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Abstract
Heteroscedasticity (or time-dependent volatility) in economic and �nancial time
series has been recognized for decades. Still, heteroscedasticity is surprisingly often
neglected by practitioners and researchers. This may lead to ine¢ cient procedures.

Much of the work in this thesis is about �nding more e¤ective ways to deal with
heteroscedasticity in economic and �nancial data. Paper I suggest a �lter that,
unlike the Box-Cox transformation, does not assume that the heteroscedasticity
is a power of the expected level of the series. This is achieved by dividing the
time series by a moving average of its standard deviations smoothed by a Hodrick-
Prescott �lter. It is shown that the �lter does not colour white noise.

An appropriate removal of heteroscedasticity allows more e¤ective analyses of het-
eroscedastic time series. A few examples are presented in Paper II, III and IV
of this thesis. Removing the heteroscedasticity using the proposed �lter enables
e¢ cient estimation of the underlying probability distribution of economic growth.
It is shown that the mixed Normal - Asymmetric Laplace (NAL) distributional
�t is superior to the alternatives. This distribution represents a Schumpeterian
model of growth, the driving mechanism of which is Poisson (Aghion and Howitt,
1992) distributed innovations. This distribution is �exible and has not been used
before in this context. Another way of circumventing strong heteroscedasticity in
the Dow Jones stock index is to divide the data into volatility groups using the
procedure described in Paper III. For each such group, the most accurate probabil-
ity distribution is searched for and is used in density forecasting. Interestingly, the
NAL distribution �ts best also here. This could hint at a new analogy between the
�nancial sphere and the real economy, further investigated in Paper IV. These se-
ries are typically heteroscedastic, making standard detrending procedures, such as
Hodrick-Prescott or Baxter-King, inadequate. Prior to this comovement study, the
univariate and bivariate frequency domain results from these �lters are compared
to the �lter proposed in Paper I. The e¤ect of often neglected heteroscedasticity
may thus be studied.
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1. Introduction

The stylized facts of economic and especially �nancial time series are that
their variance, or volatility, changes over time. This characteristic is often
referred to as heteroscedasticity (or volatility clustering) and was �rst recog-
nized by Mandelbrot (1963):

"...large changes tend to be followed by large changes - of either sign - and
small changes by small changes..."

Still, the heteroscedasticity is surprisingly often neglected by practitioners
and researchers. Much of the work in this thesis is about �nding more ef-
fective ways to deal with heteroscedasticity in economic and �nancial data.
This also enables measuring the e¤ect of neglected heteroscedasticity.

The thesis is structured as follows. Potential readers of this thesis might be
more or less familiar with econometrics or time series analysis. This is the
reason why I in Section 2 and 3 present a toolbox of fundamentals, aimed
to ease understanding of the material in Papers I-IV. These introductory
sections should give the reader a presentation of the typical problems in this
�eld, and of how the ideas and solutions presented in the thesis have evolved.
.

Section 2 presents some essentials about detrending �lters and their proper-
ties. Filtering is about emphasizing or eliminating a chosen characteristic or
interval of frequencies in the series. Thus, �ltering is closely related to fre-
quency domain analysis and is considered in Section 2.1. Section 3 contains
some essentials about stationarity and unit root testing. The consequences
of neglecting heteroscedasticity in unit root tests are discussed in Section 3.1.
In the fortunate case of observing a variance that changes proportionally to
the level of the series, it may be stabilized using the Box-Cox transformation
described in Section 3.2. More often than not, the variance is "level invari-
ant", and might be modelled using the techniques described in Section 3.3,
or removed using the proposed procedure summarized in Section 3.4, and
discussed in greater depth in Paper I.

An appropriate removal of heteroscedasticity allows more e¤ective analysis
of heteroscedastic time series. A few examples are presented in this thesis.
Accounting for heteroscedasticity enables a e¢ cient study of the underlying
probability distribution of economic growth as summarized in Section 4.1.
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A closely related topic is density forecasting as described in Section 4.2 and
applied on Dow Jones stock index returns in Section 4.3. It is shown that
the mixed Normal - Asymmetric Laplace (NAL) distribution is particularly
suitable for �tting both GDP growth and stock index returns, thus hinting at
an observable analogy between economic growth and �nancial data. Paper
IV (summarized in Section 5) makes use of the proposed �lter in Paper I
prior to an investigation of the presumed analogy indicated in Papers II and
III. Thus - Paper IV, in a sense, completes the circle.

Some concluding remarks and some ideas for future work are presented in
Section 6, followed by Papers I-IV.

2. Filters in the frequency domain
Separating trends and cycles of seasonally adjusted data is essential to much
macroeconomic analysis. The research to �nd proper methods to decompose
time series was accelerated after the in�uential paper by Nelson and Plosser
(1982), who argued that macroeconomic time series are characterized by sto-
chastic trends rather than linear trends. This decomposition might be done
using so called low-pass, high-pass or band-pass �lters. Low-pass �lters are
used to pick out the trend in a time series (or the low frequency movements
when viewed in the frequency domain). On the contrary, the high-pass �lter
eliminates the trend. The intermediate band-pass �lter is designed to isolate
midrange frequencies, often associated with business cycle �uctuations. An
ideal �lter completely eliminates the frequencies outside the prespeci�ed in-
terval, while passing the remaining ones unchanged. The exact �lter would
be a moving average of in�nite order, impossible to design for a �nite sam-
ple. A central issue in detrending time series involves �nding good, hopefully
optimal, approximations to the ideal �lter. Perhaps the most popular (also
frequently used in this thesis) approximation is the detrending �lter proposed
by Hodrick-Prescott (HP) (1997). The HP �lter is an example of a low-pass
�lter. Baxter-King (BK) (1999) proposed a moving average type approx-
imation of the business cycle band de�ned by Burns and Mitchell (1946).
The BK �lter is thus of band-pass type designed to pass through time series
components with frequencies between 6 and 32 quarters, while dampening
higher and lower frequencies.

Following Baxter-King (1999), a useful detrending method should satisfy six
requirements. First, the �lter should extract a cyclical component within a
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speci�ed range of periodicities, and leave the characteristics of this compo-
nent as undistorted as possible. Secondly, the �lter should not change the
timing of the turning points in the series under analysis (thus, there should
be no phase shift). Thirdly, the �lter should be an optimal approximation
to the ideal �lter, according to some predesigned loss function measuring the
discrepancies between the approximate and exact �lters. Fourth, the �lter
should produce a stationary series. Fifth, the �lter should yield business cy-
cle components unrelated to the length of the observation period and �nally
the method must be operational. The �rst di¤erence for instance, sometimes
used to detrend a time series, has the drawback of being asymmetrical and
thus induces phase shifts. Also, the �rst di¤erence �lter reweights the densi-
ties towards higher frequencies as indicated in Paper IV.

Working with �lters, it is thus hard not to cross the paths of spectral analy-
sis. The e¤ect of any linear �lter, h(B) =

P1
�1 hjB

j, where hj; j = 0; �1,
�2,... are �xed weights and B is the lag operator such as Bjyt = yt�j; can be
obtained from the frequency response function (or transfer function) found
by replacing B by exp(�iw), where 0 � w � �: Assuming that the series is
stationary, the gain (de�ned as the modulus of the frequency response func-
tion) shows how the amplitude at each frequency is a¤ected. Studying the
gain thus provides information about whether the �lter is of the low-pass,
high-pass or the band-pass type. The accuracy of the approximation of the
ideal �lter might also be studied using the gain. The squared gain is the
factor by which the original spectrum must be multiplied to yield the �ltered
spectrum. Other important spectral functions frequently used in this thesis
include the phase shift and coherency functions. The formulae are given in
the next section.

2.1 Spectral analysis

In the frequency domain, the variance of a time series is decomposed ac-
cording to periodicity. This may reveal important features of univariate or
bivariate time series, not apparent in the time domain. The estimation of
spectral densities in the frequency domain raises some issues not encountered
in the time domain.

If yt is a real-valued stationary process with absolutely summable autoco-
variances, 
(j), then the Fourier transform, f(w); of 
(j) exists and
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f(w) =
1

2�

1X
j=�1


(j)e�iwj =
1

2�

 

(0) + 2

1X
j=1


(j) coswj

!
: (2.1)

This is the spectral density function de�ned in the range [��; �]. Based on
sample time series of n observations, it is logical to estimate f(w) by replacing
the theoretical autocovariances 
(j) by the sample counterpart b
(j): The
spectrum is hence estimated as

bf(w) = 1

2�

n�1X
j=�(n�1)

b
(j)e�iwj = 1

2�

 b
(0) + 2 n�1X
j=1

b
(j) coswj! :
The sample autocovariance function b
(j) is asymptotically unbiased and

lim
n!1

E
� bf(w)� = f(w):

Thus, bf(w) is also asymptotically unbiased. But the variance of bf(w) does
not decrease as n increases, and so bf(w) is not a consistent estimator. It
is clear that the precision of b
(j) decreases as j increases, because the coef-
�cients will be based on fewer and fewer observations. An intuitive way of
reasoning would be to give less weight to b
(j) as j increases. An estimator
with this property is

bf(w) = 1

2�

 b
(0)�0 + 2 MX
j=1

b
(j)�j coswj! ;
where f�jg is a set of weights called the lag window, and M (< n) is called
the truncation point. Several lag windows exist which all lead to consistent
estimates of f(w). Throughout the entire thesis, a Parzen window with
truncation point M = 20 has been used to smooth the sample spectrum.
This window has the advantage of not producing negative estimates. Where
applied in this thesis, the chosen truncation point falls right between the two
"rule of thumb" values, M =

p
n and M = 2

p
n, see e.g. the discussion in

Percival and Walden 1993, pp. 277-280.

A natural tool for examining the comovements of two stationary series in the
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time domain is the cross-correlation function r1;2(j) = c1;2(j)=s1s2, where
c1;2(j) is the sample cross-covariance function on lag j, and s1 and s2 are the
sample standard deviations for the two time series y1;t and y2;t. In this study
we mainly use a frequency domain approach with focus on the cross-spectrum.
Frequency domain techniques allow for studying correlation di¤erentiated
by frequency. In practice, several cross-spectral functions are necessary to
describe the comovements of two time series in the frequency domain. The
cross-spectrum is most easily studied through the so called phase, the gain
and the coherency functions. They are all derived from the cross-spectrum
de�ned as the Fourier transform of the cross-covariance function 
1;2, namely

f1;2(w) =
1

2�

1X
j=�1


1;2(j)e
�iwj:

Note that the cross-covariance function 
1;2(j) is real for real series y1;t and
y2;t, but f1;2(w) is complex because 
1;2(j) 6= 
1;2(�j), but the cross-spectrum
can be divided into one real and one imaginary part

f1;2(w) = c1;2(w)� iq1;2(w);

where c1;2(w) and q1;2(w) are de�ned as

c1;2(w) =
1

2�

1X
j=�1


1;2(j) coswj

and

q1;2(w) =
1

2�

1X
j=�1


1;2(j) sinwj:

The function c1;2(w) is called the co-spectrum and q1;2(w) the quadrature
spectrum of the series y1;t and y2;t: These functions are, however, di¢ cult to
interpret. An alternative way to express the cross-spectrum is in the form

f1;2(w) = A1;2(w)e
i�1;2(w);

where
A1;2(w) =

q
c21;2(w) + q21;2(w)
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is real and is called the cross-amplitude spectrum between y1;t and y2;t: The
phase spectrum, is de�ned as

�1;2(w) = tan
�1
�
�q1;2(w)
c1;2(w)

�
;

expressing the shift between the oscillations of the two variables. Note that
�1;2(w) is discontinuous at frequency multiples of

�
2
: Another useful cross-

spectral function is the gain function which is the ratio of the cross-amplitude
spectrum to the input spectrum, i.e.

G1;2(w) =
A1;2(w)

f1(w)
;

the analogue of the regression coe¢ cient in the time domain. Finally, the
(squared) coherency function may be derived from the cross-spectrum as

K2
1;2(w) =

A2
1;2
(w)

f1(w)f2(w)
;

where f1(w) and f2(w) are the spectra of the individual series y1;t and y2;t:
The coherency is essentially the standardized cross-amplitude function and
is analogous to the coe¢ cient of determination, R2, in the time domain.
Cross-spectral analysis thus decomposes the series into individual cyclical
components. The coherency is the squared correlation coe¢ cient between
y1;t and y2;t at frequency w. Clearly; 0 � K2

1;2(w) � 1: A value of K2
1;2(w)

close to one implies a strong linear relationship of the two components at
frequency w: The corresponding phase indicates at what lag this correlation
occurs. It is only of interest to study the phase at frequencies where the
coherency is large. Trends in the phase spectrum reveal information of the
lead or lag relationship. If the trend is linear, the slope is the length of the
lead or the lag. A nonlinear phase spectrum indicates varying lead or lag
lengths.

Consider the linear �lter Zt =
P1

j=�1 hjB
jYt = h(B)Yt; where

P1
j=�1 jhjj <

1: It can be shown (see e.g. Priestley (1981), chapter 4.12) that the spectrum
of the �ltered series Zt is given by

fZ(w) =
��h �ejw���2 fY (w);
13



where fY (w) is the spectral density function (2.1). The function jh (ejw)j2 is
the squared gain function often called the transfer function or the frequency
response function, used to measure the e¤ect of applying a linear �lter on a
series. As an example, the �rst di¤erence �lter

Zt = �Yt

= h(B)Yt;

where h(B) is the di¤erence operator � = (1 � B) can, using standard
trigonometrics, be expressed as��h �ejw���2 =

�
1� ejw

� �
1� e�jw

�
= 2(1� cosw);

which is a continuously increasing function for 0 � w � �, see Paper IV. The
transfer functions for other �lters used in this thesis are found analogously.

3. Stationarity and heteroscedasticity
In time series analysis one does not usually have the luxury of obtaining an
ensemble. That is, one typically observes only one observation at each mea-
surement point for a speci�c variable, which adds up to just one realization
of the same. Fortunately, if the series of interest, yt, is stationary; the mean,
variance and autocorrelations can be estimated by averaging across the single
realizations. It is therefore desirable that the series is stationary and most
time series models are based on the assumption that the time series of inter-
est are approximately stationary, have been stationarized or are cointegrated
with some other variables. There are various types of stationarity, see e.g.
the classic work of Doob (1953, chapters 10 and 11) for a thorough treatment
on the subject.

