle this dilemma at least four strategies have been
proposed.

Locally Optimal Designs

By treating guessed parameter values as the true parameter values, a
locally optimal design can be derived. A guess can, e.g. be based on
prior knowledge. Thus, a locally optimal design is optimal only in case
the true value on the parameter vector equals the particular value cho-
sen when determining the design. If the true value of the parameter
vector is different from that chosen for determining the design, there is
no guarantee that the design has any favorable properties.

Sequential Optimal Designs

This method can be described as an iterative procedure where locally
optimal designs and parameter estimates are obtained in each step. From
an initial design a subexperiment is conducted yielding estimates of the
parameters.

Next a weighted information matrix is constructed using these parameter
estimates. This weighted information matrix is the weighted sum of the
information from the previous steps and the information obtained in
the current step. By applying this weighted information matrix in the
criterion function, a new design is derived. Then a new subexperiment
based on the new design yields new estimates of the parameters, and so
on. An advantage with a sequential design is that a poor initial guess
of the parameter values, can be corrected as more information about
the parameters are obtained from the following subexperiments. The
major drawback is that it could be time consuming to obtain an optimal
sequential design. Therefore, it is not feasible to use sequential designs
in some applications such as afforestation experiments. An overview of
references on sequential designs is given in Wang (2002).
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Optimum in Average Designs

Assume that there is a prior distribution for the parameters denoted
ϑ (θ). This distribution reflects the experimenter’s belief in different
parameter values. A function for deriving an optimum in average design
is then obtained by weighting different values of the criterion function
using ϑ (θ) ,

B (ϑ, ξ) =

∫
ψ (θ, ξ) dϑ (θ) .

A design, ξϑ, is optimum in average with respect to the prior distribution
ϑ (θ) if

B (ϑ, ξπ) = inf
ξ∈Ξ

B (ϑ, ξ) .

For continuous prior distributions, the evaluation of the integral above
is a potential problem. Atkinson and Haines (1996) suggest some ap-
proaches to solve this problem, such as discretizing the prior and then
work with a weighted sum instead. Due to the incorporated prior dis-
tribution, optimum in average designs are generally more robust than
locally D-optimal designs. Optimal in average designs in general are
treated in Chaloner and Larntz (1989), Fedorov and Hackl (1997), Pet-
tersson (2001), and Pettersson and Nyquist (2003).

Minimax Designs

In a minimax approach it is believed that θ belongs to a subset Θ0 ⊂ Θ
of the parameter space Θ. For each design, ξ ∈ Ξ, the maximum value of
the criterion function, max

θ∈Θ0

ψ (θ, ξ) , can then be derived. ξM is a minimax

design if the maximum of the criterion function, the maximum taken over
Θ0, is minimized for ξM . Thus, a minimax design ξM satisfies

max
θ∈Θ0

ψ
(
θ, ξM

)
= min

ξ∈Ξ
max
θ∈Θ0

ψ (θ, ξ) .

Minimax designs also have a robustness property. Compared to a locally
optimal design, a minimax design can not be too bad as long as θ ∈
Θ0, i.e. Θ0 is large enough, Häggström (2000). In practice though, it
is mathematically and numerically difficult to derive minimax designs,
(Fedorov and Hackl, 1997; Häggström, 2000).

Optimal designs for nonlinear models in general are treated in e.g. Silvey
(1980), Atkinson and Donev (1992), Atkinson and Haines (1996), and
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Fedorov and Hackl (1997). A short description of the two criteria used
in this thesis is given below.

4.2.2 D-optimality

The criterion function for D-optimality is

ψ {M (θ, ξ)} = ln
∣∣M−1 (θ, ξ)

∣∣ ,

where |A| stands for the determinant of A. A majority of the articles
mentioned above have considered the D-optimality criterion. This crite-
rion is appealing for at least two reasons. The determinant of the inverse
of the standardized information matrix is proportional to the generalized
volume of the confidence ellipsoid of the parameters. Hence, a smaller
value of the criterion function leads to greater precision in the parameter
estimates. Moreover, if no particular subset of the parameters or linear
combination of the parameters is of interest the D-optimality criterion is
suitable.

Silvey (1980) showed that the directional derivative of the criterion func-
tion for a D-optimal design is

φ (θ, x, ξ) = p− d(x, ξ),

where p is the number of parameters in the model and d(x, ξ) denotes
the standardized variance of the predicted response,

d(x, ξ) = tr
{
M (θ, ξ)−1M

(
θ, ξx

)}
∀xǫX.

Although the standardized variance of the predicted response depends on
θ in general, it is denoted d(x, ξ) throughout this thesis. The above ex-
pression for φ (θ, x, ξ) is very useful when inserted in the General Equiv-
alence Theorem. It then follows directly that a design, ξ∗, that satisfies

d(x, ξ∗) 6 p ∀xǫX

is D-optimal. Furthermore, the General Equivalence Theorem states that
d(x, ξ∗) = p at the design points. These two conditions on d(x, ξ) are
then used when deriving a D-optimal design and to verify if a design is
D-optimal or not.
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Example 4.1

To illustrate a D-optimal design, Figure 4.1 shows π0, π1, and π2 for
a bivariate example of the simplified Cox model. The parameters are
α1 = −3, α2 = −12, β1 = 0.7, and β2 = 1.3. In Figure 4.1, d(x, ξ∗) for
the locally D-optimal design

ξ∗ =

{
2.4661 7.1641 11.9644 17.1245
0.2472 0.2908 0.2205 0.2415

}

is also included. Note that d(x, ξ∗) = 4 = p at the design points. Since
this result is in line with the General Equivalence Theorem it follows
that ξ∗ is a locally D-optimal design.

−5 0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

x

π0 π1 π2

d(x, ξ∗)

Figure 4.1: The probabilities π0, π1, and π2 as functions of x given
α1 = −3, α2 = −12, β1 = 0.7 and β2 = 1.3. The figure also shows
the standardized variance of the predicted response for a D-optimal
design ξ∗, d(x, ξ∗).
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4.2.3 E-optimality

E-optimal designs minimize the variance of the worst estimated linear
contrast, aT θ. An E-optimal design, ξE, is defined by

ξE = arg min
ξ∈Ξ

max
i=1,...,p

1

λi

,

where 1
λi

is an eigenvalue to M (θ, ξ)−1. The E-optimal design is inter-
preted as the design that minimizes the length of the long axis of the
confidence ellipsoid of the parameters, Pettersson and Nyquist (2003).

The directional derivative of the criterion function for an E-optimal de-
sign is

φ (θ, x, ξ) = λmin − vTM
(
θ, ξx

)
v, (4.1)

Atkinson and Donev (1992). λmin is the smallest eigenvalue of M (θ, ξ)
and vT is the corresponding eigenvector. The expression in (4.1) can be
used to verify that a design is E-optimal.

Example 4.2

Assume that the parameters are the same as in Example 4.1 above.
With these parameter values a locally E-optimal design, denoted ξE, is
a 3−point design with unequal design weights,

ξE =

{
1.8657 10.7990 18.9416
0.2272 0.5134 0.2594

}
.

When compared, ξE and the locally D-optimal design in Example 4.1,
ξ∗, are very similar. The main difference is that two of the design points
in ξ∗, at 7.1641 and at 11.9644, are merged into one design point in
ξE, at 10.7990. The directional derivative for ξE is given in Figure 4.2.
Figure 4.2 shows that φ (θ, x, ξE) achieves its minima at the design points
and that the minimum value is equal to zero. According to the General
Equivalence Theorem, ξE is therefore E-optimal.

The D-optimality criterion and the E-optimality criterion have in com-
mon that their respective criterion function is a function of the stan-
dardized information matrix, and consequently also a function of the
unknown parameters θ. Therefore, the derived optimal designs in this
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Figure 4.2: Directional derivative function, φ(x, ξE), for the E-
optimal design ξE. The parameters are α1 = −3, α2 = −12, β1 =
0.7, and β2 = 1.3, respectively.

thesis are locally optimal designs. Furthermore, there is in general no
closed form formula that defines an optimal design, it must be numeri-
cally determined using some routines for function optimization. In this
thesis routines in Mathcad and MATLAB have been used.

As outlined previously, the optimal designs are derived based on the
asymptotic covariance matrix of the maximum likelihood estimator θ̂.
In practice, the performance of a particular design depends on how well
the asymptotic sampling distribution resembles the actual sampling dis-
tribution used in the experiment.

4.3 Concluding Remarks

This section gives a short and by no means complete overview of refer-
ences concerning optimal designs for dependent Bernoulli variables.
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There is a large amount of articles in which authors address a dose-
finding experiment in clinical trials, where the binary responses efficacy
(yes/no) and toxicity (yes/no) have a joint distribution. Heise and My-
ers (1996) derived locally D-optimal designs for this situation using the
Gumbel model described above. The locally D-optimal designs are de-
rived for different values on the parameters. The results show that the
design points are often symmetrically allocated about some ratio of the
parameters. They also studied locally Q-optimal designs. The Q-optimal
designs minimize the predicted variance of the response (”efficacy”,”no
toxicity”). Dragalin and Fedorov (2006) presented locally D-optimal
designs based on Cox bivariate binary model. They include a penalty
function in the criterion function in order to avoid situations where the
covariate attains unethical or impractical values.

Other authors have used the trinomial model with response categories
”no response”, ”efficacy”, and ”adverse reaction”. Puu (2003) considered
locally D- and DA-optimal designs for a multinomial logit model. Zocchi
and Atkinson (1999) derived D-optimal in average designs and compare
them with locally D-optimal designs for a trinomial model.

Appelgren (2004) derived locally D-optimal designs for the bivariate lo-
gistic regression model, (McCullagh and Nelder, 1989). He studied mod-
els with independent margins as well as models with dependent margins.
Results show that the parameters for the margins are most important
for the location of the design points. The locally D-optimal designs have
two, three, or four design points.

Fan (1999) and Fan and Chaloner (2004) considered locally D-optimal
designs, D-optimal in average designs, and locally c-optimal designs for
a continuation-ratio logit model. They derived analytical expressions
for a design, which is referred to as limiting locally D-optimal design.
The design is not optimal but it tends to be optimal when a certain
difference between the parameters tends to infinity. The limiting locally
D-optimal design proves to be useful in that an analytical expression can
be found when the ordinary locally optimal design has to be determined
numerically. Rabie (2004) also worked with locally D-optimal designs,
locally c-optimal designs, and limiting locally D-optimal designs but for
the contingent response model.

All the above authors have addressed a situation where the N observa-
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tions are assumed to be independent. As an example, in a model for
trinomial responses, the outcomes of a response is dependent but the
responses from different experimental units are assumed to be indepen-
dent. Müller and Pázman have in a series of articles developed theory
for optimal designs in a model with correlated observations, Müller and
Pázman (1998, 1999, 2001, 2003). The main obstacle when deriving
an optimal design for correlated observations is the non-additivity, and
consequently, the non-differentiability of the information matrix. Müller
and Pázman handle this by deriving a differentiable approximation of
the information matrix. Müller and Pázman primarily worked with a
linear model, particularly useful for spatial data in situations where ob-
servations cannot be replicated.
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Chapter 5

Bivariate Symmetric Model

For a bivariate simplified Cox model, ln Ω was given in (3.2). As men-
tioned above, the dependence between the variables is described by ln Ω.
The restriction β2 = 2β1 implies that the log-odds ratio between the
variables is constant and does not depend on x. Hence under the restric-
tion β2 = 2β1, the dependence between the variables is the same for all
values on x. Furthermore, π0 (x0 − d) = π2 (x0 + d) for all values on the
constant d, where x0 is defined as

x0 = arg max
x∈X

π1

The last property is referred to as a symmetry property in this thesis.
A model under the above restriction is studied in this chapter using
bivariate data, (S1, S2). Note that although ln Ω does not depend on x,
S1 and S2 may still be dependent.

5.1 Some Properties

The model is a particular case of the simplified Cox model, but since β2 =
2β1, some properties are more specific. Compared with the simplified
Cox model for two variables, the response variable and the link function
are left unchanged. The linear predictor changes to

η =

(
η1

η2

)
=

(
α1 + β1x
α2 + 2β1x

)
= xθ,
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where

x =

(
1 0 x
0 1 2x

)

and
θT =

(
α1 α2 β1

)
.

Based on the expression derived for the simplified Cox model, the log-
odds ratio is

ln Ω = ln 4 + α2 − 2α1. (5.1)

Note that ln Ω depends neither on β1 nor on x. Moreover, using the
expression for ln Ω the model from Section 3.4 can easily be obtained.
By setting α2 = 2α1 − ln 4 and adding the term γ

z
to η2, ln Ω becomes a

function of γ

z
only. Accordingly, the model with a distance covariate is

obtained.

The probability distribution for S depends on the parameters α1, α2,
and β1 and the covariate x. In Figure 5.1, π0, π1, and π2 are plotted for
four different combinations of α1, α2, and β1.

The maximum value of π1 decreases as ln Ω increases. In Plot 4 with
ln Ω4 = 20.39, π1 is not possible to see since it is so close to zero. Since
β1 > 0, π0 decreases with x and π2 increases with x.