The joint distribution function of the �nite set of random variables fYt1 ; Yt2 ; :::; Ytng
from the stochastic process fYt : t = 0;�1;�2; :::g is de�ned by

FYt1 ;Yt2 ;:::;Ytn (yt1 ; yt2 ; :::; ytn) = P fYt1 � yt1 ; :::; Ytn � ytng ;

where yi, i = 1; 2; :::; n are any real numbers. A time series is called strictly
(or strongly) stationary if

14



FYt1 ;Yt2 ;:::;Ytn (yt1 ; yt2 ; :::; ytn) = FYt1+h ;Yt2+h ;:::;Ytn+h (yt1 ; yt2 ; :::; ytn) ;

for any n and h. If the series is strictly stationary, the joint distribution
function is the same at each time point and depends only (if at all) on the
distance between the elements in the index set. For the process Yt, �t = E(Yt)
and �2t = E (Yt � �)2 : The covariance and correlation functions are de�ned
as


 (t1; t2) = E
�
Yt1 � �t1

� �
Yt2 � �t2

�
and

� (t1; t2) =

 (t1; t2)

�t1�t2
:

Since the distribution function is the same for all t, the mean and variance
functions for a strictly stationary process is constant provided that E (jYtj) <
1 and E (jY 2

t j) <1: Furthermore


 (t1; t2) = 
 (t1 + h; t2 + h)

and
� (t1; t2) = � (t1 + h; t2 + h) ;

for any t1; t2 and h: Thus the autocorrelation between Yt and Yt+h in a strictly
stationary process with �nite mean and variance, depends only on the time
di¤erence h.

A weaker form of stationarity (weak or covariance stationarity) is often used
in empirical time series analysis. A weakly stationary process has constant
(time invariant) joint moments up to order n. That is, a second order weakly
stationary process has constant mean and variance and the covariance and
autocorrelation functions being functions of the time di¤erence alone. A
strictly stationary process (with �nite mean and variance) is also weakly sta-
tionary, but not so if the mean and/or the variance are in�nite.

Usually, economic time series are not stationary and even after seasonal ad-
justment or de�ation they will typically still exhibit trends, fairly regular
cycles and other non-stationary behaviours. If the series has a long-run lin-
ear trend and tends to revert to the trend line following a disturbance, e.g.

yt = �+ �0t+ "t; (3.1)
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where "t is stationary; it may be possible to stationarize the series by de-
trending. In this case it is done by �tting and subtracting a linear trend line
prior to �tting a model. The result, yt = "t, is stationary by de�nition. Such
a time series is said to be trend-stationary. This concept can be generalized
to more complicated types of trends. In practice, detrending is seldom su¢ -
cient to make the series stationary, in which case it is worthwhile to try to
transform it into a series of di¤erences, especially because many time series
do not seem to follow a model of type (3.1), see Nelson and Plosser (1982).
If the mean, variance, and autocorrelations of the original series vary over
time, even after detrending, calculating changes (or di¤erences) of the series
between periods or between seasons is often a better stationarization method.
If this results in a stationary series, it is said to be di¤erence-stationary. The
best example of a di¤erence stationary process is the random walk, de�ned
as

yt = yt�1 + "t:

Clearly, �yt = "t. Sometimes it can be hard to tell the di¤erence between a
series that is trend-stationary and one that is di¤erence-stationary. Using a
di¤erence to try to stationarize (3.1) yields

�yt = �0 + "t � "t�1:

Thus, the �rst order MA coe¢ cient is on the unit circle and �yt is nonin-
vertible. Of course, the same problem of inducing noninvertible unit root
processes may arise using models with other types of trend. In the same
sense, it is inappropriate to subtract a deterministic trend from a di¤erence-
stationary process. It should also be noted that there are other more elabo-
rated ways to detrend a time series, see the discussion in Paper I and IV.

In business cycle research, macroeconomic variables are usually decomposed
into a trend and a (stationary) cyclical component. Still, in the 1970s it was
widely believed that the long-run trend in macroeconomic variables is con-
stant, i.e. trend-stationary. As already mentioned, Nelson and Plosser (1982)
questioned this traditional view and argued that important macroeconomic
variables (such as GDP) are instead di¤erence-stationary.
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3.1 Stationarity and homoscedasticity tests

The unit root test may be used to make statistical inference about a time
series being di¤erence-stationary or not. The two main unit root tests used
in this thesis, are the augmented Dickey-Fuller (ADF) test and the Phillips-
Perron (PP) test. The latter is a modi�cation of the previous one, but unlike
the ADF test, the PP test makes a non-parametric correction to the t-test
statistic, see e.g. Wei (2006) chapter 9 for details.

There are a number ways to test for heteroscedasticity. In this thesis I have
used the common ARCH-LM and the Breusch-Pagan tests. The former was
introduced in Engle (1982) and starts by �tting the most adequate AR(q)
model

yt = �+

qX
i=1

�iyt�i + "t; t = 1; 2; :::

After that, the squared residuals b"2t are regressed on a constant and q lagged
values:

b"2t = b�0 + qX
i=1

b�ib"2t�i: (3.2)

The null hypothesis is homoscedasticity in which case we would expect all b�i
to be close to zero. The Lagrange-Multiplier (LM) test statistic nR2, where
n is the sample size and R2 is the coe¢ cient of determination in regression
(3.2), asymptotically follows the �2(q) distribution. An even simpler test
is obtained by regressing the squared residuals directly on the independent
variables, which is the Breusch-Pagan test.

On several occasions in this thesis, unit root tests report stationarity for
a series for which heteroscedasticity tests reject the null hypothesis of ho-
moscedasticity. This contradiction reveals a weakness in the ADF and PP
tests in that they fail to capture the heteroscedasticity in the series. It should
also be noted that the null hypothesis of a unit root in Dickey-Fuller tests
tend to be rejected too often in the presence of conditional heteroscedastic-
ity, see e.g. Kim and Schmidt (1993). Heteroscedasticity a¤ects estimates
of parameters. The observations are unequally weighted and hence sample
information is not optimally exploited, which results in ine¢ cient estimates.
So a mechanical use and interpretation of the results of unit root tests might
lead to a statistically correct, but ine¢ cient use of models which require sta-
tionary time series (such as ARIMA or ARFIMA models).
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3.2 The Box-Cox transformation

In case the series is positive and where the standard deviation is changing
proportionally to the level of the series, the power transformation

T (Yt) =
Y �
t � 1
�

; (3.3)

introduced by Box and Cox (1964), can be used to stabilize the variance.
The Box-Cox transformation contains some commonly used transformations
as special cases, for example:

� Transformation
�1 1=Yt
�0:5 1=

p
Yt

0 lnYt
0:5

p
Yt

1 Yt

Ibid. showed how to estimate the transformation parameter, �; using max-
imum likelihood. The variance of economic and �nancial time series may
change over time, not only as a function of the series, but also in other ways.
What to do then?

The problem essentially has two1 solutions which are presented in the sub-
sequent Section 3.3 and 3.4, respectively. The �rst one is to model the
(conditional) variance. The other is to remove the heteroscedasticity prior
to model �tting. The second approach saves on parameters and enables an
application of simple (second-order stationarity) models. The �rst approach
is by far most used in practice. The reason for this is mainly due to powerful
and proven tools to handle heteroscedasticity in both regression and time
series data. A short survey is presented in Section 3.3.

1Yet another way to treat heteroscedasticity primarily in density forecasting is pre-
sented in Paper III in this thesis.
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3.3 Modeling volatility

In regression it is well known that OLS estimates are not e¢ cient in the pres-
ence of autocorrelated and/or heteroscedastic (nonspherical) disturbances.
Given the model

y = X� + u; (3.4)

where E(u) = 0 and E(uu0) = �2
 (with 
 6= I), the OLS estimator of �
will be unbiased and

V ar(b) = E [(b� �)(b� �)0] = E
�
(X0X)�1X0uu0X(X0X)�1

�
= �2(X0X)�1X0
X(X0X)�1; (3.5)

which is obviously di¤erent from the OLS variance, �2(X0X)�1. Applications
of the OLS estimate would lead to ine¢ cient estimates of �; invalid con�dence
intervals, t-tests and F -tests etc.

The generalized least squares (GLS) estimator multiplies (3.4) by a n � n
nonsingular matrix T

Ty = (TX)� +Tu: (3.6)

Standard GLS theory (see for instance Hamilton (1994, chapter 8)) applies
OLS to the transformed variables in (3.6) resulting in best linear unbiased
estimators (BLUE´s) for � and V ar(�) in the model y = X� + u; with
nonspherical disturbances.

In a regression with k explanatory variables the heteroscedasticity might take
the form

�2t = �2x2jt; t = 1; 2; :::

where x2j is the explanatory variable that can be thought of as the source
of heteroscedasticity. The original model can then be transformed to (for
details, see again Hamilton (1994, chapter 8))

yt
xjt

= �1(
1

xjt
) + �2(

x2t
xjt
) + :::+ �j + :::+ �k(

xkt
xjt
) + (

ut
xjt
): (3.7)
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The standard inference procedures are valid for the transformed variables in
(3.7). Equation 3.7 can in matrix notation be generalized to

yt
�t
=
x0t�

�t
+
ut
�t
; (3.8)

where the variance of u�t =
ut
�t
is constant:

E
�
u�2t
�
= E

�
(
ut
�t
)2
�
=
1

�2t
E
�
u2t
�
=
�2t
�2t
= 1:

The procedure to divide each observation by the standard deviation of the
disturbances is for obvious reasons often called weighted least squares. The
estimates, b�, are found by minimizing
nX
t=1

�
ut
�t

�2
= (y �X�)0��1(y �X�); where �=diag(�21; �

2
2; ::::; �

2
n)

In other words, observations with low �t are considered more reliable and
are weighted more heavily. The observations with high �t however, have a
smaller in�uence on the estimate of �.

In the univariate case one likes to preserve the dynamic structure (autocor-
relation) while making the series homoscedastic. Then (3.7) with index

k =

�
0 if no intercept
1 intercept

would be appropriate. But �t is unknown and must be estimated. With just
one realization of the series this can not be done. A way out is to estimate �t
recursively using a window of observations. As in the GLS case, appropriate
weights would produce estimates that are close to being BLUE.

For heteroscedastic time series data, ARCH-type models are considered as
benchmarks. They were �rst introduced in the seminal article by Engle
(1982), who was awarded with the price in Economic Sciences in Memory
of Alfred Nobel, 2003. Engle´s original Autoregressive Conditional Het-
eroscedasticity (ARCH) model has afterwards been developed into many di-
rections, see e.g. Bollerslev et al. (1992) for a exhaustive exposition. Below
follows a short survey of the models used in this thesis.
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Consider the �rst-order autoregressive model, AR(1):

yt = �yt�1 + "t;

where "t is i.i.d.(0; �2). This model can be too restrictive in applications. A
more general model allows for time varying variance. As in heteroscedastic
regression (see above), the standard approach to handle heteroscedastic data
is to use an exogenous variable to predict the variance. Engle (1982) proposed
the model

"t = vt
p
ht

ht = w + �1"
2
t�1;

where vt is i.i.d.(0; 1) and ht is the conditional variance. This is essentially
the ARCH(1) model and may be generalized to include q lags of "t :

ht = w +

qX
i=1

�i"
2
t�i; (3.9)

which is the ARCH(q) model. The ARCH model captures the tendency of
volatility clustering. In order to ensure declining weights of the shocks and
to reduce the number of parameters, a linearly declining lag structure was
proposed in ibid. A simple scoring algorithm for the likelihood function was
also provided.

It was soon recognized that the ARCH(q) model was too restrictive in many
cases. Bollerslev (1986) presented an improvement of ARCH by adding
lagged values of ht in equation (3.9):

ht = w +

qX
i=1

�i"
2
t�i +

pX
i=1

�iht�i: (3.10)

This model was called the generalized ARCH, or GARCH(p; q). To ensure a
well-de�ned process, all the in�nite order AR parameters must be positive.
The GARCH is able to describe the persistence in the conditional volatility.
By rearranging terms, (3.10) is interpreted as an ARMA model for "2t with
auroregressive parameters

Pq
i=1 �i +

Pp
i=1 �i, and moving average parame-

ters, �
Pp

i=1 �i. This idea can be used to �nd the proper orders of p and q
following Bollerslev (1988).
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The simple structure of equation (3.10) induces some important limitations
on the GARCH models. As �rst noted by Black (1976), stock returns are
negatively correlated with volatility changes in stock returns. That is, the
volatility tends to decline in the response to "good news" and vice versa. This
phenomenon is sometimes called the leverage e¤ect. ARCH and GARCH are
examples of models unable to capture such asymmetric e¤ects of positive
and negative shocks. "Symmetric" models are usually classi�ed as "lin-
ear volatility models". Next to the ARCH and GARCH models, the best
known members of this class of models include the GARCH-M, FIGARCH
and IGARCH models. In order to capture possible leverage e¤ects, vari-
ous nonlinear extensions of the GARCH model have been developed over the
years. The earliest, and also the most commonly used one, is the exponential
GARCH, or EGARCH, model introduced by Nelson (1991). The EGARCH
model describes the relationship between past shocks and the logarithm of
the conditional variance:

ln(ht) = w +

qX
i=1

�ig(vt�i) +

pX
i=1

�i lnht�i; (3.11)

where g(vt) = �vt+ � [jvtj � E jvtj] and vt = "t =
p
ht: Because of the loglinear

form of (3.11) there are, unlike the GARCH model, no restrictions on the
parameters �i and �i to ensure nonnegativity of the conditional variance.
As with the class of linear GARCH models, there are numerous nonlinear
parameterizations with exotic names such as the GJR-GARCH, TGARCH,
STGARCH, MSW-GARCH and QGARCH model.

3.4 Paper I: A Simple Heteroscedasticity Removing Fil-
ter

Paper I of this thesis suggests another way to handle heteroscedastic time
series namely by simply removing it. This is achieved by dividing the time
series by a moving average of its standard deviations (STDs), smoothed by a
Hodrick-Prescott �lter (HP). The suggested �lter is applied on the logarith-
mic, quarterly and seasonally adjusted US, UK and Australian GDP series.
The un�ltered (Di¤ ln) GDP series were all found to be stationary according
to the ADF test, but signi�cantly heteroscedastic according to the ARCH-
LM test. Moreover, they are all characterized by decreasing volatility over
time. Consequently, parameter estimates are strongly based on an obsolete
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structure. After �ltering no heteroscedasticity remains. Moreover, it was
shown that the �lter does not colour white noise when applied on 10 000
simulated realizations of white noise with 200 observations each. That is an
important property - we do not want the �lter to induce spurious character-
istics into the series.

Following the discussion in Section 3.3, the most straightforward way to
remove heteroscedasticity in the GDP series could be to divide the het-
eroscedastic series by the conditional volatility estimated fromARCH/GARCH
models or from any of their many generalizations. Besides being more cum-
bersome, it is shown to be signi�cantly less e¤ective than the proposed �l-
tering procedure.

After applying the proposed �lter, an adequate ARIMA-model is estimated
for the �ltered GDP series, and the parameter estimates are then used in
point forecasting the un�ltered time series. The forecasts are compared to
those from ARIMA, ARFIMA and GARCHmodels estimated from un�ltered
data. It is demonstrated that estimating ARIMA models from the �ltered
series generates signi�cantly more accurate forecasts when pooling across all
horizons, according to the Diebold-Mariano test of equal forecasting perfor-
mance. Much as seasonality is suppressed by seasonal adjustment �lters, this
simple �lter could be used as a standard method to remove heteroscedasticity
prior to model �tting or just to get a glimpse of the underlying structure,
not corrupted by heteroscedasticity.

4. On �nding and applying the most adequate
probability distributions for heteroscedastic time
series
Paper I is actually the product of an idea to empirically test a reduced form
of the Aghion-Howitt (AH, 1992) model. The AH model is based on the
Schumpeterian idea of creative destruction, i.e. the economy is driven by
welfare augmenting better products (innovations, or shocks) and temporary
declines (Schumpeter, 1942, Chapter 8). AH further assumes that innova-
tions arrive according to a Poisson process with arrival rate c�; where c is
the amount of labour used in research and � > 0 is the parameter indicating
the productivity of the research technology.
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Aggregating a Poisson number of shocks (as assumed in the AH model) will
lead to asymmetric distributions. This is true no matter the impact of the
shocks. It is not possible to test this AH hypothesis by trying to generate
realizations from some distribution and compare them to, say the US GDP
series. The �lter proposed in Paper I enables us to work with mean and
variance stationary time series, and thus to make a fair comparison between
the frequency distributions of the GDP growth series and various probability
distributions (notably some asymmetric ones related to the Poisson distribu-
tion). Suitable Kernel functions of these distributions can then be compared
to the Kernel distributions of the frequency distributions of the �ltered se-
ries. In this thesis the Gaussian Kernel function is used together with the
bandwidth proposed in Silverman (1986). This combination is considered
to be optimal when data are close to normal as they are here (see the next
section).

4.1 Paper II: On the Probability Distribution of Eco-
nomic Growth

The distribution closest to represent the reduced form of the AH model is
the exponential distribution which is the distribution of the time between
innovations in the Poisson process. To also allow for negative growth, the
double exponential (Laplace) distribution obtained as the di¤erence between
two exponentially distributed variables with the same value on the parame-
ter � is examined. The Laplace distribution is symmetric around its mean
where the left tail describes below average shocks and vice versa. Due to the
expected asymmetries in these series the AH representative is further mod-
i�ed. Allowing the exponential distribution to take di¤erent �s in the two
tails leads to the asymmetric Laplace (AL) distribution which is the main
model candidate.

The series studied here are the US, UK and the compound G7 GDP quarterly
series. It is �rst recognized that data lend some support to the AH hypoth-
esis. Signi�cant skewness was found in the un�ltered (Di¤ ln) UK and G7
GDP series. As expected, the mean and standard deviation in these series
are stabilized using the �lter in Paper I. Also, the skewness and kurtosis are
more stable to the ones estimated on un�ltered data. This indicates that
the moment estimates are more accurate for the complete �ltered series, an
important property, especially as the parameters are here estimated using
the method of moments (MM). It was also found that the excess kurtosis in
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the AL distribution is too large for the �ltered (and un�ltered) growth series.
The AL could therefore not be the only source of innovations, so Gaussian
noise is added, leading to the weighted mixed Normal-AL (NAL) distribu-
tion. This distribution is capable of generating a wide range of skewness
and kurtosis, making the model very �exible. A convolution of the N and
AL distributions (called c-NAL) and a Normal Mixture (NM) distribution
was also considered. The parameters are estimated using MM by equating
the �rst four noncentral sample moments with the theoretical ones and then
solving those equations for the quantities to be estimated. Thus, the theo-
retical central and noncentral moments are provided for the NM, NAL and
c-NAL distributions.

After estimating the NAL parameters it is found that the Gaussian noise
component dominates. The N, NM, NAL and c-NAL distributions are com-
pared to the empirical distributions at 1 000 equidistant point of the Kernel
distribution in the interval (b�� 4b�; b�+ 4b�). The accuracy is measured us-
ing four measures (RMSE, MdAPE, sMdAPE and MASE). It is found that
the NAL distribution is superior to the N, NM and the c-NAL distribution
according to every measure, except RMSE for the US. Kernel estimation is
sometimes criticized to be based on too subjective choices both of function
and of bandwidth. But so are goodness of �t tests and it is well known that
tests based on both approaches have low power. To be on safer ground, �2

tests using three di¤erent numbers of bins are performed. The results of this
test point in the same direction as before, the NAL distribution �ts growth
best. Thus, the US, UK and G7 GDP series could be looked upon as samples
from a NAL distribution. According to the AH model, � measures the in-
tensity of only positive shocks. The technique presented in Paper II provides
a way to estimate related quantities (though buried in Gaussian noise), and
perhaps to compare di¤erent economies.

4.2 Density forecasting

A point forecast of some variable by itself contains no description of the
associated uncertainty. This stand in contrast to the density forecast, which is
an estimate of the probability distribution of the possible future values of that
variable. It thus provides complete information of the uncertainty associated
with a prediction. Between these two extremes is the interval forecast, i.e. the
probability that the outcome will fall within a stated interval. The density
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forecast provides information on all possible intervals.

Density forecasting is rapidly becoming a very active and important area
among both researchers and practitioners of economic and �nancial time
series. E.g. density forecasts of in�ation in the UK are published each
quarter both by the Bank of England in its �fan� chart and the National
Institute of Economic and Social Research (NIESR) in its quarterly forecast.
.

The need to consider the full density of a time series rather than, say, its
conditional mean or variance has for long been recognized among decision
makers. If the loss function depends asymmetrically on the outcome of future
values of possibly non-Gaussian variables it is important to have information
not only about the �rst two moments, but also full conditional density of the
variables.

The issue of density forecasting heteroscedastic time series has been treated
in some studies. The logical idea to use GARCH-type models have been
used by e.g. Diebold et al. (1998) and Granger and Sin (2000). Weigend
and Shi (2000) instead suggested hidden Markov experts for predicting the
conditional probability distributions. Paper III of this thesis present yet
another way to handle heteroscedasticity in density forecasting.

4.3 Paper III: Density Forecasting of the Dow Jones
Stock Index

Instead of modeling the conditional variance using the above suggestions,
the data (the daily Dow Jones Industrial Average, DJIA, 1928-2009), are
here divided into three parts of volatility (denoted high, medium and low).
Each part is being roughly homoscedastic which enables the use of simple
distributions to describe each part. For each part, the most accurate density
forecast distribution is searched for and the result is used to provide easy
guidelines for the intervening situations of local volatility. The density fore-
casting ability of the NM distribution (as used by e.g. the Bank of England
when calculating density forecasts of macroeconomic variables in the UK,
albeit using a di¤erent parameterization, Wallis (1999)), is here compared
to the N and NAL distributions. In Paper II, the latter distribution (then
originated from the AH model) was found to accurately �t GDP series and
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it is interesting to see if the same applies to stock index returns. To further
improve user-friendliness, simpli�ed versions of the NM and NAL (using two
�xed parameters) are also considered. The density forecast ability is eval-
uated using the probability integral transform (PIT). Standard tests signal
no autocorrelation in mean corrected powers of the PIT scores, and �nding
the most suitable distribution for density forecasts is a matter of �nding the
distribution with the most uniform PIT histogram. This is done using good-
ness of �t tests for the di¤erent parts of volatility, separately.

It is found that the �tted NAL distributions are superior to the N and NM
on average. Also, there is no great loss of information by using the simpli�ed
NM and NAL distributions, in fact the �t is slightly improved for the NM.
The NM �t is nevertheless inferior to both the NAL and the N distributions.
.

This proposed procedure of circumventing strong heteroscedasticity in the
entire series involves taking decisions on how to react to di¤erent degrees of
local volatility. This could be made either by constantly reestimating the pa-
rameters using the MM method and the new, local set of moment estimates.
Using the simpli�ed NAL distribution also facilitates a strict judgmental es-
timation of the parameters using the estimated distributions for the high,
medium and low volatility parts as guidelines.

Note that the NAL distribution �t both GDP growth in Paper II and now
stock index data. This could hint at a new analogy between the �nancial
sphere and the real economy, further investigated in Paper IV.
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5. Completing the circle
Applying the �lter suggested in Paper I on heteroscedastic GDP growth
series not only resulted in better point forecasts. It also enabled a proper
study of their underlying probability distributions. In Paper II, the NAL
distribution was found to be close to these probability distributions and,
interestingly, also accurately �tted the DJIA in Paper III. This indicates
common characteristics in GDP and �nancial data, further investigated in the
concluding Paper IV. Their joint relationship is probably best explored in the
frequency domain using the spectral tools described in Section 2.1. Both US
GDP growth and Dow Jones contain a positive trend and are heteroscedastic.
This must be eliminated before further investigation. The e¤ectiveness in
removing the trend and heteroscedasticity of the �lter proposed in Paper I
was shown there. It is logical to believe that the same �lter conveniently �ts
in this application as well. Thus Paper IV makes use of the results in Paper
I, II and III, and thus in a way, completes the circle.

5.1 Paper IV: Comovements of the Dow Jones Stock
Index and US GDP

As �rst noted by Granger (1966), national product series such as GDP typ-
ically contain a unit root. As shown in Paper IV, the same applies to the
Dow Jones stock index. In the frequency domain, this shows up as low or in-
�nite frequency variation in the spectral density. Standard analysis requires
stationarity and hence time series are detrended prior to further analysis. As
mentioned in Section 2, given a �nite time series it is impossible to design an
ideal �lter. Many approximations have been suggested. The most popular
ones are the HP �lter, the BK �lter and the �lter suggested by Beveridge
and Nelson (BN) (1981). Also, simply the �rst di¤erence and the centered
moving average are frequently used for detrending purposes.

Surprisingly, none of the above �lters takes the heteroscedasticy into ac-
count. Neglected heteroscedasticity distorts both time domain and frequency
domain results. The �lter proposed in Paper I not only removes heteroscedas-
ticity, but also the trend in the series and consequently seems like a good al-
ternative. The univariate and bivariate frequency domain results of this �lter
are compared to the results from the �lters that do not take heteroscedasticity
into account. Hence, the e¤ect of neglected heteroscedasticity is measured.
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No matter which �lter is used, signi�cant comovements exist between the
DJIA and US GDP growth series. It is found that accounting for het-
eroscedasticity somewhat shortens the business cycles. The coherency seems
quite robust across �lters, but using the �lter proposed in Paper I slightly
shifts the coherency peak to the left and results in larger than average co-
herency values comparing to the other studied �lters. The phase shift is less
robust, especially for the BK �ltered series. Most �lters report that DJIA
leads US GDP at peak coherency frequency (about two years), but also re-
veal a feedback from US GDP to DJIA at around half a year. This is also
con�rmed in the time domain using cross correlations and Granger-causality
tests. Using the BK �lter with frequency band 6 to 32 quarters by de�nition
does not utilize this information. The same applies to the BN �lter. It is
therefore advisable to extend the frequency bands to 2 - 32 quarters in co-
movement studies like this one, provided that the series are homoscedastic.
The �ltered series using the suggested heteroscedasticity removing �lter in-
duce the longest lead shifts at the peak coherency frequency, and also above
average feedback lag. When applied on subperiods in accordance with US
GDP volatility, most �ltered series showed scattered �rst order cross corre-
lations, but less so in the homoscedastic series.

Thus, the choice of detrending �lter a¤ects both univariate and bivariate
frequency domain results. More importantly, heteroscedasticity matters and
must be eliminated prior to comovement studies like this one.

6. Conclusions and ideas for further develop-
ment
This thesis provides simple, yet e¤ective, ways to handle heteroscedasticity
in economic and �nancial time series. The heteroscedasticity removing �lter
in Paper I allows new and more e¢ cient analysis and applications. A few are
presented in this thesis, such as improving point forecast accuracy of linear
time series models (Paper I) or rendering a e¢ cient study of the underlying
probability distribution of economic growth possible (Paper II).

During the work with the thesis many ideas of further development have
crossed my mind. Most of them were dismissed more or less immediately
as simply bad ideas. But some have been stored to mature in my brain for
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quite some time. Two of them even resulted in half-�nished papers awaiting
to be completed.

The �rst one involves making the heteroscedasticity removing �lter in Paper
I model-based inspired by the pioneering works on seasonal adjustments by
Cleveland and Tiao (1976), Burman (1980) and Hillmer and Tiao (1982), and
later by e.g. Maravall (1987 and 1993). These approaches typically employ
ARIMA processes for the trend and seasonal components and white noise for
the irregular component. Most detrending �lters are ad hoc by nature, and a
proper model-based approach, which jointly models the heteroscedasticity is
called for. The maximum likelihood function quickly gets very complicated
rendering maximum likelihood estimation of the parameters di¢ cult.

The other half-�nished project concerns using the proposed NAL as an error
distribution in linear time series models such as ARIMA. In the theory of
time series analysis it is common practice to assume that the noise series gen-
erating the process is normal. It is widely known that this is too restrictive
in many applications, e.g. modeling �nancial or growth series as seen in this
thesis. Even if the true process is non-normal and we mistakenly maximize
a normal log likelihood for an autoregressive model of order p, the resulting
estimates of the parameters are consistent but, as �rst mentioned by White
(1982), the standard errors for the estimates need not be correct. Any lin-
ear time series model applied on skewed and leptokurtic data will produce
skewed and leptokurtic residuals, so it is a straightforward idea to investi-
gate the properties of linear models assuming di¤erent error distributions.
This has been done in some studies, Tiku et al. (2000) and Damsleth and
El-Shaarawi (1989) used a student´s t marginal and a double exponential
(Laplace) marginal, respectively. Nielsen and Shepard (2003) investigated
the case of exponential noise in the AR(1) model. However, none of the
above examples accounts for the skewness, and this makes it tempting to
use the NAL distribution for the noise. Very recently, Lanne and Lütkepohl
(2010) used a normal mixture distribution for the noise in structural vector
autoregressions. As before, the maximum likelihood functions get compli-
cated, and numerical optimization to estimate the parameters is called for.
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Abstract

In this paper variance stabilizing �lters are discussed. A new �lter with nice
properties is proposed which makes use of moving averages and moving standard
deviations, the latter smoothed with the Hodrick-Prescott �lter. This �lter is
compared to a GARCH-type �lter. An ARIMA model is estimated for the �ltered
GDP series, and the parameter estimates are used in forecasting the un�ltered se-
ries. These forecasts compare well with those of ARIMA, ARFIMA and GARCH
models based on the un�ltered data. The �lter does not colour white noise.

Keywords: Economic growth, heteroscedasticity, variance stabilizing �lters, the
Hodrick-Prescott �lter.

1. Introduction
Data transformations are made in order to facilitate analysis of empirical
time series. There are a number of reasons why one might want to remove
heteroscedasticity before modeling. For one thing, it saves on parameters.
Another reason is the fact that most time series models require stationarity.
Constant mean and variance are necessary requirements for (weak) stationar-
ity. In case the variance is proportional to the level of the series, a logarithmic
transformation may make the series both homoscedastic and stationary in
variance. But many time series do not have constant, or even stationary
variance even after transformations. Often heteroscedasticity is simply ig-
nored and there does not seem to exist heteroscedasticity removing �lters in
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the literature. Handling this problem is still a hot topic, see e.g. Baltagi et
al. (2009). Giordani and Villani (2010) suggested the locally adaptive signal
extraction and regression (LASER) model to capture the dynamics of the
signal and noise. The mean and variance of these components are allowed to
slowly or abruptly shift and the model (using a normal mixture distribution
for each component) is then able to capture these movements.