Property 5.1

x0 =
−α2

2β1

Proof.
dπ1 (x)

dx
=
β1e

η1 − β1e
η1+η2

(1 + eη1 + eη2)2

Equating to zero yields

x0 =
−α2

2β1

.

By applying standard calculus technique one can show that x0 is a global
maximum of π1.

The term x0 is important in obtaining D-optimal designs and to show
the symmetry properties for this model.



5.1. Some Properties 47

0 5 10
0

0.2

0.4

0.6

0.8

1
Plot 1

x

π0

π1 π2

−5 0 5 10
0

0.2

0.4

0.6

0.8

1
Plot 2

x

π0
π1

π2

−10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1
Plot 3

x

π0

π1

π2

↑

−10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1
Plot 4

x

π0

π1

↓

π2

Figure 5.1: π0, π1, and π2 as functions of x. The parameters are
θT
1 = (−2,−10, 1), θT

2 = (−1,−5, 1), θT
3 = (−1,−1, 0.2), and θT

4 =
(−10,−1, 0.2), respectively. The corresponding log-odds ratios are
lnΩ1 = −4.61, lnΩ2 = −1.61, lnΩ3 = 2.39, and lnΩ4 = 20.39,
respectively.

Property 5.2

π1 (x0) =
1

1 +
√

Ω

Proof.

π1 (x0) =
eα1+β1x0

1 + eα1+β1x0 + eα2+2β1x0
=

eα1−α2
2

2 + eα1−α2
2

=
1

1 +
√

Ω

The value of π1 (x0) depends only on the odds ratio Ω. Thus a very large
ln Ω gives a very small π1 (x0) and vice versa.

The following property shows that π0 and π2 are symmetric around x0

in the sense that π0 (x0 − d) = π2 (x0 + d).
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Property 5.3

π0 (x0 − d) = π2 (x0 + d) for all d

Proof.

π0 (x0 − d) =
1

1 + eα1+β1(x0−d) + eα2+2β1(x0−d)
=

1

1 + eα1−α2
2
−dβ1 + e−2dβ1

π2 (x0 + d) =
eα2+2β1(x0+d)

1 + eα1+β1(x0+d) + eα2+2β1(x0+d)
=

1

1 + eα1−α2
2
−dβ1 + e−2dβ1

Hence π0 and π2 are symmetric around x0.

For the current model S1 and S2 are not independent in general. Ex-
pressions for the covariance and the correlation between S1 and S2 are
derived below.

Property 5.4

Cov (S1, S2) =
4eη2 − e2η1

4 (1 + eη1 + eη2)2

Proof.

Cov (S1, S2) =
eη2

1 + eη1 + eη2
− π1·π·1

=
4eη2 − e2η1

4 (1 + eη1 + eη2)2 ,

since β2 = 2β1.

Property 5.5

Corr (S1, S2) =
4eα2 − e2α1

(2 + eα1+β1x) (2eα2 + eα1−β1x)

Proof.

Corr (S1, S2) =
Cov (S1, S2)√
π1·π0·

√
π·1π·0

=

4eη2−e2η1

4(1+eη1+eη2 )2

(2+eη1 )(2eη2+eη1 )

4(1+eη1+eη2 )2

=
4eα2 − e2α1

(2 + eα1+β1x) (2eα2 + eα1−β1x)
,



5.1. Some Properties 49

since β2 = 2β1.

The variance of S is given by

Property 5.6

V ar (S) =
4eη2 + eη1 (1 + eη2)

(1 + eη1 + eη2)2 .

Proof.

V ar (S) = π1·π0· + π·1π·0 + 2
4eη2 − e2η1

4 (1 + eη1 + eη2)2

=
4eη2 + eη1 (1 + eη2)

(1 + eη1 + eη2)2

Consider the following expression for the covariance between S1 and S2,

Cov (S1, S2) =
∑

s1=0,1

∑

s2=0,1

(s1 − π·) (s2 − π·)P (S1 = s1, S2 = s2) .

It was stated previously that π0 is a decreasing function in x and π2 is an
increasing function in x if β1 > 0. For very small x, P (S1 = s1, S2 = s2)
is close to zero for all s1, s2 except for s1 = s2 = 0. Since π· is close to
zero for very small x, Cov (S1, S2) is close to zero for very small x. In
a similar way Cov (S1, S2) is close to zero for very large x. Hence, the
covariance tends to zero when x tends to minus or plus infinity.

Figure 5.2 includes four plots of the correlation between S1 and S2 for
the same parameter values as in Figure 5.1. In Plot 1 and Plot 2 the
parameter values generate a negative ln Ω, hence the correlation is also
negative. Plot 4 is based on parameter values that generate a large ln Ω.
The correlation is therefore close to one for values of x in the interval
−30 to 30. In all plots the correlation tends to zero for very large and
for very small values on x.

As mentioned previously, the simplified Cox model in general allows the
correlation between S1 and S2 to vary across treatments. This is true
also for the symmetric model where the correlation varies symmetrically
around x0 as Figure 5.2 illustrates and the following property shows.
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Figure 5.2: Correlation between S1 and S2 for different sets of
parameter values. The parameters are θT

1 = (−2,−10, 1), θT
2 =

(−1,−5, 1), θT
3 = (−1,−1, 0.2), and θT

4 = (−10,−1, 0.2), respec-
tively. The corresponding log-odds ratios are lnΩ1 = −4.61,
lnΩ2 = −1.61, lnΩ3 = 2.39, and lnΩ4 = 20.39, respectively.

Property 5.7 Corr (S1, S2) has a global minimum or maximum at x =
x0.

Proof.

d

dx
Corr(S1, S2)=

β1(e
2α1−4eα2)

{
eα1−β1x

(
2+eα1+β1x

)
−eα1+β1x

(
2eα2 +eα1−β1x

)}

(2+eα1+β1x)2(2eα2 +eα1−β1x)2

Equating to zero yields

x =
−α2

2β1

= x0.

By applying standard calculus technique one can show that x0 is a global
minimum or maximum of Corr (S1, S2).

The conditional probability that S1 = 1 given that S2 = 1 is derived
below.
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Property 5.8

P (S1 = 1 | S2 = 1) =
2

2 + eα1−α2−β1x

Proof.

P (S1 = 1 | S2 = 1) =
P (S1 = 1, S2 = 1)

P (S2 = 1)

=

eη2

1 + eη1 + eη2

2eη2 + eη1

2 (1 + eη1 + eη2)

=
2

2 + eα1−α2−β1x

If β1 is positive the conditional probability that S1 = 1 given that
S2 = 1 tends to one when x tends to infinity and to zero when x
tends to minus infinity. Figure 5.3 presents the conditional probabil-
ity, P (S1 = 1 | S2 = 1) , for the same parameter values as in Figure 5.1
and Figure 5.2.

Assuming that β1 is positive, P (S = 2) is an increasing function in x
and consequently P (S1 = 1 | S2 = 1) increases with x. This property is
illustrated in Figure 5.3. The conditional probability when θ = θ4 is
close to one for so small values on x as −30. This is explained by a
strong dependence between S1 and S2. When θ = θ1 and θ = θ2, β1 is
larger compared to when θ = θ3 and θ = θ4. Therefore the conditional
probability increases more rapidly for θ1 and θ2.

5.2 Likelihood and Fisher Information

Since the distribution of the response variable for the simplified Cox
model belongs to the exponential family, it follows immediately that
also the distribution of the response variable under the symmetric model
does so. The likelihood function is basically the same likelihood function
as for the simplified Cox model,
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Figure 5.3: P(S1 = 1 | S2 = 1) for different sets of parameter val-
ues. The parameters are θT

1 = (−2,−10, 1), θT
2 = (−1,−5, 1), θT

3 =
(−1,−1, 0.2), and θT

4 = (−10,−1, 0.2), respectively. The cor-
responding log-odds ratios are lnΩ1 = −4.61, lnΩ2 = −1.61,
lnΩ3 = 2.39, and lnΩ4 = 20.39, respectively.

L (θ;y) =
N

Π
i=1

{
πy1i

1i π
y2i

2i (1 − π1i − π2i)
(1−y1i)(1−y2i)

}
.

The loglikelihood function is

l (θ;y) =
N∑

i=1

(y1iη1i + y2iη2i − ln (1 + eη1i + eη2i)) .

Also the score function is similar to the score function under the simpli-
fied Cox model. The only difference is the matrix x.



uα1 . (θ)
uα2 . (θ)
uβ1 . (θ)


 =

N∑

i=1




(y1i − π1i)
(y2i − π2i)

xi (y1i − π1i + 2y2i − π2i)


 =

N∑

i=1

xT
i (yi − µi)
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The Fisher information of a single observation is partly the same com-
pared with the simplified Cox model.

I (θ, x) = xTDx =




π1 (1 − π1) −π1π2 x (π1 (1 − π1) − 2π1π2)
−π1π2 π2 (1 − π2) x (2π2 (1 − π2) − π1π2)

x (π1 (1 − π1) − 2π1π2) x (2π2 (1 − π2) − π1π2) x2 (π1 (1 − π1) − 4π1π2 + 4π2 (1 − π2))




(5.2)

5.3 Locally D-optimal Designs

The example of a D-optimal design in Section 4.2.2 had no symmetry
properties in the design. For instance, no design weights were equal. For
the symmetric model in this chapter, the number of design points and
the design weights change with different parameter values. Nevertheless,
D-optimal designs have some symmetry properties under this model.

Example 5.1

Four D-optimal designs are presented in Table 5.1.

# α1 α2 β1 ln Ω x0 D-optimal design

1 -2 -10 1 -4.61 5

{
1.176 3.680 6.320 8.824
0.269 0.231 0.231 0.269

}

2 -1 -5 1 -1.61 2.5

{
0.132 2.5 4.868
0.255 0.49 0.255

}

3 -1 -1 0.2 2.39 2.5

{
−1.487 6.487

0.5 0.5

}

4 -10 -1 0.2 20.39 2.5

{
−0.889 5.889

0.5 0.5

}

Table 5.1: D-optimal design for different sets of parameter values.
The parameter values are the same as in Figure 5.1, Figure 5.2,
and Figure 5.3.

Although the number of design points are different for the designs, there
are some general properties. The design points are placed symmetrically
around x0. In a plot of d (x, ξ∗), the function should have maximum
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points at the design points. d (x, ξ∗) at these maximum points should
also be equal to 3 (the number of parameters in the model). These
properties are illustrated in Figure 5.4 where it is also possible to see x0

as a local minimum or maximum point.
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Figure 5.4: d(x, ξ∗) for the different sets of parameter values de-
scribed in Table 5.1.

The results of the example are in line with Fan (1999) and Fan and
Chaloner (2004). They also found optimal designs with two, three or four
design points although they had a different model. Fan (1999) argues
that the differences in the number of design points and design weights
can be explained by certain differences and ratios between parameters.
The differences in the number of design points can also be explained
using ln Ω. Several plots have shown that the value of ln Ω determines
the number of design points in the D-optimal design. For example, when
ln Ω is large it is sufficient with two design points. In other words it is
sufficient to gather information about the model using only two design
points. When ln Ω decreases, π1 (x0) increases and a design with two
design points is no longer optimal. The design points giving the most
information about π0 do not give any information about π2 and the other
way around. Therefore the optimal design contains three or more design
points.
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In order to derive some more results on D-optimal designs the following
two properties of the determinant of a matrix are needed.

Property 5.9 If the square matrix B is formed from the square matrix

A by multiplying all of the elements of one row or one column of A by

the same scalar k, then

|B| = k |A| .

Proof. The reader is referred to Harville (1997) for a proof.

Property 5.10 Let B be the matrix formed from the matrix A by adding,

to any row or column of A, scalar multiples of one or more of the other

rows or columns. Then,

|B| = |A| .

Proof. The reader is referred to Harville (1997) for a proof.

Define θT
g =

(
g 0 1

)
where g = α1 − 1

2
α2.

Lemma 5.1 Let the design

ξ =

{
x1 x2 . . . xn

w1 w2 . . . wn

}

and the design

ξα2,β1 =

{
x1−α2

2

β1

x2−α2
2

β1
. . .

xn−α2
2

β1

w1 w2 . . . wn

}
,

β1 6= 0. Then |M (θ, ξα2,β1)| = 1
β2
1
|M (θg, ξ)| .

Proof. From (5.2) the information matrix for the design ξ and the
parameter vector θ is

M (θ, ξ) =



Ma (θ, ξ) Mab (θ, ξ) Mac (θ, ξ)
Mab (θ, ξ) Mb (θ, ξ) Mbc (θ, ξ)
Mac (θ, ξ) Mbc (θ, ξ) Mc (θ, ξ)



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where

Ma (θ, ξ) =
n∑

i=1

wiπ1i (1 − π1i)

Mab (θ, ξ) = −
n∑

i=1

wiπ1iπ2i

Mac (θ, ξ) =
n∑

i=1

wixi {π1i (1 − π1i) − 2π1iπ2i}

Mb (θ, ξ) =
n∑

i=1

wiπ2i (1 − π2i)

Mbc (θ, ξ) =
n∑

i=1

wixi {2π2i (1 − π2i) − π1iπ2i}

Mc (θ, ξ) =
n∑

i=1

wix
2
i {π1i (1 − π1i) − 4π1iπ2i + 4π2i (1 − π2i)} .

Consider now the transformation
xi−α2

2

β1
, i = 1, . . . , n, of the design points

of ξ.Under this transformation, the expressions for π1i (1 − π1i) , π1iπ2i, and
π2i (1 − π2i) are found to be

π1i (1 − π1i) =

e
α1+β1

xi−
α2
2

β1

(
1 + e

α2+2β1
xi−

α2
2

β1

)

(
1 + e

α1+β1
xi−

α2
2

β1 + e
α2+2β1

xi−
α2
2

β1

)2

=
exi+g (1 + e2xi)

(1 + exi+g + e2xi)2 ,

π1iπ2i =
e

α1+β1
xi−

α2
2

β1 e
α2+2β1

xi−
α2
2

β1

(
1 + e

α1+β1
xi−

α2
2

β1 + e
α2+2β1

xi−
α2
2

β1

)2

=
exi+ge2xi

(1 + exi+g + e2xi)2 ,
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π2i (1 − π2i) =

e
α2+2β1

xi−
α2
2

β1

(
1 + e

α1+β1
xi−

α2
2

β1

)

(
1 + e

α1+β1
xi−

α2
2

β1 + e
α2+2β1

xi−
α2
2

β1

)2

=
e2xi (1 + exi+g)

(1 + exi+g + e2xi)2 ,

respectively. In order to obtain a more compact expression forM (θ, ξα2,β1) ,
let

a∗ (θ, xi) =
exi+g (1 + e2xi)

(1 + exi+g + e2xi)2 (5.3a)

b∗ (θ, xi) = − exi+ge2xi

(1 + exi+g + e2xi)2 (5.3b)

c∗ (θ, xi) =
e2xi (1 + exi+g)

(1 + exi+g + e2xi)2 . (5.3c)

All elements in M (θ, ξα2,β1) are then expressed as combinations of (5.3a),
(5.3b), and (5.3c).

Ma (θ, ξα2,β1) =
n∑

i=1

wiπ1i (1 − π1i) =
n∑

i=1

wia
∗ (θ, xi)

Mab (θ, ξα2,β1) = −
n∑

i=1

wiπ1iπ2i =
n∑

i=1

wib
∗ (θ, xi)

Mb (θ, ξα2,β1) =
n∑

i=1

wiπ2i (1 − π2i) =
n∑

i=1

wic
∗ (θ, xi)

Mac (θ, ξα2,β1)

=
n∑

i=1

wi

xi − α2

2

β1

{π1i (1 − π1i) − 2π1iπ2i}

=
n∑

i=1

wi

β1

[
xi {a∗ (θ, xi) + 2b∗ (θ, xi)} −

α2

2
{a∗ (θ, xi) + 2b∗ (θ, xi)}

]
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Mbc (θ, ξα2,β1)

=
n∑

i=1

wi

xi − α2

2

β1

{2π2i (1 − π2i) − π1iπ2i}

=
n∑

i=1

wi

β1

[
xi {2c∗ (θ, xi) + b∗ (θ, xi)} −

α2

2
{2c∗ (θ, xi) + b∗ (θ, xi)}

]

Mc (θ, ξα2,β1)

=
n∑

i=1

wi

(
xi − α2

2

β1

)2

{π1i (1 − π1i) − 4π1iπ2i + 4π2i (1 − π2i)}

=
n∑

i=1

wi

β2
1

{
x2

i − xiα2 +
(α2

2

)2
}
{a∗ (θ, xi) + 4b∗ (θ, xi) + 4c∗ (θ, xi)}

In addition, let

a =
n∑

i=1

wia
∗ (θ, xi)

b =
n∑

i=1

wib
∗ (θ, xi)

c =
n∑

i=1

wixi {a∗ (θ, xi) + 2b∗ (θ, xi)}

d =
n∑

i=1

wic
∗ (θ, xi)

e =
n∑

i=1

wixi {2c∗ (θ, xi) + b∗ (θ, xi)}

f =
n∑

i=1

wix
2
i {a∗ (θ, xi) + 4b∗ (θ, xi) + 4c∗ (θ, xi)} ,

so that the information matrix can be written as

M (θ, ξα2,β1) =




a b
c−α2

2
(a+2b)

β1

b d
e−α2

2
(b+2d)

β1

c−α2
2

(a+2b)

β1

e−α2
2

(b+2d)

β1

f−α2(c+2e)+(α2
2 )

2
(a+4b+4d)

β2
1


 .



5.3. Locally D-optimal Designs 59

Using Property 5.9, |M (θ, ξα2,β1)| can be written as

1

β2
1

∣∣∣∣∣∣

a b c − α2
2 (a + 2b)

b d e − α2
2 (b + 2d)

c − α2
2 (a + 2b) e − α2

2 (b + 2d) f − α2 (c + 2e) +
(

α2
2

)2
(a + 4b + 4d)

∣∣∣∣∣∣

By applying Property 5.10 to the expression of |M (θ, ξα2,β1)| it is found
that

|M (θ, ξα2,β1)| =
1

β2
1

∣∣∣∣∣∣

a b c
b d e
c e f

∣∣∣∣∣∣
.

Next assume that the design is ξ and the parameter vector is θg. Then
it is readily found that the expressions for π1i (1 − π1i) , π1iπ2i, and
π2i (1 − π2i) are the same as in the case with ξα2,β1 and θ. By apply-
ing this result to all elements in M (θg, ξ) ,

M (θg, ξ) =




a b c
b d e
c e f


 .

Hence, |M (θ, ξα2,β1)| = 1
β2
1
|M (θg, ξ)| .

Theorem 5.1 If

ξ∗ =

{
x1 x2 . . . xn

w1 w2 . . . wn

}

is locally D-optimal for the parameter vector θg then

ξ∗α2,β1
=

{
x1−α2

2

β1

x2−α2
2

β1
. . .

xn−α2
2

β1

w1 w2 . . . wn

}

is locally D-optimal for the parameter vector θ.

Proof. The design ξ∗α2,β1
is obtained from the design ξ∗ by one-to-one

transformation of the design points xi −→ xi−α2
2

β1
, i = 1, . . . , n. Maxi-

mizing ln |M (θ, ξ)| is the same as maximizing |M (θ, ξ)| over all possible
designs. From Lemma 5.1 |M (θ, ξα2,β1)| = 1

β2
1
|M (θg, ξ)|. Thus, if ξ∗ is

locally D-optimal for the parameter vector θg, it follows that ξ∗α2,β1
is the
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locally D-optimal design for the parameter vector θ by the one-to-one
property of ξ∗ −→ ξ∗α2,β1

.

By using Lemma 5.1, Theorem 5.1 states that once a locally D-optimal
design has been found for the parameter vector θg, a locally D-optimal
design has also been found for the parameter vector θ.

Theorem 5.2 Under a bivariate symmetric simplified Cox model, the

number of design points in a locally D-optimal design is determined by

the log-odds ratio between the variables.

Proof. Let ξ∗ be the locally D-optimal design for the parameter vec-
tor θ. Lemma 5.1 showed that for every setup of θ and ξ∗, there is a
corresponding setup with θg and ξ, where ξ and ξ∗ have equally many
design points. In addition, the value of θg is completely determined by
g = α1 − 1

2
α2, so that the number of design points in ξ∗ is determined

by g. From (5.1) it follows that ln Ω is equal to ln 4 − 2g, making ln Ω
a function of g and a constant. Hence, ln Ω determines the number of
design points in a locally D-optimal design.

Note that given a certain ln Ω, Theorem 5.2 does not provide the optimal
number of design points in a locally D-optimal design. However, the
relationship between ln Ω and the number of design points can be found
numerically as illustrated in Figure 5.5. The result has been derived by
determining the locally D-optimal design for a number of different values
on ln Ω. The parameter β1 was held constant during the examination
because Theorem 5.2 implies that the value of β1 does not affect the
number of design points. Depending on ln Ω, a 2−point, 3−point, or
4−point design is then derived. The optimality of the proposed design
is checked by calculating max d(x, ξ).

-

4-point design 3-point design 2-point design lnΩ
-4.07 -0.15

Figure 5.5: Number of design points given the log-odds ratio.
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5.3.1 Locally D-optimal Designs when the Log-odds

Ratio is Large

For symmetric simplified Cox models with a large ln Ω it was shown nu-
merically that a D-optimal design has two design points. In this section,
the particular case when α2 = 0 and β1 = 1 is examined. All other cases
can be obtained by using Theorem 5.1. Given α2 = 0 and β1 = 1, x0 = 0.
Assume further that the design points are placed symmetrically around
x0 with equal design weights and that the design points are denoted by
−c and c. Then the proposed design is given by

ξ =

{
−c c
0.5 0.5

}
.

The restriction on α2 and β1 simplifies the calculations considerable. The
standardized information matrix for ξ is

M (α1, c) =
1

2
(I(α1,−c) + I (α1, c)) .

The determinant of M is

|M (α1, c)| =
c2eα1−6c (eα1 + eα1+2c + 4ec)

(1 + eα1−c + e−2c)5 .

Using this expression, the derivative of the determinant of M with re-
spect to c is

d |M (α1, c)|
dc

=
1

(1 + eα1−c + e−2c)6{ceα1−4c

[2
(
1 + eα1−c + e−2c

) {
e−2c

(
eα1 + eα1+2c + 4ec

)
− c

(
3eα1−2c + 2eα1 + 10e−c

)}

+ 5ce−3c
(
eα1 + 2e−c

) (
eα1 + eα1+2c + 4ec

)
]}.

Setting
d |M (α1, c)|

dc
= 0

yields,

2
(
1 + eα1−c + e−2c

) {
e−2c

(
eα1 + eα1+2c + 4ec

)
− c

(
3eα1−2c + 2eα1 + 10e−c

)}

+5ce−3c
(
eα1 + 2e−c

) (
eα1 + eα1+2c + 4ec

)
= 0. (5.4)
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Based on the numerical solution of (5.4), Figure 5.6 shows the value of
c as a function of ln Ω. For the same c and the same log-odds ratio

max
x∈X

d (x, ξ (c))

is plotted. max d (x, ξ (c)) is used since it is a direct way to verify if
a design is D-optimal or not. In the plot over c note that when ln Ω
becomes smaller c increases. When ln Ω is less than −0.15 a 2−point
design is no longer optimal. That is why max d (x, ξ (c)) is larger than
three as soon as ln Ω is less than −0.15. This result is in line with the
result shown in Figure 5.5.

−2 0 2 4 6 8 10 12 14
0.6

0.8

1

1.2

1.4

1.6

lnΩ

c

−2 0 2 4 6 8 10 12 14
2.8

3

3.2

3.4

3.6

3.8

lnΩ

max d(x, ξ(c))

Figure 5.6: The value of c that maximizes |M(α1, ξ) | for different
values of lnΩ, (upper plot). Maximum of d(x, ξ(c)) as a function
of both c and lnΩ, (lower plot).

Consider again the equation in (5.4). If α2 = 0 then

ln Ω → ∞ when α1 → −∞.
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Let α1 → −∞ and it follows that

c =
2 (1 + e−2c)

5 (1 − e−2c)
.

c ≈ 0.6778

In Figure 5.6 c is constant for a ln Ω of approximately 10 and larger.
This value of c is around 0.6778. One of the examples shown previously
had a ln Ω of around 20. It is possible to verify that c is around 0.6778
in that example1.

The proposed design with c = 0.6778 can be evaluated using the D-
efficiency, given in e.g. Atkinson and Donev (1992). The D-efficiency is
defined as

Deff =

( |M (θ, ξ (c))|
|M (θ, ξ∗)|

) 1
p

,

where p is the number of parameters in the model. Figure 5.7 presents
the D-efficiency for the design with c = 0.6778 given different parame-
ter values (different ln Ω). The D-efficiency was derived by first choos-
ing a vector of values for α1. Since α2 = 0 this vector corresponds to
a vector of values for ln Ω. For the proposed design with c = 0.6778
and for each value of ln Ω the determinant of the information matrix,
|M (θ, ξ (c))| , is derived. Given the same parameter vector the locally
D-optimal design, ξ∗, is found numerically. Finally the D-efficiency is
calculated according to the expression above.

For parameter values with ln Ω larger than five the proposed design is
very close to being optimal. When ln Ω = 0 the D-efficiency is around
0.9136. This means that the design is quite efficient even when the
variables are independent and another model is preferable. When ln Ω
is less than −0.15 a 2−point design is no longer optimal and the D-
efficiency decreases rapidly.

1In the example a1 = −10 and a2 = −1. This gives a log-odds ratio, lnΩ =
ln4 + 19. The symmetry point x0 = 1

0.4
= 2.5. The design points are located

5.889 − 2.5 = 3.389 from x0. So in this example c = 3.389β1 = 0.6778.
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Figure 5.7: D-efficiency for the proposed design with c = 0.6778
for different parameter values.

5.3.2 Locally D-optimal Designs when the Log-odds

Ratio is Large Negative

For parameter values that yield a large negative ln Ω, a 4−point design
is optimal. The particular case when α2 = 0 and β1 = 1 is examined
below. As in the last section, all other cases can be obtained by applying
Theorem 5.1. A plot of the probabilities π0, π1, and π2 as functions of
x for θT =

(
20 0 1

)
is given in Figure 5.8.