In this paper we present a new �lter designed to remove heteroscedasticity.
This is achieved by dividing the time series with a moving average of its stan-
dard deviations (STDs), smoothed by a Hodrick-Prescott �lter (HP). Here
we apply the �lter to the logarithmic, quarterly and seasonally adjusted US
GDP series. The same series of the UK and Australia are also analyzed. All
the above time series are found to be signi�cantly heteroscedastic. After �l-
tering no heteroscedasticity remains. Moreover, white noise is not coloured.

Within the model building framework, there exists numerous ways to handle
heteroscedasticity such as weighted least squares (WLS) or generalized least
squares (GLS) in regression models, autoregressive conditional heteroscedas-
ticity (ARCH) and generalized ARCH (GARCH) models for time series data.
The most straightforward way to remove heteroscedasticity in the GDP se-
ries above is to divide the heteroscedastic series by the conditional volatility
estimated from ARCH/GARCH models or from any of their many gener-
alizations. A comparison and a discussion of the two approaches will be
pursued in this paper.

Despite the heteroscedasticity in the �rst di¤erenced logarithmic (Di¤ ln)
series, augmented Dickey-Fuller (ADF) tests do not signal any unit root.
This can lead to a statistically correct, but ine¢ cient use of e.g. ARIMA or
ARFIMA models. Hess and Iwata (1997) conclude that there is no model
that better replicates business cycle features than the simple ARIMA(1,1,0)
model. This was contested by Candelon and Gil-Alana (2004) who consid-
ered fractionally integrated models, and showed that ARFIMA models even
more accurately describe the business cycle characteristics in the US and
the UK. After applying the proposed �lter, an adequate ARIMA-model is
estimated for the �ltered GDP series, and the parameter estimates are then
used in forecasting the un�ltered time series. The forecasts are compared
with those from ARIMA, ARFIMA and GARCH models estimated from un-
�ltered data, showing that ARFIMA is not the best model. The e¤ect of the
ine¢ ciency is measured.
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The data are presented in Section 2 and the e¤ects of heteroscedasticity are
discussed in Section 3. Section 4 contains a discussion about the �lters,
where we also test for possible side e¤ects. Section 5 contains the forecast
comparison and Section 6 concludes.

2. The data
The seasonally adjusted US GDPq (quarterly) series 1947-2005 (n = 236
observations) can be found on the website of Bureau of Economic Analysis,
www.bea.gov. The seasonally adjusted UK GDPq 1955-2005 (n = 204), and
the Australian GDPq series 1959-2005 (n = 188) were copied from the web-
sitesNational Statistics (www.statistics.gov.uk) and ofOECD (www.oecd.org),
respectively. The Di¤ ln GDP quarterly time series together with its �rst
four estimated moments are shown in Figure 2.1. The results of the ADF
test for a unit root and the ARCH-Lagrange multiplier (ARCH-LM) test for
homoscedasticity are also included.

Figure 2.1: The Di¤ ln GDP series and their properties
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Skewness (b� ) 0:22
Kurtosis (b�) 2:05
ADF (p-value) 0:000
ARCH-LM (p-value) 0:000
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Mean (b�) 0:022
STD(b�) 0:015
Skewness (b� ) 0:49
Kurtosis (b�) 0:45
ADF (p-value) 0:000
ARCH-LM (p-value) 0:005

The skewness is signi�cantly nonzero in the UK and Aus series and signi�cant
leptokurtocity appears in the US and UK series. Unit root tests are highly
sensitive to heteroscedasticity. Hamori and Tokihisa (1997) showed that a
permanent STD shift strongly a¤ects the size of Dickey-Fuller type tests. The
e¤ect of a single break in STD on the ADF test has been analyzed by Kim et
al. (2002), who reported risks of over-rejection of the null hypothesis in the
presence of a negative break. This builds on the study by Kim and Schmidt
(1993) who showed that Dickey-Fuller tests tend to reject too often in the
presence of conditional heteroscedasticity. The discussion was extended by
Cavaliere (2004), who came to the same conclusion for other commonly used
unit root tests. In our study, the null hypothesis of a unit root could not
be rejected in all original series, but rejected for the Di¤ ln series, signalling
stationarity. However the persistence in the series in Figure 2.1 may hint at
an integrating order between zero and one, which may be hard to detect due
to heteroscedasticity.
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3. E¤ects of heteroscedasticity
Often nonstationary economic time series can be made stationary simply by
di¤erencing. But this can remedy only nonstationarity in mean - nonstation-
arity in variance must be handled in other ways.

Let the variance of a nonstationary process change with the level, V ar(yt) =
cf(�t), for any positive proportionality constant c, and where f is an in-
creasing function of the time varying level �t: Then it is possible to �nd a
transformation T so that T (yt) has constant variance by approximating the
function by a �rst order Taylor series around �t

T (yt) � T (�t) + T 0(�t)(yt � �t):

Now
V ar [T (yt)] � [T 0(�t)]

2
V ar(yt) = cf(�t) [T

0(�t)]
2
:

For the variance of T (yt) to be constant the transformation must be chosen
so that

T 0(�t) =
1p
f(�t)

;

that is

T (�t) =

Z
1p
f(�t)

d�t:

If, for example, V ar(yt) = c2�2t , then T (�t) =
R

1p
�2t
d�t = ln�t: Hence, a

logarithmic transformation of the series will have constant variance.

If instead the variance of the series is linearly proportional to the level so
that V ar(yt) = c�t, then the square root transformation

p
yt will produce

a constant variance. More generally, the Box-Cox transformation (Box and
Cox, 1964) that includes the logarithmic and the square root transformations
as special cases, is often used to stabilize the variance. However the trans-
formations mentioned above are only de�ned for positive series, and more
importantly, what to do when the standard deviation is not a function of the
series?

In regression it is well known that OLS estimates are not e¢ cient in the
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presence of heteroscedastic disturbances. The problem can be solved using
the standard theory of GLS by simply dividing each observation and each
explaining variable by an estimate of the varying standard deviation of the
disturbances. OLS estimates of the transformed model would then be e¢ -
cient.

In the univariate case one likes to preserve the dynamic structure (autocor-
relation) while making the series homoscedastic. But, here too, the non-
constant standard deviation �t is unknown and must be estimated. With
just one realization of the series this can not be done. A way out is to es-
timate �t recursively using a window of observations2. As in the GLS case,
dividing by appropriate observation weights would produce estimates that
are BLUE.

Consider Figure 3.1 showing the autocorrelation function (ACF) of three
time periods of the US GDP series, the �rst and last 15 years, and the entire
series.

Figure 3.1 ACF of Di¤ ln US GDPq
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There are obvious similarities in autocorrelation structure between the �rst
and most volatile period (1947-1961), and the entire series (1947-2005). The
most recent period (1991-2005), which is crucial for forecasts, does not seem
to have much in�uence on the ACF estimates for the entire period. There
has been a change in the autocorrelation structure, but with equal observa-
tion weights the model estimates will mainly be based on the old structure,
because of the high volatility in the beginning of the time series.

2The variance is de�ned using a moving window of length 2� + 1; with � even:
V ar(yt) =

1
2�+1

P�
i=�� (yt � �t)

2, where �t =
1

2�+1

P�
i=�� yt
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4. Heteroscedasticity �lters
Prior to heteroscedasticity �ltering, the series is stationarized and normal-
ized to vary around zero. Otherwise the �ltered GDP series would contain a
trend. The Di¤ ln series in Figure 2.1 all have a nonzero mean and despite
the rejection of a unit root, they exhibit slowly changing levels. This hints at
the possibility of a double root, or the true integrating order could lie some-
where between I(1) and I(2), suggesting fractionally integrated models, such
as ARFIMA. This is also supported by Candelon and Gil-Alana (2004) who
concluded that the US and UK GDP series are integrated of order around
I(1:4). In the nine cases in the subsequent Section 5, the root is (along
with the other parameters) estimated to lie between 1:27 and 1:47. Taking
just one di¤erence is not enough to extract all trend whereas taking another
di¤erence over-di¤erences the data. One solution to the problem is simply
to take a fractional di¤erence of degree d = 1:4 prior to heteroscedasticity
�ltering. The local trends in the series will then be close to eliminated. In
general, yet another parameter (d) needs to be estimated and results based
on fractionally integrated time series are di¢ cult to interpret.

4.1 A simple �lter

Transforming the series by subtracting from each (Di¤ ln) observation a local
mean is a tempting alternative. It is possible to capture integration orders
between I(1) and I(2) using one of the following two operations:

(a) z
(a)
t = �yt �

t+�X
�=t��

�y� /k ; t = � + 1; � + 2; :::; n� �

(4.1)

(b) z
(b)
t = �yt �

t+�X
�=t��

�y��1 /k ; t = � + 2; � + 3; :::; n� � + 1

where �yt = yt � yt�1, yt is the ln GDP series at time t, k (odd) is the
window length, � = (k � 1)=2 and even. Using di¤erent values on � in
(4.1), di¤erent degrees of integration are achieved. There are two extremes.
For � = (n � 1)=2; the term

Pt+�
�=t���y� /k equals �y. The other extreme

appears when k equals one; that is � = 0: Operation (4.1b) is used only in
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the latter case and is equivalent to a the second di¤erence operation, �2yt.
The choice of � depends on the series studied. If it is close to I(1) then you
should just choose � close to (n� 1)=2, and if the series is close to I(2) then
choose � = 0 in (b) or a small value on � in (a). No matter what choice of �,
(4.1) is a high-pass �lter in that it removes the low frequency movements of
the series. The gain is the change in the output when a step change of unit
size hits the input. Figure 4.1 shows the gain for the two extremes.

Figure 4.1: The gain functions of the special cases one di¤erence,
� = (n� 1)=2 (solid line) and two di¤erences, � = 0 (dotted line)

This transformation can be generalized by raising z(i)t to the power d,
�
z
(i)
t

�d
where i = a; b. This enables us to handle integrating orders below one and
above two. However, this is not needed for the series studied in this paper.

Figure 4.2 shows the estimated spectral densities of the (4.1) for the Di¤
ln US, UK and Aus data, using window length k � n=2, k = 35, k = 15
and k = 1. In all cases a Parzen window was used to smooth the spectral
densities.
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Figure 4.2: The spectrum of the ln US, UK and Aus data

For the extreme of just one di¤erence one gets a spectrum dominated by low
frequency variations, due to the persistence in these series. On the contrary,
using (4.1b) with k = 1 (�2yt) removes all variation at the zero frequency
in these series. Neither of the two extremes is very attractive to use here,
the dominant low or high frequency properties overshadow frequencies in
between. The remaining alternatives all have very similar high frequency
properties. As expected when the windows get shorter the low frequencies
are transferred to higher frequencies. The high frequency variations resulting
from even shorter windows are too dominating. It seems that window length
k = 15 is a good middle course which succeeds in detrending the data without
removing business cycle features. Using k = 15, all three �ltered spectral
densities are bimodal with peaks at around three and ten quarters. The �rst
four moments of z(a)t from (4.1), using k = 15, are reported in Table 4.1.

Table 4.1: The moments of z(a)t;US; z
(a)
t;UK and z

(a)
t;Aus using k =15

US UK Aus
Mean (b�) 0:000 0:000 0:000
STD(b�) 0:011 0:011 0:012
Skewness (b� ) 0:034 �0:459 0:123
Kurtosis (b�) 2:362 4:681 0:932

The skewness is signi�cantly nonzero in the UK, and signi�cant leptokur-
tocity appears in all series. Moreover the series are still signi�cantly het-
eroscedastic but stationary.

Removing the heteroscedasticity is a matter of dividing (4.1) by estimates
of the changing volatility. It does not seem reasonable to assume that the
volatility changes abruptly all the time - smoothing is necessary as a compro-
mise between contrafactual constant STD and unrealistically large volatility
changes from one quarter to the next. Hence we assume that the variance is
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slowly evolving over time. Thus, a logical estimate of the volatility at time t
is

HP (
)

8>><>>:
vuutPt+�

�=t��

�
z
(i)
�

�2d
2�

9>>=>>; , i = a; b (4.2)

where � = (l � 1)=2 and l is the window length which might not be equal
to the window length, k, in (4.1). In this study however, k = l. HP (
) is
the Hodrick-Prescott (1997) �lter designed to decompose a macroeconomic
time series into a nonstationary trend component and a stationary cyclical
residual.

Given a time series xt (in this case the time-dependent variance), the decom-
position into unobserved components is

xt = gt + ct;

where gt denotes the unobserved trend component at time t, and ct the
unobserved cyclical residual at time t. Estimates of the trend and cycli-
cal components are obtained as the solution to the following minimization
problem

min
[gt]

n
t=1

(
nX
t=1

c2t + 

nX
t=3

(42gt)
2

)
; (4.3)

where 4gt = gt � gt�1 and gmin is the HP-�lter. The �rst sum of (4.3)
expresses the closeness between the HP trend and the original series, while the
second sum represents the smoothness of the trend. The positive smoothing
parameter 
 controls the weight between the two components and is thereby
a measure of the signal-to-noise variance ratio. As 
 increases, the HP trend
becomes smoother and vice versa. Note that the second sum, (42gt), is an
approximation to the second derivative of g at time t.

Figure 4.3 shows the moving STDs (using l = 15) and illustrates the e¤ect
of the HP-�lter for di¤erent values of 
.
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Figure 4.3: The moving STDs (thin solid line) and the HP trend using 
=100
(dashed), 
=1 600 (thick solid) and 
=50 000 (dashed/dotted)
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If we would not have made the mean correction in (4.1) a positive trend
would have resulted in ezt below, cf. Figures 2.1 and 4.3. For quarterly data
a commonly used value is 
 = 1 600, originally proposed in Hodrick and
Prescott (1997)3. In this study, 
 = 1 600 accords well with the principle

3" ...a 5 percent cyclical component is moderately large, as is a one-eighth of 1 percent
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"not too rugged - not too smooth".

Dividing (4.1) by (4.2) and multiplying by the overall STD of the entire
period, sy, and adding the corresponding arithmetic average y, we get the
proposed heteroscedasticity removing �lter

ezt = sy

266664
�
z
(i)
t

�d
HP (
)

 rPt+�
�=t��

�
z
(i)
�

�2d
=2�

!
377775+ y; (4.4)

where ezt is the �ltered series, i = a; b and t = max[k � �; l � �];max[k �
� + 1; l � � + 1]; ::: Dividing (4.1) by the moving STDs directly remains an
alternative hypothesis to be considered later on in this section. Whatever the
choice of 
 in (4.4), the trend component, gt, of the HP �lter is a low-pass
�lter, see Figure 4.4.

Figure 4.4: The gain functions of the HP �lter using 
=100 (dotted line),

=1 600 (solid line) and 
=50 000 (dashed line)4

This means that for any parameter values, (4.4) is a high-pass �lter. The �lter
is ad hoc in the same sense as the X11 seasonal adjustment. It is well known
that seasonal adjustment �lters may introduce spurious autocorrelation (as

change in the growth rate in a quarter", yielding
p

 = 5=(1=8), 
 = 1 600:

4The gain function of the HP �lter is G (w; 
) = 1
1+4
(1�cosw)2 , where w is the fre-

quency.
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does X11), see e.g. Wallis (1974). This would be a serious disadvantage of
the �lter and can be tested by feeding white noise into (4.4). This �lter (using
three di¤erent values of 
) was applied on 10 000 simulated i.i.d N(0; 1) series
with 200 observations each, the approximate length of the GDP series in this
study. The results are shown in Table 4.2.