Based on Figure 5.8 it is reasonable to believe that when ln Ω is very large
negative, the optimal design points are located around two symmetry
points. These symmetry points are where π0 equals π1 and where π1

equals π2. When π0 equals π1, η1 = 0 and hence

α1 + x = 0 so that x = −a1.

In the same way, when π1 equals π2, η1 = η2 and hence

α1 + x = 2x so that x = a1.



5.3. Locally D-optimal Designs 65

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

π0
π1
π2

Figure 5.8: An example of the probabilities π0, π1, and π2 as func-
tions of x when the log-odds ratio is large negative. The parameters
are θT = (20, 0, 1) and the log-odds ratio is lnΩ = −38.61.

The proposed 4−point design is then

ξ =

{
−α1 − c −α1 + c α1 − c α1 + c

0.25 0.25 0.25 0.25

}
. (5.5)

The standardized information matrix based on ξ is then

M (α1, c) =
1

4
{I(−α1,−c) + I (−α1, c) + I(α1,−c) + I (α1, c)} .

This 4−point design, ξ, has a more complex expression for the determi-
nant of M compared with the 2−point design in the last section. There-
fore, the value of c that maximizes |M | can only be found numerically.
In Figure 5.9 the value of c that maximizes |M (α1, c)| is plotted against
ln Ω.

When ln Ω is less than −10, c ≈ 1.2229. With similar constraints on
the parameters and for a similar situation as in Figure 5.8, Fan (1999)
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Figure 5.9: The value of c that maximizes |M(α1, ξ) | for different
values of lnΩ, (upper plot). Maximum of d(x, ξ(c)) as a function
of both c and lnΩ, (lower plot).

derived a limiting locally optimal design. The limiting locally D-optimal
design,

ξlim =

{
−1.223 +1.223 τ − 1.223 τ + 1.223
0.25 0.25 0.25 0.25

}
,

is similar to the 4-point design in (5.5). Both designs are 4-points de-
signs with equal design weights. Moreover, a constant, c ≈ 1.223 partly
determines the allocation of the design points. Here, τ is a function of
the parameters in the continuation-ratio logit model.

The proposed design in (5.5) with c = 1.2229 is an approximation of the
locally D-optimal design. The approximation is evaluated by calculating
the D-efficiency for different parameter values in the same manner as
in the last section. The D-efficiency for different parameter values are
shown in Figure 5.10.
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Figure 5.10: D-efficiency for the proposed design with c = 1.229
given different parameter values.

If ln Ω is approximately −5 or smaller c = 1.2229 yields a very efficient
design. A 3−point design is D-optimal when ln Ω is between −4.07 and
−0.15. Nevertheless, the D-efficiency for the proposed 4−point design is
still very large when ln Ω is between −4.07 and −0.15. The explanation
is that two design points are almost equal for the proposed 4−point
design. Hence, the proposed design has almost the same D-efficiency as
a D-optimal 3−point design. For positive log-odds ratios the D-efficiency
decreases fast.
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Chapter 6

Mutual Independence

6.1 The Model

As mentioned in Chapter 1, the simplified Cox model has a much simpler
structure when the Bernoulli variables are mutually independent. In fact
when S1, S2, . . . , Sk are mutually independent, S ∼ Bin (k, π·) with

P (S = s) =

(
k

s

)
πs
· (1 − π·)

k−s s = 0, 1, . . . , k

and

π· =
eη1

k + eη1
,

where π· is the common probability for observing a ”success”. The pa-
rameters, α1 and β1, are interpreted from the expression for the log-odds
of ”success”,

ln
π·

1 − π·
= η1 − ln k = α1 − ln k + β1x.

Under an ordinary binary logistic regression model for independent vari-
ables, the distribution for S is S ∼ Bin (k, π·) with

π· =
eη

1 + eη
.

The log-odds of ”success” is then equal to η,

ln
π·

1 − π·
= η = α+ βx.
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Hence, the parameterization of the simplified Cox model under mutual
independence is not the same as for the ordinary logistic model. In
particular, α in the ordinary logistic model corresponds to α1 − ln k in
the simplified Cox model.

6.2 Parameter Restrictions under Mutual

Independence

Theorem 6.1 states necessary and sufficient conditions on the parame-
ters to yield mutual independence. The theorem is used in Chapter 7,
where a model under these restrictions is tested against a model without
restrictions. Theorem 6.1 is presented in Bruce (2008).

Theorem 6.1 S1, S2, . . . , Sk are mutually independent if and only if

ηs = s (η1 − ln k) + ln

(
k

s

)
s = 0, 1, . . . , k. (6.1)

Proof. The proof is divided into two parts where the first part shows
that the parameter restrictions in (6.1) implies that S1, S2, . . . , Sk are
mutually independent. The second part shows that mutual independence
implies the parameter restrictions in (6.1).

Under a simplified Cox model πs can be expressed as in (3.1). Assume
now that the parameters are determined by (6.1) so that

η0 = 0

η1 = η1 = α1 + β1x

η2 = 2 (α1 + β1x− ln k) + ln
(

k

2

)

...

ηk = k (α1 + β1x− ln k) .

Then

eηs = es(η1−ln k)+ln
(

k

s

)
=

(
k

s

)(
eη1

k

)s

s = 0, 1, . . . , k
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and
k∑

s=0

eηs =
k∑

s=0

(
k

s

)(
eη1

k

)s

=

(
1 +

eη1

k

)k

which follows from the Binomial Theorem. This yields

πs =

(
k

s

)(
eη1

k

)s

(
1 +

eη1

k

)k
s = 0, 1, . . . , k. (6.2)

From (6.2) π· and (1 − π·) can be identified,

πs =

(
k

s

)
(eη1)s

(k + eη1)k
kk−s

=

(
k

s

)(
eη1

k + eη1

)

︸ ︷︷ ︸
=π·

s(
k

k + eη1

)

︸ ︷︷ ︸
=(1−π·)

k−s

=
(

k

s

)
πs
· (1 − π·)

k−s s = 0, 1, . . . , k.

Hence, the sum S = S1 + S2 + . . . + Sk has a binomial distribution
Bin (k, π·) with π· = eη1

k+eη1
, which is possible only if S1, S2, . . . , Sk are

mutually independent.

Next assume that S1, S2, . . . , Sk are mutually independent. The param-
eter restrictions in (6.1) follow immediately for s = 0, 1. From (3.3) it
follows that

ln Ωs = ηs − 2ηs−1 + ηs−2 − ln
(

k

s

)
+ 2 ln

(
k

s−1

)
− ln

(
k

s−2

)
.

Since mutual independence implies that ln Ωs = 0,

ηs = 2ηs−1 − ηs−2 + ln
(

k

s

)
− 2 ln

(
k

s−1

)
+ ln

(
k

s−2

)
. (6.3)

Assume now that the restrictions (6.1) are true for s− 1 and s, so that

ηs−1 = (s− 1) (η1 − ln k) + ln
(

k

s−1

)

and
ηs = s (η1 − ln k) + ln

(
k

s

)
.
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From (6.3) ηs+1 is then given by

ηs+1 = 2
{
s (η1 − ln k) + ln

(
k

s

)}
−
{
(s− 1) (η1 − ln k) + ln

(
k

s−1

)}

+ ln
(

k

s+1

)
− 2 ln

(
k

s

)
+ ln

(
k

s−1

)

= η1 (2s− s+ 1) − ln k (2s− s+ 1) + ln
(

k

s+1

)

= (s+ 1) (η1 − ln k) + ln
(

k

s+1

)
,

i.e. the restriction (6.1) is true also for s+ 1.

Furthermore, since (6.3) is true for all values of s, i.e. s = 2, 3, . . . , k,
the parameter restrictions in (6.1) follow by induction.

In Section 3.5 an extension to polytomous data was presented. Let
S1, S2, . . . , Sk have three response categories so that Yj is the number
of outcomes in the respective response category, j = 0, 1, 2. When
S1, S2, . . . , Sk are mutually independent, (Y1, Y2) are multinomial dis-
tributed with

P (Y1 = y1, Y2 = y2) =

(
k

y1 y2

)
πy1

1· π
y2

2· (1 − π1· − π2·)
(k−y1−y2) ,

y1, y2 ≥ 0 and y1 + y2 ≤ k.

As for the case with binary data, parameter restrictions for mutual in-
dependence are expressed analytically by the following theorem.

Theorem 6.2 Let S1, S2, . . . , Sk be k identically distributed random vari-

ables each having three response categories. S1, S2, . . . , Sk are mutually

independent if and only if

ηy1y2 = y1 (η10 − ln k) + y2 (η01 − ln k) + ln

(
k

y1 y2

)
, (6.4)

y1, y2 ≥ 0 and y1 + y2 ≤ k.

The proof is given in Appendix A.

For the case with arbitrary many response categories, corresponding pa-
rameter restrictions are obtained analogously.
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6.3 D-optimal Designs

For the simplified Cox model, it is difficult to analytically derive locally
D-optimal designs in general. This is usually due to a complex expression
for the standardized information matrix. Typically the determinant of
the standardized information matrix is a function, which can only be
maximized numerically. In Section 5.3, expressions for locally D-optimal
designs for a bivariate symmetric model were derived. However, this
was done for a simplified model (symmetric) and for only two dependent
variables. Still, assumptions had to be made to obtain any results at all.

It was shown above that under mutual independence, the distribution of
the response variable is greatly simplified. In addition, the assumption
about mutual independence yields a less complex expression for the stan-
dardized information matrix. Thus, it is possible to formulate a theorem
for locally D-optimal designs under these restrictions.

Theorem 6.3 Let S1, S2, . . . , Sk be mutually independent. The locally

D-optimal design is then

ξ∗ =

{ −αk

βk
− c

β1

−αk

βk
+ c

β1

0.5 0.5

}
,

where c is the solution to the equation

c =
ec + 1

ec − 1
.

c ≈ 1.5434

Proof. By applying the parameter restrictions for mutual independence
given in Theorem 6.1 the design can be rewritten as

ξ∗ =

{
ln k−α1−c

β1

ln k−α1+c
β1

0.5 0.5

}
. (6.5)

Furthermore, let α1 − ln k correspond to α and let β1 correspond to β in
the ordinary logistic model defined previously. For the ordinary logistic
model it is an established result that the locally D-optimal design is

ξ =

{ −α−c
β

−α+c
β

0.5 0.5

}
,
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see e.g. Atkinson et al. (2007). Thus, it follows directly that the proposed
design, ξ∗, is the locally D-optimal design under mutual independence.

The difference between the design ξ∗ and the D-optimal design under the
ordinary logistic model, is explained by different parameterization of the
models as shown above. However, using corresponding parameterizations
both designs allocate observations at the same levels of π·,

π·

(−α− c

β

)
= π·

(
ln k − α1 − c

β1

)
= 0.1760

and

π·

(−α+ c

β

)
= π·

(
ln k − α1 + c

β1

)
= 0.8240.

6.4 Paired Data

When there are only two variables, S1 and S2, the properties of the
model can be further explored. Assume that S1 and S2 are independent
for all x. The parameter restrictions under independence then follow
from Theorem 6.1. These restrictions can also be derived by equating
the log-odds ratio between S1 and S2 to zero, yielding

• α2 = 2α1 − ln 4

• β2 = 2β1.

Because S1 and S2 are independent the distribution for S is simply

S ∼ Bin (2, π·) .

In this model S is the response variable, and using the restrictions for
the model

π· =
eη1

2 + eη1
.

The variance of S is

V ar(S) = 2π· (1 − π·) .
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Figure 6.1: The probabilities π0, π1, and π2 as functions of x in
a model for independent pairs of responses and with parameters
α1 = −4 and β1 = 1.

Figure 6.1 presents an example of the probabilities π0, π1, and π2 as a
function of x.

In the remaining part of this chapter some further properties of the
model for independent pairs of response variables are derived. As for the
bivariate symmetric model in Chapter 5, x0 = arg max

x∈X

π1 is important

when deriving symmetry properties for this model.

Property 6.1

x0 =
ln 2 − α1

β1

Proof. Differentiate π1 (x) with respect to x.

dπ1 (x)

dx
=

8β1e
η1 − 4β1e

2η1

(2 + eη1)3
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Equating to zero yields
2 = eη1

and hence

x0 =
ln 2 − α1

β1

.

By applying standard calculus technique it is easy to verify that x0 is a
global maximum of π1 (x) .

Property 6.2

π1 (x0) =
1

2

Proof.

π1 (x0) =
4eη1

(2 + eη1)2 =
1

2

Hence, in this model the maximum value of π1 is always equal to 1
2
. This

result is in line with the fact that π1 ≤ 1
2

when S ∼ Bin (2, π·) regardless
of π·

Analogously to the bivariate symmetric model in Chapter 5, π0 and π2

are symmetrical around x0 in the sense that π0 (x0 − d) = π2 (x0 + d) .

Property 6.3

π0 (x0 − d) = π2 (x0 + d) for all d

Proof.

π0 (x0 − d) =
4

(2 + eα1+β1(x0−d))
2 =

1

(1 + e−dβ1)2

π2 (x0 + d) =
e2(α1+β1(x0+d))

(2 + eα1+β1(x0+d))
2 =

1

(1 + e−dβ1)2

Hence π0 (x0 − d) = π2 (x0 + d).

Since S has a binomial distribution, the distribution of S is an exponen-
tial family. The likelihood is well determined

L (α1, β1; s) =
N

Π
i=1

(
2

si

)
πsi

i (1 − πi)
2−si ,
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lnL (α1, β1; s) =
N∑

i=1

{
ln

(
2

si

)
+ si ln

(
πi

(1 − πi)

)
+ 2 ln (1 − πi)

}
.

The score function is determined by applying the chain rule,

(
uα1 . (θ)
uβ1 . (θ)

)
=

N∑

i=1

(
(si − 2πi)
xi (si − 2πi)

)
.

The Fisher information is

I. (θ, x) = E
[
u (θ)uT (θ)

]

=
N∑

i=1

2πi (1 − πi)

(
1 xi

xi x2
i

)
.

Locally D-optimal designs for two independent Bernoulli variables are
easily found, see Kalish and Rosenberger (1978) for an early reference.

By using Theorem 6.3, a locally D-optimal design is given by

ξ∗ =

{
x0 − c

β1
x0 + c

β1

0.5 0.5

}
,

where c ≈ 1.5434.

Example 6.1

For the parameters α1 = −4 and β1 = 1, a D-optimal design is given by

ξ∗ =

{
3.1497 6.2365

0.5 0.5

}
.

In Figure 6.2, d(x, ξ∗) is plotted. Note that d(x, ξ∗) has two maximum
points appearing at the two design points 3.1497 and 6.2365. If ξ∗ is a
D-optimal design the criterion function ψ has minimum value for this
design. However, ξ∗ is also optimal if the determinant of the standard-
ized information matrix, |M (θ, ξ∗)|, has maximum points at the design
points. Figure 6.2 illustrates that this is true for the current example.
In Figure 6.2, |M (θ, ξ)| for the design

ξ =

{
ln 2 + 4 − c ln 2 + 4 + c

0.5 0.5

}
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is given. The maximum value of |M (θ, ξ)| is attained for c ≈ 1.5434.
Moreover, since the value of |M (θ, ξ)| is maximized at the design points
of a D-optimal design, the D-optimal design points are approximately
3.150 and 6.236.
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Figure 6.2: d(x, ξ∗) for a model of independent pairs of responses
and with parameters α1 = −4 and β1 = 1. Determinant of the
information matrix for different choices of design points given the
same parameters.



Chapter 7

Testing for Independence

The previous chapter showed that under the restrictions for mutual in-
dependence, the model collapses to a simple form with only two param-
eters to estimate. Locally D-optimal designs are also easier to derive
when the variables are mutually independent. Test procedures for test-
ing the null hypothesis of independent variables are therefore of interest.
By applying the parameter restrictions given in Theorem 6.1, the mu-
tual independence model can be tested against a more general model.
This chapter considers the score test and the likelihood ratio test for
testing independence. If there is enough support for the independence
model, the model can be estimated and evaluated using standard sta-
tistical software. Tests of independence for exchangeable binary data
have been treated in e.g. George and Kodell (1996) and Kang and Park
(2000). George and Kodell (1996) worked with the model presented in
Chapter 2, see also George and Bowman (1995a,b). They also derived
a test for heterogeneity between treatment groups and a test for a dose-
related trend. Using the same model, Kang and Park (2000) derived an
exact test for independence particularly useful in small samples. This
chapter is based on Bruce and Nyquist (2007).

7.1 Models without Covariates

Assume a simplified Cox model with only two variables, S1 and S2. If
no covariate is included in the model, the loglikelihood as a function of
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π0, π1, and π2 is

ℓ (π;y) =
N∑

i=1

y0i ln π0 + y1i ln π1 + y2i ln π2, (7.1)

where y is a matrix with the responses fromN observations on y0, y1, and
y2. Hence,

yji =

{
1, if S = S1 + S2 = j for observation i.
0, otherwise

,

j = 0, 1, 2 and i = 1, 2, . . . , N.

The test statistic for the score test is defined as

TS = uT . (π̃) I.−1 (π̃)u. (π̃) , (7.2)

where π̃ = (π̃1, π̃2)
T is the estimated vector of probabilities under the

null hypothesis. The hypothesis of independence implies the restrictions
π0 = (1 − π·)

2, π1 = 2π· (1 − π1·), and π2 = π2
· , where π· = P (S1 = 1) =

P (S2 = 1) is the marginal probability to observe a ”success”. Under the
hypothesis of independence, the maximum likelihood estimator of π· is
evidently

π̃· =
1

2N

N∑

i=1

(y1i + 2y2i) =
r1 + 2r2

2N
, (7.3)

where rj is the number of observed pairs that result in S = j, j = 0, 1, 2.
Hence, the estimator π̃· equals the total number of observed ”successes”
divided by the number of observed variables. Maximum likelihood esti-
mators of π0, π1, and π2 are accordingly

π̃0 = (1 − π̃·)
2 , π̃1 = 2π̃· (1 − π̃·) , and π̃2 = π̃2

· . (7.4)

By deriving expressions for the scores and the information matrix from
(7.1) and inserting these expressions in (7.2), the score test statistic
becomes

TS =
2∑

j=0

(rj −Nπ̃j)
2

Nπ̃j

. (7.5)
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The test statistic coincides with the χ2-test statistic for testing the good-
ness of fit of a trinomial distribution with probabilities restricted as de-
scribed above. Asymptotically as N tends to infinity, TS has a χ2 distri-
bution with 1 degree of freedom, the approximation being good provided
the expected frequencies, Nπ̃j, j = 0, 1, 2, are sufficiently large.

The test statistic for the likelihood ratio test is defined as

TLR = 2 {ℓ (π̂;y) − ℓ (π̃;y)}

= 2
2∑

j=0

rj ln
π̂j

π̃j

,

where π̂j =
rj

N
is the unrestricted maximum likelihood estimator of πj,

j = 0, 1, 2. This likelihood ratio test statistic is equivalent to the one
derived in George and Kodell (1996).

This simple case generalizes straightforwardly to the case with several,
say K, groups with Nk observations in each group. The distribution of
the trinomial response vector in each group is here defined by the vector
(π0k, π1k, π2k)

T , k = 1, 2, . . . , K, of probabilities. The test statistic for
the score test now becomes

TS =
K∑

k=1

2∑

j=0

(rjk −Nkπ̃jk)
2

Nkπ̃jk

, (7.6)

where rjk is the observed frequency of category j, j = 0, 1, 2, in group k,
k = 1, 2, . . . , K,

π̃0k = (1 − π̃·k)
2 , π̃1k = 2π̃·k (1 − π̃·k) , π̃2k = π̃2

·k, (7.7)

and

π̃·k =
r1k + 2r2k

2Nk

. (7.8)

Similarly, the test statistic for the likelihood ratio test becomes

TLR = 2
K∑

k=1

2∑

j=0

rjk ln
π̂jk

π̃jk

. (7.9)
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where the unrestricted estimator is

π̂jk =
rjk

Nk

.

The test statistics TS and TLR are asymptotically equivalent and has a χ2

distribution with K degrees of freedom, asymptotically. This asymptotic
result relies on a fixed K and that minNk tends to infinity, Fahrmeir and
Tutz (2001). Here it is important that each Nkπ̃jk is sufficiently large for
the approximation to be good.

7.2 Models with Covariates

A more structured model is obtained if the vector of probabilities π is
governed by a vector of explanatory variables x. Assume that a simplified
bivariate Cox model as described in Chapter 3 is used. The vector valued
linear predictor, η = (η1, η2)

T is then

ηj = xT
j θj, j = 1, 2,

where xj and θj are vectors of explanatory variables and associated pa-
rameters used for determining the probability πj. Denoting the maxi-

mum likelihood estimator of the parameter vector θ under H0 by θ̃, the
score test statistic becomes

TS = uT
·

(
θ̃
)
I.−1

(
θ̃
)
u·

(
θ̃
)
. (7.10)

The test statistic can be calculated using the previously derived expres-
sions for the score vector and the information matrix.

Denote the maximum likelihood estimator without restrictions by θ̂. The
likelihood ratio test statistic is then obtained as the difference of the
loglikelihood function evaluated at θ̃ and at θ̂ :

TLR = 2
{
l
(
θ̂;y
)
− l
(
θ̃;y
)}

. (7.11)

The expression for the likelihood under H0 and the expression for the
unrestricted likelihood have both been given above. The score test statis-
tic and the likelihood ratio test statistic have the same χ2 distribution
asymptotically.
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Suppose that data exist for K independent groups with Nk observations
in each group. Then the two vectors of explanatory variables are identical
and consist of dummy variables x1 = x2 = (d1, d2, . . . , dK)T , where each
dk is either 1 or 0, indicating if an observation comes from response
group k or not, k = 1, 2, . . . , K. In this case the model reduces to the
case with K response groups discussed above and the test statistics for
independence are (7.6) and (7.9).

Example 7.1

The data for this example are taken from Liang et al. (1992). 5199
people are subject to a visual examination, measuring if the left eye
and/or the right eye has a visual impairment or not. The outcome for
each eye is binary, where ” + ” indicates visual impairment and ”− ” no
visual impairment. Age is used as explanatory variable, see Table 7.1.
In Table 7.1 there are, e.g. 3627 out of 3958 people in age 40 − 70 that
have no visual impairment.

Left Right Age: 40 − 70 Age: 71+ Total
− − 3627 913 4540
+ − 122 89 211
− + 133 104 237
+ + 76 135 211

Total 3958 1241 5199

Table 7.1: Joint distribution of visual impairment for both eyes,
for the two age groups 40− 70 and over 70, respectively. Data are
taken from Liang et al. (1992).

The probability that the left eye is visually impaired is assumed to be
equal to the probability that the right eye is visually impaired. This
assumption is reasonable since the risk of visual impairment (in percent)
is similar for the left and the right eye in both age groups.

Let S1 and S2 be Bernoulli variables for visual impairment of the left eye
and the right eye, respectively. The elements of the response vector yi =
(y1i, y2i)

T , i = 1, 2, . . . , 5199, are the corresponding indicator variables.
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The vector of explanatory variables consists of the dummy variables d1

and d2 denoting the two age groups. The link function is therefore

η =

(
η1

η2

)
=

(
β11d1 + β12d2

β21d1 + β22d2

)
.

Suppose now that primary interest is in the possible dependence between
S1 and S2. In this setup, S1 and S2 are independent if the parameter
restrictions

β2j = 2β1j, j = 1, 2

are satisfied. As stated previously the score test statistic is given by
(7.6). The test statistic has a χ2 distribution with 2 degrees of free-
dom, asymptotically. The observed test statistic for the data material in
Table 7.1 becomes, using (7.6),

TS ≈ 751.22.

Hence the hypothesis of independence is rejected since the critical value
on the 5% level is 5.991. The observed likelihood ratio test statistic is
derived from (7.9). Since the value on the test statistic is

TLR ≈ 465.35,

the hypothesis about independence is rejected when using the likelihood
ratio test as well.

Another model is used when the linear predictors consist of an intercept
and a single explanatory variable, x, the same variable in both linear
predictors, so that ηj = xT θj, x = (1, x)T and θj = (αj, βj)

T , j = 1, 2.
In this model, the explanatory variable x may influence the ”success”
probabilities π1 and π2 differently. Here S1 and S2 are independent if
β2 = 2β1 and α2 = 2α1 − ln 4. Asymptotically, both TS and TLR are
χ2-distributed with 2 degrees of freedom. Values on the test statistics
are now computed for two artificially created data materials.

Example 7.2

Data consists of 100 pairs of Bernoulli variables. Each pair is associated
with a single covariate, x, ranging between zero and ten, see Figure 7.1.
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Ignoring the covariate x, the observed frequencies for S = 0, 1, 2 are
49, 17, and 34, respectively. By only looking at the observed frequencies,
S1 and S2 seem to be dependent. The goodness of fit test given in (7.5)
confirms this. The observed test statistic when the covariate is ignored
is

χ2
obs ≈ 42.54.

Clearly, the conclusion based only on this test would be that S1 and S2

are dependent. However, it is not sufficient to look at observed marginal
frequencies only. When testing for independence, one has to study how
the probabilities π̂0 (x) , π̂1 (x) , and π̂2 (x) change when taking account
of the covariate, x. The relative low frequency of pairs where S = 1 is
explained by the fact that many observations are taken at values of x
where π̂1 (x) is small.

The score test statistic and the likelihood ratio test statistic, given in
(7.10) and (7.11), take covariates into account in the test procedures.
The observed test statistics for the two tests become

TS ≈ 0.0340

and
TLR ≈ 0.0338,

respectively. Because the critical value at the 5% level is 5.991, the
hypothesis of independence can not be rejected in either of the tests.