Table 4.2: Filter e¤ects on white noise

White noise 
 = 1 600 
 = 10 000 
 = 100 000
Mean 0:00005 0:00001 0:00002 0:00001
STD 0:99968 0:99244 0:99468 0:99725

Skewness (�) 0:00002 0:00046 0:00035 0:00021
Kurtosis (�) 2:99983 2:94535 2:96130 2:98420
Jarque-Bera 491=10000 488=10000 490=10000 504=10000
Q�0:05(12) 486=10000 651=10000 589=10000 507=10000
Q�0:05(24) 489=10000 691=10000 612=10000 521=10000

The �rst four moments in Table 4.2 are close to identical for the white noise
series, un�ltered and �ltered. The size of the Jarque-Bera test for normality is
also correct at con�dence level 0:05, the size of the Ljung-Box autocorrelation
tests Q�0:05(12) and Q

�
0:05(24) is slightly too large, but no major distortion

appears. Still, for 
 = 1 600, the right hand tail of the �2�distribution is
slightly too thin. Thus, for 
 = 1 600 a threshold value of 0:065 (�20:065(12) =
19:85) is more appropriate for the 0:05 signi�cance level, for 12 lags, and 0:07
(�20:07(24) = 35:24) for 24 lags. When 
 !1, the HP-�lter becomes linear,
exactly preserving the distribution.

Figure 4.5 shows the �ltered series ezt with k = l = 15; d = 1 and 
 = 1 600:
Series of moving STDs (thick solid lines) are also included (using window
length 15) in order to elucidate the e¤ect of the �ltering.
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Figure 4.5: The �ltered series
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are very similar. For the sake of completeness, the two alternatives will be
compared. Figure 4.5 shows that both the mean and the STD look stable in
the �ltered series. As expected these series pass stationarity and homoscedas-
ticity tests, see Table 4.3. Because of the low power of the ADF and ARCH-
LM test in possible concurrent e¤ects of levelshifts and heteroscedasticity,
these tests are supplemented by the results of the Phillip-Perron (P-P) test
for a unit root and the Breusch-Pagan (B-P) test of homoscedasticity.

Table 4.3: Testing for a unit root and for homoscedasticity in the �ltered se-
ries (p-values) when (4.1) is divided by un�ltered b�t (no HP) and according
to (4.4) (HP)

US UK Aus
no HP HP no HP HP no HP HP

ADF 0:00 0:00 0:00 0:00 0:00 0:00
P-P 0:00 0:00 0:00 0:00 0:00 0:00
ARCH-LM 0:20 0:71 0:66 0:90 0:81 0:63
B-P 0:03 0:31 0:43 0:89 0:84 0:93

As expected, the null hypothesis of a unit root is rejected in all cases. Also,
�lter (4.4) successfully removes heteroscedasticity from the US, UK and Aus
GDP series, without seriously a¤ecting the dynamics of the series. Note that
the B-P test signals heteroscedasticity (at signi�cance level 0:05) in the �l-
tered US series when no HP �lter has been used to smooth the volatility.

4.2 A GARCH-type �lter

It is interesting to compare these results to the other approach mentioned
earlier, namely to divide (4.1) by the conditional volatility estimated from
GARCH-type models. Speci�cally, in the presence of asymmetries and lep-
tokurtocity, nonlinear GARCH models must be considered which have the
ability to capture asymmetric e¤ects. Several such models exist in the litera-
ture, most notably the EGARCH model of Nelson (1991), the TGARCH
model of Zakoian (1994) and the GJR-GARCH model of Glosten et al.
(1993). These models were originally introduced to capture the leverage
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e¤ect of stock returns. The models that are found adequate and minimize
Akaike´s criterion are:

z
(a)
t;US = "t

ln(ht;US) = �0:66
(0:26)

� 0:43
(0:14)

 
"t�1p
ht�1

!
+ 0:42
(0:11)

 ����� "t�1p
ht�1

������ E

 ����� "t�1p
ht�1

�����
!!

+ 0:93
(0:03)

ln(ht�1)

z
(a)
t;UK = 0:22

(0:07)
z
(a)
t�1;UK + "t

ln(ht;UK) = �0:15
(0:08)

� 0:11
(0:02)

 
"t�1p
ht�1

!
+ 0:30
(0:09)

 ����� "t�1p
ht�1

������ E

 ����� "t�1p
ht�1

�����
!!

+ 0:98
(0:02)

ln(ht�1)

z
(a)
t;Aus = "t

ht;Aus = 0:06
(0:03)

"2t�1 + 0:93
(0:04)

ht�1

Note that the coe¢ cient estimates of ht�1 are close to one indicating a strong
persistence in the conditional variance, or outright nonstationarity. This is
also seen in Figure 4.6 showing the conditional volatility estimated using the
above models (left panel) and the corresponding �ltered series (right panel).

Figure 4.6: EGARCH/GARCH �ltered series
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Note the rugged shape of the estimated volatility. It seems that HP-�ltering
of the volatility series would be even more needed here than in �lter (4.4),
cf. Figure 4.3. This is performed in the following subsection showing a
comparison of the above �lters.

4.3 Comparing the �lters

Figure 4.7 shows a comparison of the HP trends (with 
 = 1 600) of the
estimated volatility using �lter (4.4), see cf. Figure 4.3, and of the EGARCH/
GARCH �lter.
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Figure 4.7: The HP trend of moving STDs of zt in �lter (4.4) (solid lines)
and of EGARCH/GARCH estimated STDs (dashed lines)

200019901980197019601950

0,02

0,01

0,00

US

20001990198019701960

0,02

0,01

0,00

UK

20001990198019701960

0,02

0,01

0,00

Aus

The amplitude of the HP trend is generally higher using �lter (4.4) than the
alternatives, rendering a heavier heteroscedasticity �ltering. Also there are
phase shifts between the HP trends, which are due to the fact that �lter
(4.4) is centered and the EGARCH/GARCH is a causal �lter. This can be
corrected for by lagging the HP trend according to the calculated phase shift
or constructing a two-sided �lter, as in model-based seasonal adjustment,
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see Hillmer and Tiao (1982). At peak coherency frequency between the HP
trends, the estimated phase shifts are 12:3, 10:7 and 10:9 quarters for the US,
UK and Aus respectively. After correcting the series, almost identical �lters
are obtained. Note however that this procedure results in losing observations
in the end of each series.

Despite the rather unstable looking moving STDs of the EGARCH/GARCH
�ltered series, the ARCH-LM tests fail to reject the null hypotheses of ho-
moscedasticity, see Table 4.4

Table 4.4: Test for a unit root and homoscedasticity in the EGARCH/GARCH
�ltered series (p-values)

US UK Aus
no HP HP no HP HP no HP HP

ADF 0:00 0:00 0:00 0:00 0:00 0:00
P-P 0:00 0:00 0:00 0:00 0:00 0:00
ARCH-LM 0:97 0:31 0:39 0:68 0:65 0:80
B-P 0:90 0:11 0:07 0:32 0:44 0:83

Whether the HP �lter renders the heteroscedasticity �ltering more e¤ective
or not is still not clear. The p-values for the UK and Aus are higher using
the HP �lter than without, but it is the other way around for the US. Note,
however, that the p-values for the ARCH-LM and B-P tests of the �ltered
series are considerably smaller on average compared to the ones shown in
Table 4.3.

To elucidate the di¤erences, Figure 4.8 presents the moving STDs (again us-
ing k = 15) of each �ltered series. The ezt series without the HP �lter have
been omitted in order to simplify comparisons. Also, to enable graphical
comparisons in both ends, �lter (4.4) has been modi�ed there.
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Figure 4.8: The moving STDs using �lter (4.4) (solid line), and the EGARCH/
GARCH �lter (dashed line), with HP (thick line) and without HP(thin line)
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For all three countries it is again evident that �lter (4.4) more e¤ectively re-
moves heteroscedasticity in these series. The moving STDs of the EGARCH/
GARCH �ltered series all contain a decreasing local trend in the beginning,
and after that the amplitude of the swings seem to be larger. This is espe-
cially true when no HP �lter was used in the �ltering. This result is somewhat
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surprising, particularly for the US for which both the ARCH-LM and B-P
tests in Table 4.4 report very high p-values compared to the other �lters. Ac-
cording to e.g. the sign test, the median absolute deviations from the overall
STD is signi�cantly smaller using �lter (4.4) than the EGARCH/GARCH
�lter. Applying the HP �lter on the STDs or not does not change this result.
Our recommendations to apply it are based on logical considerations, see the
discussion in Section 4.1. Also, this way of reasoning is supported by the test
results in Table 4.3, 4.4, the sign test and Figure 4.8.

Figure 4.9 shows that the spectral densities of the �ltered series using (4.4)
or the EGARCH/GARCH �lter, with and without the HP �lter, are almost
identical.

Figure 4.9: Spectral densities of the �ltered series using (4.4) (solid line), and
the EGARCH/GARCH �lter (dashed line), with HP (thick line) and without
(thin line)
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The close similarities of the spectral densities are to some extent due to
the Parzen window and truncation point used, M = 20; which for each
country is between the existing rules-of-thumb valuesM =

p
n andM = 2

p
n

suggested in the literature, see e.g. Percival and Walden 1993, pp. 277-280.
By reducing M , larger di¤erences will appear in the spectral densities, but
the fundamental features will still be similar. An application of the simple
�lter (4.4) is the subject of the next section.

5. A forecast competition
In this section we generate 1-20 quarters ex ante point forecasts, using ade-
quate ARIMA models estimated for the proposed �ltered series ezt;US; ezt;UK
and ezt;Aus (with k = l = 15; 
 = 1 600 and d = 1). The parameter esti-
mates are then applied in forecasting the un�ltered (Di¤ ln) data. In table
5.1 the results of this proposed procedure are marked with an asterisk �.
We compare the accuracy of these with forecasts from ARIMA, ARFIMA
and GARCH models estimated for the un�ltered data. The accuracy of the
out of sample forecasts is measured by the root mean square forecast error
(RMSFE) divided by the STD, and multiplied by 100. Hence, RMSFE = 100
would signal that the forecast error is of the same size as that of a naive fore-
cast. The fact that the values are considerably smaller, even for the longest
horizons, is another symptom of the decreasing variance of the time series
studied. For instance, the STD of Di¤ ln US GDP of the latest 15 years is
just 41 percent of the STD of the entire period.
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Table 5.1: GDP forecast comparisons5 (RMSFE)/STD

Country ARIMA ARIMA* ARFIMA GARCH Horizon (q)
US 25:5 25:3 37:7 25:6 4
UK 51:2 40:8 55:7 61:2 4
Aus 27:8 19:3 42:7 36:7 4

Country ARIMA ARIMA* ARFIMA GARCH Horizon (q)
US 24:6 36:4 27:2 36:0 8
UK 47:4 38:3 49:1 46:5 8
Aus 50:2 42:1 40:0 46:7 8

Country ARIMA ARIMA* ARFIMA GARCH Horizon (q)
US 46:3 45:9 48:6 41:7 12
UK 39:8 36:7 40:2 38:2 12
Aus 53:7 50:8 44:9 50:2 12

Country ARIMA ARIMA* ARFIMA GARCH Horizon (q)
US 80:5 69:8 71:5 97:9 20
UK 36:9 36:3 46:2 98:2 20
Aus 50:6 45:5 42:3 95:4 20

Bold �gures mark the lowest RMSFE of each row. Table 5.1 o¤ers little
support to Candelon and Gil-Alana (2004); ARFIMA models produce the
least accurate forecasts at the horizon of four quarters. For the longer hori-
zons ARFIMA has the lowest RMSFE only for Australian GDP. Estimating
ARIMA models from the �ltered series, rather than from the un�ltered ones,
generates signi�cantly more accurate forecasts when pooling across all hori-
zons above, according to the Diebold-Mariano test of equal forecasting per-
formance (p-value = 0:02). When comparing our method with ARFIMA and
GARCH-type models (also estimated on the un�ltered series) the p-values
of the Diebold-Mariano test is 0:04 and 0:01; respectively. The superiority
of models based on �ltered data is due to the ine¢ ciency of estimates from
heteroscedastic data. The series in this study can be seen as a worst case sce-
nario, because the volatility of the series decreases over time. Consequently,

5The forecasts with a horizon of four quarters are made for 2005, using data
up to quarter 4 of year 2004 for estimation. Consequently, four point forecasts are
compared to four actual outcomes. Similarly, the outcomes of 2004-2005, 2003-
2005 and 2001-2005, are omitted in the estimation step but used when comparing
the forecast accuracy on the horizons 8, 12 and 20 quarters, respectively.
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parameter estimates are strongly based on an obsolete structure.

6. Conclusions
In this paper we discussed the issue of removing heteroscedasticity. We also
propose a simple �lter that successfully removes the heteroscedasticity in
GDP series without signi�cantly distorting the dynamics. Unlike the Box-
Cox transformation, the �lter does not assume that the heteroscedasticity
is proportional to the level of the series. Dividing the heteroscedastic series
by ARCH/GARCH estimated volatility is much more cumbersome and is
signi�cantly less e¤ective than the proposed �lter.

Amechanical estimation of e.g. ARIMA or ARFIMAmodels on heteroscedas-
tic Di¤ ln GDP series is unbiased, but ine¢ cient. Using �ltered data resulted
in better forecasts in a large majority of cases. When pooling across all
horizons, the ARIMA models estimated for the �ltered series generated sig-
ni�cantly more accurate forecasts compared with ARIMA, ARFIMA and
GARCH on the un�ltered data. The result is based on only three series, but
they are the longest and the most important quarterly GDP series around.
This simple �lter could be used as a standard method to remove heteroscedas-
ticity, much as seasonality is suppressed by seasonal adjustment �lters.
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Abstract

Normality is often mechanically and without su¢ cient reason assumed in econo-
metric models. In this paper three important and signi�cantly heteroscedastic
GDP series are studied. Heteroscedasticity is removed and the distributions of
the �ltered series are then compared to Normal, Normal Mixture and Normal -
Asymmetric Laplace (NAL) distributions. NAL represents a skewed and leptokur-
tic distribution, which is in line with the Aghion and Howitt (1992) model for
economic growth, based on Schumpeter�s idea of creative destruction. Statistical
properties of the NAL distributions are provided and it is shown that NAL com-
petes well with the alternatives.

Keywords: The Aghion-Howitt model, asymmetric innovations, mixed Normal -
Asymmetric Laplace distribution, Kernel density estimation, Method of Moments
estimation.

1. Introduction
In the Schumpeterian world growth is driven endogenously by investments
into R&D, leading to better products, which initially capture monopoly prof-
its. The quality improvements occur randomly over time. The main contri-
butions to endogenous growth are given by Romer (1986) and Lucas (1988).
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They both argued that the underlying growth is determined by the accumu-
lation of knowledge, with occasional setbacks. Other important papers on
endogenous growth are: Segerstrom, Anant and Dinopoulos (1990), Gross-
man and Helpman (1991) and Aghion and Howitt (1992, henceforth AH).