Another good indicator of the possible dependence between S1 and S2

is the estimated probabilities π̂0, π̂1, and π̂2, given in Figure 7.1. The
probabilities π̂0, π̂1, and π̂2 as function of x, closely resembles the appear-
ance of a distribution for independent Bernoulli variables, see Section 6.4.
There are several characteristically properties in a model for independent
data. Two of these properties are clearly shown in Figure 7.1. First the
maximum value of π̂1 is close to 0.5, and secondly π̂1 is a symmetric
function around arg max

x
π̂1. This example emphasizes the importance of

including existing covariates in the analysis.

Example 7.3

The data in the third example have the same structure as the data in
Example 7.2. Data consist of 100 pairs of Bernoulli variables, where each
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Figure 7.1: The 100 observations on S for Example 7.2, (upper
plot). The estimated probabilities π̂0, π̂1, and π̂2 as functions of x,
(lower plot). The parameter values used are those obtained from

the bivariate logit estimator θ̂.

pair is associated with a single covariate. Thus, the same model can be
fitted to this data material as to the previous data material. Figure 7.2
shows that the data in Example 7.3 resemble the data in Example 7.2.
Nevertheless, the observed score test statistic and the observed likelihood
ratio test statistic are given by

TS ≈ 6.3066

and

TLR ≈ 7.7791,

respectively. The hypothesis of independence is rejected in both tests
because the observed test statistics exceed the critical value at the 5%
level. Figure 7.2 presents the probability distribution of S based on the
estimator of the unrestricted likelihood, θ̂.
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Figure 7.2: The 100 observations on S for Example 7.3 (upper
plot). The lower plot shows the estimated probabilities π̂0, π̂1, and
π̂2 as functions of x.

The probability distribution does not share the properties of a probabil-
ity distribution generated by independent Bernoulli variables. In partic-
ular, the maximum value of π̂1 is relatively far from 0.5 and π̂1 is not a
symmetric function around arg max

x
π̂1.
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Chapter 8

Optimal Design in a Test of

Independence

In the previous chapter, examples showed that a covariate, which is im-
portant in explaining the probability distribution of S, should be included
in a test for independence between S1 and S2. The examples illustrate
how the response probabilities, π0, π1, and π2, in some cases clearly
depend on the covariate. In an experimental study the values of the
covariate can be controlled. Therefore it is of interest to find values of
the covariate so that properties of the test are optimized. In particular,
different sets of values of the covariate generate different power of the
test. In this framework, a favorable power function can be generated if
the values of the covariate, i.e. the design, are chosen in an appropriate
way. This chapter considers the problem of finding optimal designs such
that the local asymptotic power of the score test in (7.6) is maximized.

8.1 Optimal Design

For determining an approximation to the power of the test at an alter-
native hypothesis close to H0, let θ be the true value of the parameter
vector and θ0 the value under H0. Let further δ =

√
N (θ − θ0) be fixed

so that θ converges to θ0 as N tends to infinity. The first-order expansion
of 1√

N
u. (θ0) around θ is

1√
N
u. (θ0) =

1√
N
u. (θ) +

1

N
H
√
N (θ0 − θ) ,
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where H is the matrix of second-order derivatives of the loglikelihood
function. Now, the first term in this expression converges to a normally
distributed random variable with zero mean and varianceM (θ0), and the
second term converges to M (θ0) δ. Hence, the distribution of 1√

N
u. (θ0)

is approximately normal with expectation M (θ0) δ and variance M (θ0),
in large samples. This makes that the distribution of the score test
statistic, TS, can be approximated in large samples by a noncentral χ2

distribution with 2 degrees of freedom and non-centrality parameter

ϕ = δTM (θ0) δ. (8.1)

The asymptotic distribution of test statistics is treated in, e.g. Ferguson
(1996). When evaluating the information matrix in ϕ, the true value θ
can be used instead of θ0 so that

ϕ = δTM (θ) δ. (8.2)

As Ferguson points out, (8.1) and (8.2) are asymptotically equal. In
this chapter the performance of the score test statistic is examined by
determining the power of the test in finite samples. The power of the
test is found as the probability that TS exceeds the critical value Tc

given that θ is the true parameter vector. Therefore (8.2) will be used
as non-centrality parameter throughout this chapter.

Obviously, the power depends on ϕ and is smallest in the direction δ
in which δTM (θ) δ is minimized. The smallest possible value of ϕ is
the smallest eigenvalue of M (θ) and δ is the eigenvector associated to
the smallest eigenvalue. If an experiment is to be conducted in order
to test H0, it is reasonable to select a design that makes the power
of the test as large as possible. Furthermore, the smallest power is in
the direction of the eigenvector associated to the smallest eigenvalue of
M (θ). If no direction is of particular interest, a design that maximizes
the smallest eigenvalue of M (θ) is proposed. This design is recognized
as an E-optimal design, see Section 4.2.3 for a description of E-optimal
designs.

Unfortunately, the E-optimal design for maximizing the smallest local
power depends on the unknown parameter vector, so only a locally op-
timal design can be determined. As an example, with α1 = −2 and
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β1 = 1, and accordingly α2 = −4 − ln 4 ≈ −5.3863 and β2 = 2, the
3−point design

ξE =

{
0.1741 2.2049 5.7469
0.4414 0.3706 0.1880

}
(8.3)

is obtained. The probabilities π0, π1, and π2 are estimated at each design
point as in (7.7) and (7.8). The test statistic (7.6) is then used, treating
the design points as different groups.

It should be noted that this design maximizes the smallest power. This
means that there may be other deigns that yield a stronger power at
some alternatives under H1 but at some other parameter values under
H1 they yield a smaller power than the E-optimal design. On the other
hand, there is no design that dominates the E-optimal design in that it
provides a larger asymptotic power than that for the E-optimal design
for all directions of the alternative hypothesis.

Section 8.2 and Section 8.3 illustrate how the performance of a locally
optimal design can be investigated with respect to small samples and
incorrect guesses of the parameter values. The results from the investi-
gation can not be generalized to an arbitrary locally optimal design. It
is merely one example on how to examine the performance of a proposed
locally optimal design.

8.2 Small Sample Performances based on

Simulation

In this section the performance of a locally optimal design in small sam-
ples is examined with respect to the power of the score test. Using simu-
lation the power is calculated and then compared against the asymptotic
power for the same sample size. Values of the parameters α1 and β1 are
chosen arbitrary to α1 = −2 and β1 = 1. The power of the score test
depends on the alternative hypothesis. Values of α2 and β2 far away
from their restrictions under H0 yield in general a large power. In order
to examine the power for different alternative hypothesis, α2 and β2 are
varied over intervals of values. The sample sizes are chosen to be 100,
400, and 1000, respectively. Using simulation, a data set is created 5000
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times for each value of α2 and β2. The score test statistic, based on
the simulated data, is then calculated using (7.6), (7.7), and (7.8). The
power is determined as the percentage of the score test statistics larger
than the critical value Tc. The significance level is taken to be 5% in all
studied cases.
The hypotheses when testing for independence are

H0 :

{
α2 = 2α1 − ln 4
β2 = 2β1

H1 : α2 6= 2α1 − ln 4 or β2 6= 2β1. (8.4)

Using (α1 = −2, β1 = 1) a locally E-optimal design is given in (8.3). Note
that the design depends only on α1 and β1. Contour plots of the power as
a function of α2 and β2 for different sample sizes are given in Figure 8.1,
Figure 8.2, and Figure 8.3. In each figure the simulated power function
is compared against the asymptotic power function for the same sample
size.

In general, the simulated power is smaller than the asymptotic power
at an arbitrary alternative hypothesis. For a given power the contour
line for the simulated power lies farther away from H0 compared to the
asymptotic power. The difference is larger for N = 100 than for N = 400
or N = 1000. Besides this the asymptotic power resembles the simulated
power fairly well, at least for the larger sample sizes.

Two notes follow immediately from the results obtained, one note con-
cerns the computation of the test statistic at certain parameter values,
the other concerns the general shape of the power contours.

The first note may be explained in terms of the log-odds ratio between S1

and S2, ln Ω. The expression for ln Ω was given in (3.2). Let ln Ω for the
particular value xi be denoted by ln Ωx=xi

. Since ln Ω also depends on the
parameter vector θ, different alternative hypotheses yield different values
on ln Ω. In this particular example, large values on α2 and β2 generate
a large ln Ω. When ln Ω is large, the estimated marginal probability of
observing a ”success”, π̃·, is often equal to one. As a direct consequence,
the score test statistic, TS in (7.6), can not be computed. This results
in computational problems when determining the power. Especially the
design point at x = 5.7469 generates, for some values on α2 and β2, a ln Ω
that causes these computational problems. Because of these problems,
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Figure 8.1: Contour plot of the simulated and the asymptotic
power as a function of α2 and β2 for N = 100. The vertical dotted
line in (a) is an approximate boundary showing for which (α2, β2)
the computational problems are extensive.
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Figure 8.2: Contour plot of the simulated and the asymptotic
power as a function of α2 and β2 for N = 400.
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Figure 8.3: Contour plot of the simulated and the asymptotic
power as a function of α2 and β2 for N = 1000.
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the test statistic in Figure 8.1(a) is not computed when ln Ωx=5.7469 is
larger than seven. A dotted line in Figure 8.1(a) indicates for which
parameter values ln Ωx=5.7469 is equal to seven. Although computational
problems are more extensive in small samples, such as N = 100, these
problems still appear when N = 400. In the lower right corner of the
contour plot in Figure 8.2(a), the test statistic can not be computed for
some parameter values. Due to the computational problems for some
values of α2 and β2, the power is not based on 5000 replicates for all
(α2, β2) in the plots.

Under H0, (α2 ≈ −5.4, β2 = 2) , ln Ω = 0 since S1 and S2 are indepen-
dent. Furthermore, the power of the test is close to 0.05 in this point. If
the true values of α2 and β2 differ from H0 in the direction α2 ≈ −2β2,
the contour plots in all three figures show that the power is small. This
area with low power starts in (α2 ≈ −5, β2 ≈ 2) and goes in the direction
α2 = kβ2, where the value of k is between −2.5 and −2 depending on
the sample size.

For the asymptotic power the result is explained by the fact that the
appearance of the contour plots are determined by the non-centrality
parameter ϕ and that ϕ in general is small in this direction. Note that ϕ
gets larger as the sample size increases. Therefore, the asymptotic power
in the direction α2 ≈ −2β2 in Figure 8.3(b) is larger compared to the
asymptotic power in Figure 8.2(b) and in Figure 8.1(b).

To explain the result for the simulated power the calculation of the power
needs to be studied in detail. In particular the probabilities πjk in the
alternative hypothesis have to be compared to the probabilities π̃jk un-
der the null hypothesis, j = 0, 1, 2 and k = 1, 2, 3. Given an arbitrary
alternative hypothesis in the area with low power, Figure 8.4 compares
πjk with π̃jk at the design points. The comparison shows that πjk resem-
bles π̃jk very well at the design points, x = 0.1741 and x = 2.2049. In
the third design point, at x = 5.7469, there is a small difference between
π2 and π̃2. Nevertheless, the difference is so small that it requires a very
large sample to reject the hypothesis of independence. Hence, the esti-
mated frequencies Nkπ̃jk in (7.6) are similar to the observed frequencies
rjk for j = 0, 1, 2 and k = 1, 2, 3. This results in low power, despite
the fact that α2 and β2 are far from their restrictions under the null
hypothesis.
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Figure 8.4: The probabilities π0, π1, π2 for θT = (−2,−8, 1, 3.25)

and the probabilities π̃0, π̃1, π̃2 under independence, i.e. for θ̃T =
(−2,−5.4, 1, 2). The design points of the E-optimal design are
shown as vertical lines where the height of each line corresponds
to the size of the design weight.

The distribution of the score test statistic in small samples is not com-
pletely comparable to the asymptotic distribution of the score test statis-
tic. An important difference is that the asymptotic power of the test is
based only on the cumulative distribution function of the non-central χ2

distribution. Hence, the described computational problems can never
occur for the asymptotic power, since the non-centrality parameter ϕ is
always computable. The expression for the test statistic in finite sam-
ples, on the other hand, is based on a finite number of observations where
computational problems do occur.
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8.3 Robustness of a Locally Optimal De-

sign

As stated before, the optimal designs depend on the parameters α1 and
β1. For that reason it is of great interest to study how well the optimal
designs perform against incorrect guesses of the parameter values. Espe-
cially important is that the designs generate a good power function for
the test they are supposed to optimize, regardless of incorrect guesses of
the parameter values. A design is considered to be robust if the power
of the test for fairly incorrect guesses of the parameter values is close to
the power generated by the correct parameter values. Throughout the
section, the design considered is E-optimal for α1 = −2 and β1 = 1.
Note that all power functions are based on the optimal design under
consideration. Power is evaluated for a number of different alternative
hypotheses, since the power function also depends on the alternative
hypothesis. Because a complete robustness examination of the optimal
design is extensive, only a sample of the resulting plots is shown here.

Consider the E-optimal design for testing both restrictions α2 = 2α1−ln 4
and β2 = 2β1. Assume that the alternative hypothesis is given by α2 =
2α1 − ln 4 + a and β2 = 2β1 + b where a and b are constants. Since
the asymptotic power, given α1 and β1, is an even function of a and b,
only positive values of a and b are considered. The evaluation of the
robustness utilizes the relative power for different (α1, β1) with respect
to (α1 = −2, β1 = 1). Relative power is used because it gives a direct
measure of the robustness.