The AH model is based on the Schumpeterian idea of creative destruction,
i.e. the economy is driven by welfare augmenting better products (innova-
tions, or shocks) and temporary declines (Schumpeter, 1942, Chapter 8).
The expected rate of economic growth in AH is determined by the amount
of research and its productivity. Innovations are assumed to arrive according
to a Poisson process. To quote Aghion and Howitt (1998, p.54):

"When the amount n is used in research, innovations arrive randomly with a Pois-
son arrival rate �n, where � > 0 is a parameter indicating the productivity of the
research technology."

This was also assumed in e.g. Helpman and Trajtenberg (1994) and in Maliar
and Maliar (2004). The latter study recognizes short waves, but unlike the
present study neither accepts negative shocks. There are many real life ex-
amples that justify negative shocks, e.g. unsuccessful investments in physical
or human capital, bad loans, losses when old investments become worthless
and political con�icts. By negative (destructive) random shocks we try to
mimic the setbacks in our reduced univariate approach. Moreover, all the
models in the quoted works are speci�ed in the time domain, while density
distributions are the object of this study.

Aggregating a Poisson number of shocks (as assumed in the AH model) will
lead to asymmetric distributions. It is found the growth series studied in
this paper exhibit heteroscedasticity, which must be removed in order to en-
able a proper investigation of this hypothesis. This is done using the �lter
described in Stockhammar and Öller (2007). The �ltered series are shown
to be homoscedastic, and both skewness and leptokurtocity are found in the
�ltered (and un�ltered) series, rendering a hypothesis of normality dubious.
Thus, data lend some support to the AH hypothesis.

In the Poisson process the time between each shock is exponentially distrib-
uted with intensity �: Thus, the distribution closest to represent the AH
model is the exponential distribution. In this study however, we have used
the exponential distribution to describe the amplitude of the shocks. When
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� is small we expect infrequent but large shocks and vice versa. This intu-
itive way to describe the shocks accords well with modern economic theory.
Speci�cally, to allow for negative or below average shocks, we have used the
double exponential (Laplace) distribution obtained as the di¤erence between
two exponentially distributed variables with the same value on the parame-
ter �: The Laplace distribution is symmetric around its mean where the left
tail describes below average shocks and vice versa. Due to the expected and
empirically con�rmed asymmetries in the GDP series we have allowed the
exponential distribution to take di¤erent parameter values in the two tails,
giving rise to the asymmetric Laplace (AL) distribution. This is one possible
AH model representative. The asymmetric properties of the AL distribution
have proved appealing for modeling currency exchange rates, stock prices,
interest returns etc. see for instance Kozubowski and Podgorski (1999, 2000)
and Linden (2001).

Another plausible explanation is that the long growth series have passed
through alternating regimes over the years. Every such regime has its own
normal distribution giving rise to a Normal Mixture (NM) distribution, which
is our alternative hypothetical distribution6. The NM distribution, where
skewness and leptokurtocity are introduced by varying the parameters, was
used as early as the late nineteenth century by e.g. Pearson (1895).

It was found that the excess kurtosis in AL models is too large for the �l-
tered (and un�ltered) growth series. The AL could therefore not be the only
source of shocks, so Gaussian noise is added. AL distributed innovations are
combined with normally distributed shocks leading to the weighted mixed
Normal-AL (NAL) distribution. The NAL distribution is capable of gener-
ating a wide range of skewness and kurtosis, making the model very �exible.
We also consider a convolution of the N and AL distributions. The parame-
ters are estimated using the Method of Moments (MM).

This paper is organized as follows. The data are presented in Section 2 and
the data preparation in Section 3. A model discussion together with the
proposed model is the topic of Section 4. Section 5 contains the estimation
set-up and a distributional accuracy comparison. Section 6 concludes.

6This could also be studied using regime switching models, but given the few observa-
tions, we did not pursue this idea.
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2. The data
In this paper the important US GDPq (quarterly) 1947-2007, UK GDPq
1955-2007 and the compound GDP 1960-2007 series of the G7 countries7

are studied as appearing on the websites of Bureau of Economic Analysis
(www.bea.gov), National Statistics (www.statistics.gov.uk) and of OECD
(www.oecd.org), respectively. All series are quarterly and seasonally ad-
justed, �nal �gures, from which we form logarithmic di¤erences, henceforth
"growth" for short.

In order to accurately estimate the N, NM and NAL parameters, long series
are required. The above series are the longest and most important quarterly
GDP series available, and the G7 series is based on a large number of ob-
servations, albeit not as long as the US and UK ones. The �rst di¤erenced
logarithmic (Di¤ ln) series and their corresponding frequency distributions
are shown in Figure 2.1. The frequency distributions are supplemented with
the N distribution with the same mean and variance as those of the series,
and an estimate of the Kernel density8.

7Consists of Canada (1961-2007), France (1978-2007), Germany (1991-2007), Italy
(1980-2007), Japan (1980-2007), UK (1960-2007) and US (1960-2007). The individual
series have been scaled up/down to the price level year 2000, and the compound G7 series
was calculated as their sum.

8The Kernel density estimate is de�ned as

cfh(x) = 1

nh

nX
i=1

K

�
xi � x
h

�

where h is the bandwidth and K(�) is the Kernel function. In this study we have used
the Gaussian Kernel, K(u) = 1p

2�
e�

u2

2 ; and the Silverman (1986) "Rule of Thumb"
bandwidth bh =  4b�5

3n

!1=5
� 1:06b�n�1=5

which is considered to be optimal when data are close to normal.
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Figure 2.1: The Di¤ ln GDP series. The panels on the right hand show the
frequency distributions of the data. The dashed line is the N distribution and
the solid line is the Kernel density
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The Di¤ ln series seem leptokurtic, especially the US and UK. This is also
con�rmed in Table 2.1 where the excess kurtosis in all cases exceeds zero.
The results of the augmented Dickey-Fuller (ADF) test and the ARCH-LM
test are also included.
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Table 2.1: The moments and the results of unit root and homoscedasticity
tests of the Di¤ ln US, UK and G7 GDP series

US UK G7
Mean (b�) 0:017 0:020 0:017
STD(b�) 0:011 0:014 0:008
Skewness (b� ) 0:25 1:03 0:62
Kurtosis (b�) 2:14 2:26 0:06
ADF (p-value) 0:000 0:004 0:021
ARCH-LM (p-value) 0:000 0:000 0:001

The skewness is signi�cantly nonzero in the UK and G7 series and thus lend
some support to the AH hypothesis. Signi�cant leptokurtocity appears in
the US and UK series. The null hypothesis of a unit root using the ADF test
is rejected for the Di¤ ln series, signalling stationarity. The ARCH-LM test
indicates heteroscedasticity in all series.

To test the AH hypothesis, or more generally to compare distributions of
heteroscedastic data, the heterocedasticity must be eliminated. The �lter
proposed in Stockhammar and Öller (2007) enables us to work with mean
and variance stationary time series, and thus to make a fair comparison be-
tween the frequency distributions of the three series and various probability
distributions, notably some asymmetric ones related to the Poisson distrib-
ution. The �ltering procedure is described in the next section.

3. Data preparation
Heteroscedasticity is removed using the �lter proposed in Stockhammar and
Öller (2007):

ezt = sy

266664
�
z
(i)
t

�d
HP (
)

 rPt+�
�=t��

�
z
(i)
�

�2d
=2�

!
377775+ y; (3.1)

where t = max[k � �; l � �];max[k � � + 1; l � � + 1]; ::: with k and l (both
odd) as the window lengths in the numerator and denominator, respectively.
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� = (k � 1)=2, � = (l � 1)=2, ezt is the �ltered series and i = a; b from the
detrending operations

(a) z
(a)
t = �yt �

t+�X
�=t��

�y� /k ; t = � + 1; � + 2; :::; n� � (3.2a)

and with y� delayed one period:

(b) z
(b)
t = �yt�

t+�X
�=t��

�y��1 /k ; t = �+2; �+3; :::; n� �+1 (3.2b)

where �yt = yt � yt�1, yt is the logarithmic series at time t. The transfor-
mations in (3.2) are generalized by raising z(i)t to the power d (which might
not be an integer). Candelon and Gil-Alana (2004) concluded that the US
and UK GDP series are integrated of order around I(1:4). In this study,
however, d = 1 has been used. Di¤erent degrees of integration can also be
achieved using di¤erent values on � in (3.2). There are two extremes. For
� = (n � 1)=2; the term

Pt+�
�=t���y� /k equals �y. The other extreme ap-

pears when k equals one; that is � = 0: Operation (3.2b) is used only in the
latter case and is equivalent to the second di¤erence operation, �2yt. The
best choice of � depends on the properties of the series studied. If the series
is close to I(1) then you should just choose � close to (n � 1)=2, and if the
series is close to I(2) then choose � = 0 in (b) or a small value on � in (a).
Stockhammar and Öller (2007) proposed using window length k = l = 15 (or
� = � = 7) and the standard value used for quarterly data, 
 = 1 600, see
below.

HP (
) in (3.1) is the Hodrick-Prescott (1997) �lter designed to decompose a
macroeconomic time series into a nonstationary trend component and a sta-
tionary cyclical residual. Given a seasonally adjusted time series xt (in this
case the time-varying variance), the decomposition into unobserved compo-
nents is

xt = gt + ct;

where gt denotes the unobserved trend component at time t, and ct the
unobserved cyclical residual at time t. Estimates of the trend and cycli-
cal components are obtained as the solution to the following minimization
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problem

min
[gt]

N
t=1

(
NX
t=1

c2t + 

NX
t=3

(42gt)
2

)
; (3.3)

where 4gt = gt � gt�1 and gmin is the HP-�lter. The �rst sum of (3.3) ac-
counts for the accuracy of the estimation, while the second sum represents the
smoothness of the trend. The positive smoothing parameter 
 controls the
weight between the two components. As 
 increases, the HP trend become
smoother and vice versa. Note that the second sum, (42gt), is an approx-
imation to the second derivative of g at time t. For quarterly data (the
frequency used in most business-cycle studies) there seems to be a consensus
in employing the value 
 = 1 600 as originally suggested in Hodrick-Prescott
(1997). In this study, the HP �lter is applied in order to smooth the moving
standard deviations.

Figure 3.1 shows the Di¤ ln US, UK and G7 GDP series after the het-
eroscedasticity �ltering. The �ltering was done using k = l = 15; d = 1 and

 = 1 600.

Figure 3.1: The heteroscedasticity �ltered Di¤ ln GDP series. The right hand
panels show the frequency distributions of the data. The dashed line is the
N distribution with the same mean and variance as those of the series. The
solid line is the Kernel density
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The �lter e¤ects on the four moments of the three series can be seen in Table
3.1.

Table 3.1: Filter e¤ects on the moments of the Di¤ ln US, UK and G7
GDP series. Period 1 represents the quarters 1947q1-1977q2 (US), 1955q1-
1980q2 (UK) and 1960q1-1983q4 (G7). Period 2 contains 1977q3-2007q4
(US), 1980q3-2007q4 (UK) and 1984q1-2007q4 (G7)b� b� b� b� b� b� b� b�
Period 1 2 1 2 1 2 1 2

yt;US 0:018 0:016 0:013 0:008 �0:27 1:63 1:00 5:51ezt;US 0:017 0:017 0:011 0:011 �0:05 0:22 �0:30 0:42
yt;UK 0:024 0:016 0:018 0:007 0:45 0:53 0:40 0:49ezt;UK 0:020 0:020 0:014 0:014 �0:11 �0:16 0:71 �0:35
yt;G7 0:022 0:013 0:008 0:004 �0:06 0:51 0:16 0:40ezt;G7 0:017 0:017 0:008 0:008 �0:01 0:16 �0:31 �0:24

The �lter succeeds in stabilizing the means (b�) and the standard deviations
(b�) of the series. The estimates of skewness (b�) and excess kurtosis (b�) are
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also more stable in the �ltered series. Signi�cant skewness and leptokurtocity
were found in the entire ezt;US and ezt;G7. In Stockhammar and Öller (2007)
we showed that this �lter does not distort white noise, and thus preserves
the dynamics of the time series.

The un�ltered series in Figure 2.1 do not appear to be normal. Table 3.2
shows that the �lter brings them closer to normality

Table 3.2: Filter e¤ects on the normality of the Di¤ ln US, UK and G7 GDP
series

A-D S-W K-S J-B
yt;US � � � � � � � � � � � �ezt;US � � � �
yt;UK � � � � � � � � � � � �ezt;UK
yt;G7 � � � � � � � � � � � �ezt;G7

In Table 3.2 �, �� and ��� represent signi�cance at the 10%, 5% and 1% levels, respectively, for the null

hypothesis of normality. Four commonly used normality tests are reported, where A-D, S-W, K-S and J-B

are the Anderson-Darling, Shapiro-Wilk, Kolmogorov-Smirnov and Jarque-Bera test, respectively. These

tests are based on very di¤erent measures and can therefore lead to di¤erent conclusions.

The di¢ culty to reject normality is surprising if we take Figure 3.1 into
consideration, where �ltered data seem to have fatter tails than the normal
distribution. Also, there is little trace of the signi�cant skewness and lep-
tokurtocity corroborated in the US and G7. According to e.g. Dyer (1974)
the power of normality tests is generally low, especially for small samples.
Note that the K-S, A-D and J-B statistics for the US reject the null hypothe-
ses of normality. At least for the US series it seems worthwhile to see if there
are other distributions that better �t the data. Considering the low power
of the tests we will try the same for the UK and the G7 series. The normal
distribution remains an alternative hypothesis.
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4. Models for the shock distributions
In the AH model, endogenous growth is driven by creative destruction in
which the underlying source is innovations, assumed to be the result of the
stochastic arrival of new technologies modelled as a Poisson process. The ar-
rival rate itself is a¤ected by the share of the labour force engaged in research
as well as by the Poisson probability of an innovation (research productiv-
ity). Each owner of a patent is assumed to have a temporary monopoly of
the product lasting until it is replaced and destroyed by a better product.

AH speci�es an entire simultaneous model. Our main hypothesis for growth
is a reduced univariate form of the AH model, where both positive and neg-
ative shocks hit production exogenously. The drawback with this approach
is that the origin of the innovations cannot be identi�ed. The Poisson as-
sumption in the AH model leads to asymmetric shock distributions, already
con�rmed in both �ltered and un�ltered data, cf. Tables 2.1 and 3.1. In this
section some asymmetric distributions are described, notably some related
to the Poisson distribution.