Figure 8.5 shows the relative power as a function of both α1 and β1 given
some values on a and b. Note that the relative power in all figures is equal
to one in the point (α1 = −2, β1 = 1).

In the first three columns of contour plots the design is robust around
the line α1 + 6β1 = d, where d is between [−0.5; 0.8] depending on the
alternative hypothesis. The large power along this line is explained by
large values on the non-centrality parameter, ϕ. All contour plots are
parallel to this line, verifying that the design is robust for these parameter
values. Some values of α1 and β1 generate a relative power larger than
two, showing that the design is very efficient for these parameter values.
On the other hand, the relative power decreases fast when the values on
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Figure 8.5: Contour plots of the relative power with respect to
α1 = −2 and β1 = 1. The different alternative hypotheses are
given above each plot.

α1 or β1 change in the direction perpendicular to the line α1 + 6β1 = d.
The design is least efficient when α1 + 6β1 < d. In the fourth and last
column, where b = 1.5, the design is robust around the line α1 +2β1 ≈ 1.

Figure 8.5 treats mainly how different (α1, β1) affects the robustness of
the design. It is therefore hard based on those figures to conclude how
the alternative hypothesis, i.e. a and b, affects the robustness.

Figure 8.6 illustrates in more detail how the alternative hypothesis affects
the robustness. Figure 8.6 displays the relative power as a function of
both a and b given some values on α1 and β1. By looking at the plots in
row two and column three in Figure 8.6, the design is robust when just
one of the guesses on α1 and β1 is incorrect. From Figure 8.6 it is clear
that the relative power as a function of a and b changes a lot when both
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guesses on α1 and β1 are incorrect.
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Figure 8.6: Contour plots of the relative power with respect to
α1 = −2 and β1 = 1 as a function of a and b. The different
parameter values are given above each plot.

In summary, the locally optimal design is found to be fairly efficient
against incorrect guesses of the parameter values when just one of the
guesses on α1 and β1 are incorrect. Moreover when b ≤ 0.5, the design
is robust around the line α1 + 6β1 = d where d is between [−0.5; 0.8]
depending on the alternative hypothesis. However, outside this line large
variations in the robustness occur for different alternative hypotheses
when both guesses on α1 and β1 are incorrect.



Chapter 9

A Numerical Example:

Cariogenic Effect of Diets

9.1 Description of the Example

Up to this point, the preceding chapters have outlined the simplified
Cox model and discussed optimal designs and inferential aspects of the
model. Some of the results obtained are demonstrated in this chapter
using a data set. In the numerical example the model is estimated with
and without restrictions of independence. Using these estimates the
locally D-optimal design is derived. In addition, an E-optimal design,
for maximizing the local power in a test for independence, is derived. The
original design is compared to these locally optimal designs with respect
to precision and power. The main part of Section 9.1 and Section 9.2 is
presented in Bruce (2008).

The application, given in Andrews and Herzberg (1985), is a clinical
trial using rats as experimental units. In the experiment 60 rats were
randomly assigned to different doses of a certain substance. The purpose
of the experiment was to see how this substance neutralizes caries in
the teeth of the rats. During the feeding period all rats were therefore
given a cariogenic control diet together with a dose of the substance that
would hopefully neutralize the cariogenic effect. The used doses were

101
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0, 0.25, 0.5, and 1 with equally many rats assigned to each dose1. At the
end of the experiment, occlusal surfaces in each rat were examined for
caries. The response variables are the first two occlusal surfaces, each
binary coded as ”caries” or ”no caries”.

The experiment is very briefly described in Andrews and Herzberg (1985).
The briefness of the documentation is problematic since it is hard to in-
terpret the choice of experimental design as well as other aspects of the
experiment without a proper documentation. For example, is it difficult
to determine if a high dose is feasible with respect to toxicity, ethical
aspects, and costs. Unfortunately no further information on how the ex-
periment was carried out has been found. Even a conversation with the
authors of the book did not yield a full description of the experiment.

9.2 Model and Estimation

Let the response of the two occlusal surfaces be denoted by S1 and S2,
respectively. Moreover, Si equals one if caries is found and zero otherwise,
i = 1, 2. Since there are two Bernoulli variables, the simplified Cox model
for S = S1 + S2 has three response categories, S = 0, S = 1, and S = 2.
The linear predictor is

η =

(
η1

η2

)
=

(
α1 + β1x
α2 + β2x

)
,

where x denotes the used dose. Using the outcome S = 0 as reference
category, the probabilities π0, π1, and π2 become

π0 =
1

1 + eη1 + eη2

π1 =
eη1

1 + eη1 + eη2

π2 =
eη2

1 + eη1 + eη2
.

1During the experiment one rat from the group with dose 1 died. Consequently,
the parameter estimates from the experiment are only based on 59 observations.
Despite this, it is reasonable to conclude that the used design assigns equally many
rats to each dose since this was the initial plan of the experiment.
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In order to fit the simplified Cox model to the data set it must be assumed
that S1 and S2 are identically distributed. If the distributions of S1 and
S2 are different, a Cox model must be used instead. In the bivariate case,
the Cox model has four outcomes with probabilities

π00 =
1

1 + eη10 + eη01 + eη11

π10 =
eη10

1 + eη10 + eη01 + eη11

π01 =
eη01

1 + eη10 + eη01 + eη11

π11 =
eη11

1 + eη10 + eη01 + eη11
.

The linear predictor is

η =



η10

η01

η11


 =



α10 + β10x
α01 + β01x
α11 + β11x


 .

To test if the Cox model can be reduced to the simplified Cox model, a
likelihood ratio test is used. This test compares the unrestricted loglike-
lihood of the Cox model with the loglikelihood of the same model under
the restrictions {

α10 = α01

β10 = β01.

The observed test statistic is very close to zero (1.4211 ·10−14) indicating
that S1 and S2 have the same distribution. The reason why the test
statistic is so close to zero is that there are equally many ”caries” for S1

as for S2 in the data.

Assuming that data are described by a simplified Cox model, the model
can now be estimated. When estimating the model it is also of inter-
est to test if the simplified Cox model can be reduced to a model for
independent data. When S1 and S2 are independent, S ∼ Bin (2, π·)
with

π· =
eη1

2 + eη1

and
η1 = α1 + β1x.
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Using Theorem 6.1, the hypotheses

H0 :

{
α2 = 2α1 − ln 4
β2 = 2β1

H1 : α2 6= 2α1 − ln 4 or β2 6= 2β1.

for testing independence are obtained. The restrictions under H0 impose
the probabilities π0, π1, and π2 to follow a binomial distribution for
independent Bernoulli variables. The likelihood ratio test statistic is

TLR = 2
{
l
(
θ̂;y
)
− l
(
θ̃;y
)}

,

where y is the matrix of responses from the whole sample. θ̃ and θ̂ are
the maximum likelihood estimators under H0 and H1, respectively. The
observed values of θ̃ and θ̂ are found to be

θ̃T =
(
α̃1, β̃1

)
≈ (3.6138,−1.7628)

and

θ̂T =
(
α̂1, α̂2, β̂1, β̂2

)
≈ (−0.1068, 3.2843,−0.1824,−1.8952) ,

respectively. TLR has a χ2-distribution with 2 degrees of freedom, asymp-
totically. The observed test statistic is found to be

TLR ≈ 15.79.

Since the critical value on the 5% level is 5.991, the hypothesis of inde-
pendence is rejected.

9.3 Locally D-optimal Design

Assuming that the parameter estimates θ̂T = (−0.1068, 3.2843,−0.1824,−1.8952)

are the true parameter values, i.e. θ = θ̂, a locally D-optimal design is
derived. The locally D-optimal design is

ξ∗ =

{
0.7893 2.4226 14.5712
0.3029 0.4515 0.2456

}
.
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Figure 9.1 presents the probabilities π0, π1, and π2 as functions of the
cariogenic neutralization substance under study, x. The design points for
the D-optimal design can be seen as vertical lines where the height of each
line corresponds to the size of the design weight. The design points of the
original design only estimate π0, π1, and π2 for a limited range of values
of x, between 0 and 1. Figure 9.1 shows that the D-optimal design on
the other hand provides much more information about π0, π1, and π2 for
larger values of x. The third design point of the D-optimal design, located
at x = 14.5712, is far from any of the design points of the original design.
The location of this third design point is explained by the fact that the
D-optimal design is based on θ = (−0.1068, 3.2843,−0.1824,−1.8952).
Given this θ, π1 in Figure 9.1 decreases so slowly that a design point as
far out as x = 14.5712 is needed.
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Figure 9.1: The vertical lines are the design points of the D-optimal
design. The height of each line corresponds to the size of the design
weight. The estimated probabilities π̂0, π̂1, and π̂2 as functions of
the cariogenic neutralization substance, x, are also given.

In Section 5.3.1 D-efficiency was introduced as a comparison between
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designs with respect to the precision in the parameter estimator. Com-
pared to the D-optimal design, the D-efficiency for the original design
is

Deff ≈ 0.1981.

Thus, the D-optimal design needs only around 20 per cent as many
observations as the original design to reach the same precision in the
parameter estimator. Precision is here interpreted as the generalized
volume of the confidence ellipsoid of the parameters.

9.4 Locally E-optimal Design

Suppose that interest is in deriving a design so that a test for indepen-
dence is conducted. In Chapter 8 it was argued that a locally E-optimal
design should be used in order to maximize the power of the test. Recall
that the locally E-optimal design maximizes the smallest locally asymp-
totic power of the score test for testing the hypothesis of independence
above. Assume that α̃1 and β̃1 from the experiment are the true values
of the parameters, i.e. θ = θ̃, the locally E-optimal design, ξE, is derived.
For θT = (α1, β1) = (3.6138,−1.7628), ξE is a 3-point design with the
following design points and design weights

ξE =

{
0.2406 1.3650 3.3924
0.2542 0.4721 0.2737

}
.

Figure 9.2 shows the locations and the weights of the design points of
ξE. The probabilities π0, π1, and π2 as functions of x are also shown.
As for the D-optimal design, the E-optimal design provides much more
information about π0, π1, and π2 for larger values of x compared to the
original design. A difference between the D-optimal design and the E-
optimal design is that there is no support in ξE for an extreme design
point such as the third design point in ξ∗, at x = 14.5712. The lack of an
extreme design point in ξE is explained by the appearance of π0, π1, and
π2 in Figure 9.2. For values of x larger than five, π0 is very close to one. In
this region there is no need for a design point since the design point would
provide very little information on how π0, π1, and π2 change as functions
of x. Thus, the largest design point in ξE is located at x = 3.3924.
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Figure 9.2: The estimated probabilities π̃0, π̃1, and π̃2 as functions
of the cariogenic neutralization substance, x. The design points of
the E-optimal design are shown as vertical lines.

To evaluate the precision in the parameter estimator based on the E-
optimal design, D-efficiency is used once again. Compared to the E-
optimal design, the D-efficiency for the original design is

Deff ≈ 0.2323.

Thus, the E-optimal design needs only around 23 per cent as many obser-
vations as the original design to reach the same precision in the parameter
estimator. With respect to the D-optimal design, the E-optimal design
has a D-efficiency of 0.8529.

Suppose that the designs are to be compared with respect to the smallest
asymptotic power among all alternative hypotheses in a test for indepen-
dence. The preferable measure is then E-efficiency, which compares the
precision in the worst estimated contrast of the parameters. Let ζ denote
the smallest eigenvalue of M (θ) based on the original design and let ζE
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denote the smallest eigenvalue of M (θ) based on the E-optimal design,
θT = (3.6138,−1.7628). The E-efficiency is defined as

Eeff =

(
ζ

ζE

)
.

In the example, the E-efficiency is around 0.098. The E-efficiency can be
interpreted in several ways. The most interesting interpretation is per-
haps to compare the designs with respect to the number of observations
required to reach a certain precision. In an experiment based on the
original design, let s2 and N denote the variance of the worst estimated
contrast of the parameters and the total number of observations, respec-
tively. If the experiment is based on the E-optimal design, let s2

E and NE

denote the variance of the worst estimated contrast of the parameters
and the total number of observations, respectively. Furthermore, ζ and
ζE are inversely proportional to

ζ ∝ N

s2
and ζE ∝ NE

s2
E

,

respectively. This follows from the fact that the length of the longest
axis of the confidence ellipsoid is inversely proportional to the small-
est eigenvalue of the information matrix, Atkinson and Donev (1992).
Thus, given the same number of observations, the variance of the worst
estimated contrast of the parameters for an experiment based on the
E-optimal is 0.098 times the corresponding variance for an experiment
based on the original design. Assume that

s2

N
= p, (9.1)

where p is the desired precision. Given that s2
E = 0.098s2 and that the

precision is equal to p,

NE =
0.098s2

p
. (9.2)

The two equations in (9.1) and (9.2) together imply that

NE = 0.098 ·N.

Hence, the E-optimal design needs only around 10 per cent as many
observations as the original design to reach the same precision in the
worst estimated contrast of the parameters.
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E-efficiency only compares designs with respect to the worst estimated
contrast of the parameters. By comparing the designs with respect to
power in several different alternative hypotheses, a more comprehensive
comparison of the designs is obtained. The power for different alternative
hypotheses, i.e. different α2 and β2, is calculated using simulated data
as follows. For each alternative hypothesis a data set with a sample size
of 1000 is created 5000 times. The score test statistic is then calculated
using the formulas (7.6), (7.7), and (7.8) in Chapter 7. The power is
given by the percentage of the score test statistics that are larger than
the critical value at the significance level 5%.

In Figure 9.3, the relative power between the E-optimal design and the
original design is given. For interpretation of the figure, consider an area
where the relative power is around three. This means that the power of
the E-optimal design is approximately three times larger than the power
of the original design. Since α1 = 3.6138 and β1 = −1.7628, the values
for α2 and β2 under H0 are α2 ≈ 5.84 and β2 ≈ −3.53, respectively.
Figure 9.3 shows that the power for the E-optimal design is about as
high or higher compared to the original design for almost all alternative
hypotheses. The only exception is the upper-left corner where the power
for the original design is approximately twice as large compared to the E-
optimal design. In the lower-right part, there are alternative hypotheses
for which the power of the E-optimal design is as much as ten times
larger than the power of the original design.

9.5 Concluding Remarks

The last two sections show that the original design is very inefficient in
estimating the parameters compared to both the D-optimal design and
the E-optimal design. The D-optimal design and the E-optimal design,
only require around 20 per cent as many observations as the original
design to reach the same precision in the parameter estimator. This
implies that a substantial amount of money had been saved if the D-
optimal design or the E-optimal design had been implemented instead
of the original design.

It should be stated that this conclusion depends on the assumption that θ̂
and θ̃ are true values for the D-optimal design and the E-optimal design,
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Figure 9.3: Relative power between the E-optimal design and the
original design for different alternative hypotheses, (α2, β2). The
power for both designs is calculated for the score test which tests
if the variables are independent. The values for α2 and β2 under
H0 are α2 ≈ 5.84 and β2 ≈ −3.53, respectively.

respectively. If these guesses on the parameter values differ considerably
from the true parameter values, the favorable properties of the respective
design might not hold. Moreover, the comparison is somewhat unfair in
that the goals of the original experiment are not known. For example,
it is unlikely that the purpose of the experiment was to maximize the
power in a test for independence.

On the other hand, if θ̂ and θ̃ are inefficient estimates it is quite possible
that the ineffectiveness was caused by a poor original design. Another
possible consequence of incorrect parameter values is the extreme design
point at x = 14.5712 in the D-optimal design. If the original design
had generated parameter estimates closer to the true values, it is pos-
sible that the corresponding locally D-optimal design would not include
such an extreme design point. However, it is also possible that different
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parameter estimates generate an even more extreme design point than
x = 14.5712.

When deriving the D-optimal and E-optimal designs, different guesses on
the parameter values are used. This is due to different inferential goals of
the two designs. The D-optimal design is based on θ̂ since the objective
is estimating the parameters with good precision, whereas the E-optimal
design is based on θ̃ since the design is derived under the hypothesis of
independence.



112



Chapter 10

Discussion and Suggestions

for Further Research

A multinomial logit model for identically distributed Bernoulli variables
is examined in this thesis. How well the model fit the data depends on
several factors and assumptions.

The model is only applicable to data where identically distributed Bernoulli
variables exist. For a similar model Agresti (2002) argued that data fit
poorly if the marginal distributions of the Bernoulli variables differ sub-
stantially. Hence, it remains to investigate how poorly the model fits
when the assumption is not valid.

Another critical assumption is that an observation on S1, S2, . . . , Sk is
really composed of k Bernoulli variables. Estimation of the model can
not be carried out when there is an item nonresponse on some of the
variables S1, S2, . . . , Sk. This restriction implies that all applications
must have a fixed batch or litter size. The problem does not only occur
in observational studies, but can also occur in experimental studies where
the sizes of the batches are under control. George and Bowman (1995b)
extended the model presented in Chapter 2 to incorporate data with
random batch sizes. A problem with incorporating the batch size into
the model is that the correlation between (S1, S2, . . . , Sk) is affected by
the batch size. According to Williams (1987) this often leads to problems
with overdispersion. In addition, the size of the batch may be affected
by the treatment, (Williams, 1987; George and Bowman, 1995a).

All observations with a certain value on the covariates are assumed to be
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homogeneous in the sense that they have the same parameter values. A
further development would be to include, e.g. random effect parameters
in the linear predictor. These parameters would then account for vari-
ations among observations. Parameters for modelling the heterogeneity
among individuals are included in the general model for dependent bi-
nary responses given in Agresti (1997).

A bivariate model where the dependence between the variables is con-
trolled by a distance covariate is proposed in Section 3.4. This model is
just briefly discussed and additional research is required. Examples of is-
sues to study include interpretation of the model, parameter restrictions
in a test for independence, and various optimal designs including optimal
designs in two variables, both a distance covariate and a covariate for
the dose.

In Chapter 8, an E-optimal design which maximizes the smallest locally
asymptotic power of the score test for testing independence is proposed.
The asymptotic power function of the test is compared with power func-
tions for finite sample sizes using a small simulation experiment. The
results indicate that the locally optimal designs perform well as long as
ln Ω is negative. A problem occurs however, for large values of ln Ω. The
problem is related to the fact that almost all observations fall in the same
response category. This affects the performance of the test statistic in
small samples. If the Bernoulli variables are strongly correlated the value
of the test statistic might not exist. On the other hand, other test proce-
dures for testing independence in 2×2 contingency tables have the same
problem when small expected cell frequencies appear, see (Haberman,
1988; Agresti, 2002).

The locally optimal design is fairly robust against incorrect parameter
values. It should be stated that the investigation about robustness is not
comprehensive since only one parameter setup is examined, i.e. α1 = −2
and β1 = 1. To obtain a more general result on the robustness of an
arbitrary design, a spectrum of values for α1 and β1 should be examined.
The reason why it has not been done here is that such investigation
would totally overwhelm the other results of the thesis.

An additional aspect is that the robustness evaluation relies on asymp-
totic results instead of results derived using simulated data. It was shown
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in Section 8.2 that the power function based on simulations does not re-
semble the asymptotic power function completely, at least in situations
where the correlation between the variables is strong. Altogether, this
shows that in the particular situation of interest, it is important to thor-
oughly examine the performance of the test statistic before the design of
the experiment is determined.

In Chapter 9 an example with diets reducing the cariogenic effect is ana-
lyzed. When deriving optimal designs for this application as well as many
other applications involving clinical trials, a design point is sometimes
too extreme with respect to toxicity and ethical aspects. The locally
D-optimal design derived in the cariogenic example has a design point
around 15. This should be compared with the original design, where all
design points were between 0 and 1. In this context the probability of
toxicity is certainly too high for a design point around 15. This raises
the issue of using some constraint optimization technique, Cook and Fe-
dorov (1995), or a penalty function as in Dragalin and Fedorov (2006),
to incorporate the restriction of a maximum tolerated dose in the model.

Another issue for further research is to derive algebraic forms for locally
D-optimal designs. One approach to do this is to first derive analytical
results which show how the information matrix is affected when the val-
ues of the parameters change. In this context, Fan (1999) and Puu (2003)
derived analytical results for the determinant of the information matrix.
Then, the results about the information matrix are used to derive gen-
eral expressions for locally D-optimal designs. Although Fan (1999) and
Puu (2003) worked with other models, it is of interest to derive similar
results for the model in this thesis. The derivation for algebraic expres-
sions is also an issue for the asymptotically optimal designs discussed
in Section 5.3. The proposed designs have a setup which resemble the
limiting locally optimal designs in Fan (1999). A future task is therefore
to analogously derive closed forms for limiting optimal designs under the
simplified Cox model.

In a clinical trial with the responses efficacy (yes/no) and toxicity (yes/no)
the main objective may not be generally good precision in the parameter
estimates. Instead, focus could be on finding conditions that maximize
the probability for a particular outcome, say the response (”efficacy”,”no
toxicity”). Optimal designs with this objective have been studied in e.g.
Heise and Myers (1996), Fan (1999), and Rabie (2004). Derivations of



116 Chapter 10. Discussion and Suggestions for Further Research

similar designs are of interest for the Cox model and perhaps also the
simplified Cox model.

Finally, another comment about the robustness of the various locally
D-optimal designs derived in the thesis: According to Zocchi and Atkin-
son (1999) D-optimal designs for logistic models are dependent on the
parameters. Changes in the parameter values result in different design
points, different design weights and sometimes even different number of
design points. It is therefore of interest to derive- optimal in average
designs and sequential designs for the models studied in this thesis.
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Appendix A

Proof of Theorem 6.2

Like the case with binary data, the proof is divided into two parts where
the first part shows that the parameter restrictions in (6.4) implies that
S1, S2, . . . , Sk are mutually independent. The second part shows that
mutual independence implies the parameter restrictions in (6.4).

Under a simplified Cox model, πy1y2 can be expressed as in (3.4). Assume
now that the parameters are determined by (6.4) so that

η00 = 0

η10 = η10

η20 = 2η10 − ln k
...

ηk0 = k (η10 − ln k)

η01 = η01

η11 = η10 + η01 − ln k + ln (k − 1)
...

ηk−1,1 = (k − 1) (η10 − ln k) + η01

η02 = 2η01 − ln k
...

η0k = k (η01 − ln k) .
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Then

eηy1y2 = e
y1(η10−ln k)+y2(η01−ln k)+ln

(
k

y1 y2

)

=

(
eη10

k

)y1
(
eη01

k

)y2 (
k

y1 y2

)
.

Moreover, the denominator of (3.4) is a multinomial series

∑

y1,y2≥0

y1+y2≤k

eηy1y2 =
∑

y1,y2≥0

y1+y2≤k

(
k

y1 y2

)(eη10

k

)y1
(
eη01

k

)y2

1k−y1−y2 .

From the Multinomial Theorem

∑

y1,y2≥0

y1+y2≤k

eηy1y2 =

(
1 +

eη10

k
+
eη01

k

)k

.

Hence πy1y2 can be written as

πy1y2 =
eηy1y2

∑
i,j≥0

i+j≤k

eηij
=

( k

y1 y2

)
(

eη10

k

1 + eη10

k
+ eη01

k

)y1

︸ ︷︷ ︸
π

y1
1·

(
eη01

k

1 + eη10

k
+ eη01

k

)y2

︸ ︷︷ ︸
π

y2
2·

(
1

1 + eη10

k
+ eη01

k

)k−y1−y2

︸ ︷︷ ︸
(1−π1·−π2·)

k−y1−y2

.

Thus S1, S2, . . . , Sk are mutually independent and (Y1, Y2) are multino-
mial distributed with (π1·, π2·, k).

Without any assumption on S1, S2, . . . , Sk it follows immediately that
(6.4) is true for η00, η10, and η01. Next assume that S1, S2, . . . , Sk are
mutually independent. This implies that ln Ω for all local tables (3.5),
(3.6), and (3.7) are equal to zero for all possible values on (y1, y2). As-
sume now that

ηy1−1y2 = (y1 − 1) (η10 − ln k) + y2 (η01 − ln k) + ln
(

k

y1 − 1 y2

)
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and that

ηy1y2 = y1 (η10 − ln k) + y2 (η01 − ln k) + ln
(

k

y1 y2

)
.

Equating the expression in (3.5) to zero yields,

ηy1+1y2 = 2

{
y1 (η10 − ln k) + y2 (η01 − ln k) + ln

(
k

y1 y2

)}

−
{

(y1 − 1) (η10 − ln k) + y2 (η01 − ln k) + ln
(

k

y1 − 1 y2

)}

+ ln
(

k

y1 + 1 y2

)
− 2 ln

(
k

y1 y2

)
+ ln

(
k

y1 − 1 y2

)

= {η10−ln k}(2y1−y1+1)+{η01−ln k}(2y2−y2)+ln
(

k

y1 + 1 y2

)

= (y1 + 1) (η10 − ln k) + y2 (η01 − ln k) + ln
(

k

y1 + 1 y2

)

Next assume that (6.4) is true for ηy1y2−1 and ηy1y2 . By using the expres-
sion in (3.6) it is then shown, with the same method as for ηy1+1y2 above,
that (6.4) is true for ηy1y2+1. Thus it has been shown that (6.4) is true
for y1 = 2, 3, . . . , k regardless of the value of y2 and the other way around
for y2. In order for the proof to be complete, it must also be shown that
(6.4) is true for η11. This is done by using the third expression for the
local odds ratio given in (3.7). Equating (3.7) to zero yields

2η11 = η20 + η02 − ln
(

k

2 0

)
− ln

(
k

0 2

)

+2 ln
(

k

1 1

)

= 2 (η10 − ln k) + ln
(

k

2 0

)
+ 2 (η01 − ln k) + ln

(
k

0 2

)

− ln
(

k

2 0

)
− ln

(
k

0 2

)
+ 2 ln

(
k

1 1

)

= 2 (η10 − ln k) + 2 (η01 − ln k) + 2 ln
(

k

1 1

)
.

Hence
η11 = (η10 − ln k) + (η01 − ln k) + ln

(
k

1 1

)

and the proof is complete.
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