With long time series there is a nonnegligible risk of distributional changes
over time. One can argue that data have passed through a number of dif-
ferent regimes, not completely eliminated by �lter (3.1). Every such regime
could be N distributed but with di¤erent means and variances. The �ltered
US GDP in Figure 3.1 still shows a small hump in the right tail, which may
indicate that the data are characterized by at least two regimes, each one
N distributed. Given the relatively few observations, the number of regimes
is here restricted to two. Moreover, the homoscedasticity test did not de-
tect non-constancy of variances, so even two regimes with di¤erent variances
could be hard to detect. The introduction of di¤erent means and variances
for the regimes render it possible to introduce skewness and excess kurtosis
in the NM distribution. The probability distribution function (pdf) of the
NM distribution is:

fNM(ezt;�) = w

�1
p
2�
exp

(
�(ezt � �1)

2

2�21

)
+
1� w

�2
p
2�
exp

(
�(ezt � �2)

2

2�22

)
; (4.1)

where � consists of the parameters (w; �1; �2; �1; �2) and where 0 � w � 1
is the weight parameter.
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The distribution closest to represent the AH model is the exponential distrib-
ution. In order to allow for negative or below average shocks this distribution
is modi�ed by simply assuming that growth is driven by a process, which is
the sum of two (one positive, one negative) exponentially distributed ran-
dom shocks. If these shocks have the same mean we arrive at the Laplace
(L) distribution with pdf:

fL(ezt;�) = 1

2�
exp

�
�jezt � �j

�

�
; (4.2)

where � =(�; �) ; � 2 R is the location parameter and � > 0 is the scale
parameter. The L distribution (which is sometimes also called the double
exponential distribution) has been used in many �elds: engineering, �nance,
electronics etc, see Kotz et al. (2001), and the references therein. The L
distribution is symmetric around its mean (�) with V ar(y) = 2�2 and excess
kurtosis � = 3. It has fatter tails than the N distribution, but it lacks
an explicit shape parameter, making it rather in�exible. Also, the excess
kurtosis is restricted to the constant value (3), no matter what the kurtosis
in the data. Table 3.1 shows the kurtosis in Laplace variables is way too large
for the �ltered growth series in this study (b� = 0:07 for the US, b� = 0:19 for
the UK and b� = �0:29 for the G7). Clearly, the L distribution cannot alone
explain the data.

The L distribution can, however, be modi�ed by allowing it to have a second
stochastic component in the sense that its empirical counterpart is buried in
Gaussian noise. We thus combine (4.2) with a N distribution via a weight
parameter w. This mixture was introduced by Kanji (1985) to �t wind shear
data using the Normal - Laplace (NL) mixture distribution speci�ed by:

fNL(ezt;�) = w

�
p
2�
exp

(
�(ezt � �)2

2�2

)
+
(1� w)

2�
exp

�
�jezt � �j

�

�
; (4.3)

for �1 < ezt < 1 and for the parameters: �1 < � < 1; 0 � w � 1
and � > 0: In (4.3) the N and L distributions have the same mean. Jones
and McLachlan (1990) generalized (4.3) and showed that this may lead to an
even better �t than Kanji�s. The characteristics of the NL density are shown
in Figure 4.1.
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Figure 4.1: NL densities
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The upper panel in Figure 4.1 shows di¤erent weightings of the two components in the NL distribution

(with �=0:017; �=0:011; �=0:005). The solid line in the lower panel shows the pure N(0:017;0:011) dis-

tribution together with two mixture distributions with w=0:5; �=0:05 (dashed/dotted line) and �=0:005

(dashed line), respectively.

The above L and NL mixture distributions do not account for skewness in the
data making them poor AH model representatives. A suitable skewed gen-
eralization of the L distribution is presented in McGill (1962) who proposes
an asymmetric Laplace (AL) distribution of the form

fAL(ezt;�) =
8><>:

1
2 
exp

n ezt��
 

o
if ezt � �

1
2�
exp

n
��ezt
�

o
if ezt > �

; (4.4)
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where again � is the location parameter, for which the median is the Maxi-
mum Likelihood (ML) estimate, and � =(�; �;  ) : This distribution is neg-
atively skewed if  > �; and vice versa for  < �. If  = � the AL collapses
to the L distribution. In AL,  is the parameter of shocks weaker than the
trend and � that of stronger shocks than the trend. If  6= � then Schum-
peterian shocks that lead to weaker than trend growth behave di¤erently from
stronger growth shocks. During the last couple of decades, various forms and
applications of AL distributions have appeared in the literature, see Kotz et
al. (2001) for an exposé. Linden (2001) used an AL distribution to model
the returns of 20 stocks, where  and � were shown to be highly signi�cant.
Another recent paper is Yu and Zhang (2005) who used a three-parameter
AL distribution to �t �ood data.

An advantage of the AL distribution is that, unlike the L distribution, the
kurtosis is not �xed. The AL distribution is even more leptokurtic than the
L distribution with an excess kurtosis that varies between three and six (the
smallest value for the L distribution, and the largest value for the exponential
distribution). Another advantage of the AL distribution is that it is skewed
(for  6= �).

Because of the large leptokurtocity of the AL distribution, we will add
Gaussian noise. To the authors´ best knowledge this distribution has not
been used before for macroeconomic time series data. We assume that each
shock is an independent drawing from either a N or an AL distribution. The
probability density distribution of the �ltered growth series (ezt) can then be
described by a weighted sum of N and AL random shocks, i.e:

fNAL(ezt;�) = w

�
p
2�
exp

(
�(ezt � �)2

2�2

)
+(1� w)

8><>:
1
2 
exp

nezt��
 

o
if ezt � �

1
2�
exp

n
��ezt
�

o
if ezt > � ; (4.5)

where � consists of the �ve parameters (w; �; �; �;  ). Equation (4.5) is re-
ferred to as the mixed Normal - Asymmetric Laplace (NAL) distribution and
is our main AH model representative. Note that (as in Jones and McLachlan,
1990) equal medians, but unequal variances, are assumed for the components
in the proposed distribution. It has a jump discontinuity at � when  6= �,
see Figure 4.2. Looking at the smoothed empirical distributions in Figure
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3.1, the discontinuity seems counterintuitive. However, the histograms in
Figure 3.1 lend some support to a jump close to �. The cumulative distrib-
ution function (cdf) of 4.5 is given in the appendix. Figure 4.2 shows NAL
densities for three di¤erent values of the weight parameter w.

Figure 4.2: NAL densities
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Figure 4.2 shows a pure N(0:017;0:011), an AL( =0:01;�=0:02 and �=0:017) distribution (w=1 and

w=0 respectively) and a compound of these two components with w=0:5: Note the discontinuity at �.

To avoid the discontinuity in �, we may also assume that each shock is a
random mixture of a N and an AL distributed component. We then arrive
at the convoluted version suggested by Reed and Jorgensen (2004). Instead
of using the AL parameterization in (4.4) they used:

fAL�(ezt;�) = ( ��
�+�

exp f�eztg if ezt � 0
��
�+�

exp f��eztg if ezt > 0 (4.6)

which was convoluted with a N distribution giving the following pdf:

fc�NAL(ezt;�) = ��

�+ �
�

�ezt � �

�

��
R

�
�� � ezt � �

�

�
+R

�
�� +

ezt � �

�

��
; (4.7)

where � = (�; �; �; �) and R(z) = �c(z)
�(z)

is the Mill´s ratio. Ibid. called
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this distribution the four parameter Normal Laplace distribution, but it is
here called the convoluted NAL, c-NAL. As can be seen from Figure 4.3 this
distribution lacks the jump in the mode.

Figure 4.3: c-NAL densities.

The left panel in Figure 4.3 shows c-NAL densities using (�;�)=(2;2), �=0 and �=1=4 (dotted line),

�=1=2 (dashed/dotted), �=1 (solid) and �=2 (dashed). The right panel shows c-NAL densities using

�=0, �=0:01; (�;�)=(10;1; dashed line); (1;10, dotted) and (�;�)=(2;2, solid), respectively.

The c-NAL distribution has the advantage of being more parsimonious than
NAL. Whether it is more suitable to describe the probability distribution of
economic growth is the issue of the next section.

5. Estimation and distributional accuracy
In this section we will �t all four distributions (N, NM, NAL and c-NAL) in
order to �nd out which one best describes the data. The �ve parameters in
the NM distribution (4.1) will be estimated using the method of moments
(MM) for the �rst four moments of the same. A close distributional �t is im-
portant in density forecasting. As noted by e.g. Fryer and Robertson (1972),
the method of maximum likelihood might break down for this distribution.
Unfortunately the choice of MM excludes model selection criteria such as the
AIC and BIC. This is compensated by elaborating distributional compar-
isons using several statistical techniques. The noncentral moments of (4.1)
are given in the appendix. Equating the theoretical and the observed �rst
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four moments using the �ve parameters yields in�nitely many solutions9. A
way around this dilemma is to estimate �1 by i.e. the observed mode, here
approximated by the maximum value of the Kernel function estimator of the
empirical distribution (max fK (ezi)). In the presence of positive skewness we
can expect �1 to be smaller than �, and vice versa. Here b�1;US; b�1;UK andb�1;G7 are substituted for max fK (ezt;US) = 0:0142, max fK (ezt;UK) = 0:0196
and max fK (ezt;G7) = 0:0159. The observed moments and the corresponding
MM parameter estimates for the �ltered series (using the above values for
�1;US, �1;UK and �1;G7) are given in Table 5.1.

Table 5.1: Sample moments and estimated parameters of the NM assumption

Sample noncentral moments Estimated NM parameters
E(ezt) E(ez2t ) E(ez3t ) E(ez4t ) bw b�2 b�1 b�2

US 0:0168 0:0004 1:1 � 10�5 3:4 � 10�7 0:833 0:030 0:010 0:005
UK 0:0205 0:0006 2:1 � 10�5 8:1 � 10�7 0:919 0:030 0:015 0:011
G7 0:0171 0:0003 8:0 � 10�6 2:0 � 10�7 0:866 0:024 0:008 0:006

The likelihood function, L (�) ; of the NAL distribution is:

L (�) =
nY
t=1

"
w

 �
2��2

��1=2
exp

 
(ezt � �)2

2�2

!!

+ (1� w)

0@ (2 )�1 exp
�
1
2 
(ezt � �)

�
I (ezt � E(ezt))

(2�)�1 exp
�
1
2�
(�� ezt)� I (ezt > E(ezt))

1A35 ;
where I is the indicator function. The ML estimates might be found by nu-
merical optimization of the above likelihood function. In order to enable a
fair comparison with the NM and the c-NAL distributions, the parameters
are again estimated using MM. The formulae of the noncentral and central
moments of (4.5) are given in the appendix. There are �ve parameters and
only four moment conditions, so again equating the theoretical and the ob-
served �rst four moments will not give a unique solution. We now estimate

9We tried to make use of the �fth moment, but in none of the series did it even at a
10% signi�cance level di¤er from zero. For convenience, also the �fth moment is included
in the appendix.
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� by the ML estimate of � in the AL distribution, that is the observed
median, cmd. Here b�US; b�UK and b�G7 are substituted for cmdUS = 0:0156,cmdUK = 0:0203 and cmdG7 = 0:0167. The parameter values that satisfy the
moment conditions are:

Table 5.2: Estimated NAL parameters

Estimated parametersbw b� b b�
US 0:711 0:012 0:006 0:014
UK 0:828 0:015 0:018 0:017
G7 0:939 0:008 0:008 0:020

Table 5.2 shows that the Gaussian noise component dominates. In the US
and G7 series b is much smaller than b�; which indicates that growth shocks
that are weaker than trend have a smaller spread than above trend shocks.
Together with a mean growth larger than zero this ensures long-term eco-
nomic growth.

Reed and Jorgensen (2004) provided some guidelines on how to estimate the
c-NAL parameters in (4.7) using ML techniques. To be consistent and to
make fair comparisons, the parameters are here again estimated using MM.
Ibid. also supplied the �rst four cumulants, and in order to �nd the MM
parameter estimates we provide the �rst four noncentral moments in the ap-
pendix. Note that the c-NAL distribution has four parameters so there is no
need to �x one of the parameters to �nd a unique MM solution. The MM
estimates are given in Table 5.3.

Table 5.3: Estimated c-NAL parameters

Estimated parametersb� b� b� b�
US 0:017 0:009 197:0 198:0
UK 0:021 0:010 140:1 136:0
G7 0:017 0:007 498:2 498:8

Figure 5.1 shows the estimated NAL distributions together with the bench-
mark N distributions and the smoothed empirical GDP series. The graphs,
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especially of the US distribution, reveal the discontinuity at b�, resulting in a
poignant peak, as discussed in connection with Figure 4.2.

Figure 5.1: Distributional comparison of the N (solid line) and NAL (dashed
line) distributions to the Kernel distribution (dashed/dotted line)
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The NM and c-NAL distributions were omitted in Figure 5.1 in order to im-
prove readability. A left and right tail distributional comparison of all four
distributions for the US are shown in Figure 5.2. The tail distributions in
the UK and, especially G7, are very similar.

Figure 5.2: Distributional comparison of the US left and right tail of the N
(thick solid line), NM (dashed/dotted), NAL (dashed) and c-NAL (thin solid)
distributions
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The NAL distribution thus has fatter tails than the alternatives.

Table 5.4 shows the distributional �t for the three hypotheses. We have
chosen to compare the ordinates of the empirical distributions and the hypo-
thetical N, NM, NAL and c-NAL distribution for 1 000 equidistant points,
however dropping points outside the interval (b�� 4b�; b�+ 4b�). Four accu-
racy measures are used.

The Root Mean Square Error, RMSE, is here de�ned as:

RMSE =

vuuuut
1 000X
i=1

h
fK (ezi)� bf (ezi)i2
1 000

;

where fK (ezi) is the Kernel density estimator, and bf (ezi) is the hypothetical
distribution. The sum is taken over ordinates of equidistant points on the
horizontal axis, and hence there are more points where the distributions are
almost parallel to the x-axis, providing these points with more weight. The
peak to the left of the median considerably a¤ects RMSE for the US data.
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Percentage error measures are widely used but they also have their disad-
vantages. They are unde�ned at fK (ezi) = 0, and they have a very skewed
distribution for fK (ezi) close to zero. The Median Absolute Percentage Error
measure, MdAPE is de�ned as:

MdAPE = median

0@100�
���fK (ezi)� bf (ezi)���
fK (ezi)

1A ;

it is because of the asymmetry, a better measure than its close relative, the
Mean Absolute Percentage Error, MAPE 10. Yet an advantage over MAPE
is that positive errors are not counted heavier than negative ones. This is
the reason why so-called "symmetric" measures have been suggested (Makri-
dakis, 1993). One is the Symmetric Median Absolute Percentage Error, sM-
dAPE

sMdAPE = median

0@200�
���fK (ezi)� bf (ezi)���

fK (ezi) + bf (ezi)
1A :

Hyndman and Koehler (2006) suggested the Mean Absolute Scaled Error,
MASE, de�ned as:

MASE =
1

1 000

����������
fK (ezi)� bf (ezi)

1
999

1 000X
i=2

jfK (ezi)� fK (ezi�1)j

����������
:

Ibid. showed that this measure is widely applicable and less sensitive to
outliers and small samples than the other measures.

All the above four measures are reported in Table 5.4.

10de�ned as: 100
n �

Pn
i=1

���fK (ezi)� bf (ezi)��� /fK (ezi) ):
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Table 5.4: Distributional accuracy comparison

RMSE MdAPE sMdAPE MASE
US N(0:0168; 0:0111) 1:76 16:65 16:73 15:38
US NM 1:41 13:98 13:19 15:59
US NAL 1:73 9:07 9:12 12:68
US c-NAL 1:59 14:25 14:43 14:11

UK N(0:0205; 0:0145) 0:65 13:00 13:63 9:46
UK NM 0:59 15:46 14:99 8:66
UK NAL 0:45 9:47 9:50 6:77
UK c-NAL 0:58 15:02 14:80 7:99

G7 N(0:0171; 0:0077) 2:21 18:69 20:13 14:60
G7 NM 1:64 11:07 10:55 11:78
G7 NAL 1:20 8:65 8:99 9:00
G7 c-NAL 1:70 12:27 11:61 12:55

The NAL distribution using the parameter values in Table 5.2 is superior to
the N, NM and the c-NAL distribution according to every measure, except
RMSE for the US where, as expected, the relatively large discontinuity peak
has a large impact on the measure. NAL shows on average 27.6%, 29.2% and
48.3% better �t for the US, UK and G7, respectively (comparing with the
benchmark N distribution). Comparing to the NM distribution, NAL is an
improvement with on average 15.5% , 30.2% and 21.7% for the US, UK and
G7. Finally, the NAL is on average a 18.8%, 27.6% and a 27.4% improvement
over the c-NAL distribution. According to this numerical comparison, the
US, UK and G7 GDP series could be looked upon as samples from a NAL
distribution (as representing the AH model) with the parameter estimates in
Table 5.2. In other words, the AH hypothesis of economic growth could be
correct, if we accept that shocks are either AL (Poisson) or N distributed,
with N dominating.

Kernel estimation is based on subjective choices both of function and of
bandwidth. But so are goodness of �t tests and it is well known that tests
based on both approaches have low power. To be on safer ground we have
chosen also to test the histograms using three di¤erent numbers of bins. We
then get unique critical values for these tests which enable calculation of
p-values. Table 5.5 reports the p-values of the �2 tests using 10, 15 and
20 bins when testing the null hypotheses H0;1 : ezt �N, H0;2 : ezt �NM,
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H0;3 : ezt �NAL and H0;4 : ezt �c-NAL. The number of degrees of freedom are
given in parentheses.

Table 5.5: The �2 goodness of �t test

Bins(df.) US UK G7
10(7) 0:01 0:78 0:09

H0;1: ezt � N 15(12) 0:00 0:61 0:15
20(17) 0:01 0:17 0:10

10(4) 0:01 0:41 0:02
H0;2: ezt � NM 15(9) 0:00 0:09 0:05

20(14) 0:02 0:27 0:01

10(4) 0:03 0:38 0:10
H0;3: ezt � NAL 15(9) 0:04 0:45 0:17

20(14) 0:11 0:13 0:10

10(5) 0:01 0:48 0:07
H0;4: ezt � c-NAL 15(10) 0:01 0:59 0:13

20(15) 0:02 0:70 0:07

While the power of these tests is low, they still indicate that the NAL distri-
bution �ts US and G7 growth best whereas the N and c-NAL distributions
are most accurate for the UK.

6. Conclusions
The hypothesis that economic growth could be described by a reduced and
modi�ed AH model is not strongly contradicted by data. Asymmetries arises
from the AH model, where innovations are assumed to arrive according to
a Poisson process. The Laplace and asymmetric Laplace distributions are
unable to describe the asymmetric and just slightly leptokurtic shape. A
mixed Normal - Asymmetric Laplace (NAL) distribution is introduced and
is shown to better describe the density distribution of growth than the Nor-
mal, Normal Mixture, convoluted NAL and Laplace distributions. This paper
thus, from a new angle, supports the hypothesis that innovations arriving ac-
cording to a Poisson process play an important role in economic growth, as
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suggested by e.g. Helpman and Trajtenberg (1994) and Maliar and Maliar
(2004). According to the AH hypothesis, � measures the intensity of only
positive shocks (research productivity). Thus, our technique provides a way
to estimate related quantities, and perhaps to compare di¤erent economies.

The mean, variance, skewness and the fatness of the tails stand in relation
to the �ve parameters in the NAL distribution, and the parameters are esti-
mated using MM on the �rst four moments. The moment generating function
and the �rst four central and noncentral moments of the NAL distribution
are provided. Because of the close distributional �t, the NAL distribution
is a good choice for density forecasting of GDP growth series, or for that
matter of any series with these features. The NAL distribution could also
be used for conditional density forecasts applying priors on the parameters
� and  , but that merits another study.
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Appendix, Theoretical moments
The noncentral moments of the Normal mixture distribution (4.1) are given by

E(Y n) =
w
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and speci�cally the �rst �ve moments are

E(Y ) = w�1 + (1� w)�2

E(Y 2) = w
�
�21 + �21

�
+ (1� w)

h
�22 + �22

i
E(Y 3) = w

�
�31 + 3�1�

2
1

�
+ (1� w)

h
�32 + 3�2�

2
2

i
E(Y 4) = w

�
�41 + 6�

2
1�
2
1 + 3�

4
1

�
+ (1� w)

h
�42 + 6�

2
2�
2
2 + 3�

4
2

i
E(Y 5) = w

�
�51 + 10�

3
1�
2
1 + 15�1�

4
1

�
+ (1� w)

h
�52 + 10�

3
2�
2
2 + 15�2�

4
2

i
:

The cdf of the NAL distribution (4.5) is given by:
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where � (�) denotes the cdf of the standard normal distribution.

The noncentral moments of (4.5) are given by
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Speci�cally,

85



E(Y ) = w�+ (1� w)

�
�+

��  

2

�
E(Y 2) = w

�
�2 + �2

�
+ (1� w)

h
�2 +  ( � �) + � (�+ �)

i
E(Y 3) = w

�
�3 + 3��2

�
+ (1� w)

�
�3 +

3 

2

�
2� � 2 2 � �2

�
+

3�

2

�
�2 + 2��+ 2�2

��
E(Y 4) = w

�
�4 + 6�2�2 + 3�4

�
+ (1� w)

h
2 
�
3�2 � 6� 2 + 6 3 � �3

�
+

2�
�
�3 + 3�2�+ 6��2 + 6�3

�
+ �4

i
E(Y 5) = w

�
�5 + 10�3�2 + 15��4

�
+ (1� w)

�
5 

2

�
4�3 � 12�2 2 + 24� 3 � 24 4 � �4

�
+

5�

2

�
�4 + 4�3�+ 12�2�2 + 24��3 + 24�4

�
+ �5

�

Note that the mean of the NAL distribution can be written as
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which clearly shows the obvious fact that positively skewed distributions (� >  ) will have a
mean larger than � and vice versa. The central moments are
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The �rst four noncentral moments of the c-NAL (4.7) are:
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The �rst four central moments are
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Abstract

The distribution of di¤erences in logarithms of the Dow Jones stock index is com-
pared to the Normal (N), Normal Mixture (NM) and a weighted sum of a normal
and an asymmetric Laplace distribution (NAL). It is found that the NAL �ts best.
We came to this result by studying samples with high, medium and low volatility,
thus circumventing strong heteroscedasticity in the entire series. The NAL distrib-
ution also �tted economic growth, thus revealing a new analogy between �nancial
data and real growth.

Keywords: Density forecasting, heteroscedasticity, mixed Normal - Asymmetric
Laplace distribution, Method of Moments estimation, connection with economic
growth.

1. Introduction
In some �elds, including economics and �nance, series exhibit heteroscedas-
ticity, asymmetry and leptokurtocity. Ways to account for these features
have been suggested in the literature and also used in some applications.
The Bank of England uses the two-piece normal distribution (see John, 1982
and Britton et al., 1998) when calculating interval and density forecasts of
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macroeconomic variables in the UK. The close relative, the Normal Mix-
ture (NM) distribution has been used in e.g. Wallis (2005) and recently
in Mitchell and Wallis (2010). Another increasingly popular distribution to
describe data with fatter than Normal (N) tails is the Laplace (L) distribu-
tion. In the �nance literature it has been applied to model interest rate data
(Kozubowski and Podgórsky, 1999), currency exchange data (Kozubowski
and Podgórsky, 2000), stock market returns (Madan and Senata, 1990) and
option pricing (Madan et al., 1998), to name a few applications. Stockham-
mar and Öller (2008) showed that the L distribution may be too leptokurtic
for economic growth data. Instead, allowing for asymmetry, a mixed Normal
- Asymmetric Laplace (NAL) distribution was proposed and in ibid. it was
shown that this distribution more accurately describes GDP growth data of
the US, the UK and the G7 countries than N, NM and L distributions. The
convoluted version of the NAL, suggested by Reed and Jorgensen (2004) was
also examined there, but proved inferior to the weighted sum of probabilities
of the NAL.

In the present study, the density of the Dow Jones Industrial Average (DJIA)
is investigated. This series is signi�cantly skewed, leptokurtic and het-
eroscedastic. Diebold et al. (1998) showed that a MA(1) - t-GARCH(1; 1)
model is suitable to forecast the density of the heteroscedastic S&P 500 return
series. Here another approach is employed. Instead of modeling the condi-
tional variance, the data are divided into parts according to local volatility
(each part being roughly homoscedastic). For every part we estimate and
compare the density forecasting ability of the N, NM and the NAL distrib-
utions. If the NAL distribution would �t both stock index data and GDP
growth, this would hint at a new analogy between the �nancial sphere and
the real economy.

This paper is organized as follows. Section 2 provides some theoretical under-
pinnings. The data are presented in Section 3 and a distributional discussion
in Section 4. Section 5 contains the estimation set-up and a density fore-
casting accuracy comparison. Section 6 contains an illustrative example and
Section 7 concludes.
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2. Density forecast evaluation
The key tool in the recent literature on density forecast evaluation is the
probability integral transform (PIT). It goes back at least to Rosenblatt
(1952), with contributions by e.g. Shepard (1994) and Diebold et al. (1998).
The PIT is de�ned as

zt =

ytZ
�1

pt(u)du; (2.1)

where yt is the realization of the process and pt(u) is the assumed forecast
density. If pt(u) equals the true density, ft(u), then zt � i.i.d. U(0; 1). This
suggests that we can evaluate density forecasts by assessing whether zt are
i.i.d. U(0; 1): This enables joint testing of both uniformity and independence
in Section 4.

3. The data
In this paper the Dow Jones Industrial average index (daily closing prices)
Oct. 1, 1928 to Jan. 31, 2009 (20 172 observations) is studied as appearing
on the website www.�nance.yahoo.com. The natural logarithm of the series
is shown in Figure 3.1.

Figure 3.1: The ln Dow Jones Industrial Average Oct. 1, 1928 to Jan. 31,
2009
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Taking the �rst di¤erence of the logarithmic data (Di¤ ln) gives Figure 3.2,
which reveals the heteroscedasticity.

Figure 3.2: Di¤ ln Dow Jones Industrial Average Oct. 1, 1928 to Jan. 31,
2009
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As seen in Figure 3.3, the Di¤ ln series seems to be leptokurtic. Signi�cant
both leptokurtocity and skewness were found in tests.

Figure 3.3: Histogram of Di¤ ln DJIA Oct. 1, 1928 to Jan. 31, 2009. The
solid line is the Normal distribution using the same mean and variance as in
the series
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The heteroscedasticity is also evident in Figure 3.4, which shows moving
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standard deviations using a window of length k = 45 smoothed with the
Hodrick-Prescott (HP) (1997) �lter (using smoothing parameter � = 1:6 �
107).

Figure 3.4: Smoothed moving standard deviations using window k=45 and a
HP �lter with � =1.6�10 7
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The data have been divided into three small groups of volatility, cf. Figure
3.4. The periods denoted as high (H), medium (M) and low (L) volatility
(yt;H ; yt;M and yt;L) are de�ned as times when the smoothed moving stan-
dard deviations, b�t, (see Figure 3.4) are larger than 0:03; between 0:0095 and
0:0097, and smaller than 0:0044; respectively. These limits were chosen so as
to get approximately equally-sized samples, for which in-sample variance is
fairly constant. Also, choosing only the very extreme parts of volatility facili-
tates calibration of the parameters of the distributions described in Section 4.
The three periods consist of 308, 267 and 277 observations, respectively. The
variables, yt;H and yt;L have been sampled from undivided periods, 1931-11-05
to 1933-01-27 and 1964-03-10 to 1965-04-13, respectively. According to the
ARCH-LM, the augmented Dickey-Fuller (ADF) and various normality tests,
yt;H and yt;L are homoscedastic, stationary and non-normal. The skewness
is signi�cantly nonzero in yt;L and signi�cant leptokurtocity appears in both
yt;H and yt;L. On the contrary, the medium volatility part, yt;M , contains
observations from 16 disjoint periods. Standard homoscedasticity, unit-root
and normality tests are not available for non-equidistant data.

The proposed procedure of circumventing strong heteroscedasticity in the en-
tire series is aimed at �nding the most accurate density forecast distribution
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for each part of local volatility. The result is then used to provide guidelines
for the intervening situations of local volatility. Using the simpli�ed NAL
distribution described in Section 4, a strict judgmental estimation of the pa-
rameters is facilitated using the estimated distributions for the high, medium
and low volatility parts as guidelines. It is also possible to constantly reesti-
mate the parameters using the techniques described in Section 5.

Table 3.1 shows the �rst four sample central and noncentral moments of the
high, medium and low volatility observations.

Table 3.1: The sample central and noncentral moments of yt;H ; yt;M and yt;L

yt;H yt;M yt;L yt;H yt;M yt;Lb� �0:0018 0:0012 0:0004 E(yt) �0:00184 0:00121 0:00043b� 0:0325 0:0088 0:0039 E(y2t ) 0:001057 0:000079 0:000015b� 0:33 0:15 �0:47 E(y3t ) 0:000006 0:000000 0:000000b� 0:35 0:98 0:54 E(y4t ) 0:000004 0:000000 0:000000

In Table 3.1, b� and b� are the sample skewness and excess kurtosis, respec-
tively. As expected the variance is very di¤erent in the three samples. Note
that the mean of yt;H is negative, the volatility thus tends to increase when
DJIA declines. Figure 3.5 shows the distributions of yt;H ; yt;M and yt;L.

Figure 3.5: The distributions of yt;H ; yt;M and yt;L
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Figure 3.5 indicates that the distribution of yt;M could also be non-normal
(signi�cant non-normality were found in yt;H and yt;L). But in order to
vindicate the conclusions, we keep the Gaussian distribution as a benchmark.
This will be compared with the NM and the NAL distributions. That is the
topic of the next section.

4. Distributional discussion11

The use of di¤erent means and variances for the regimes enables introduc-
ing skewness and excess kurtosis in the NM distribution. The probability
distribution function (pdf) of the NM distribution is:

fNM(yt;�1) =
w

�1
p
2�
exp

(
�(yt � �1)

2

2�21

)
+
1� w

�2
p
2�
exp

(
�(yt � �2)

2

2�22

)
; (4.1)

11See Stockhammar and Öller (2008) for a more detailed description of the distributions.
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where �1 consists of the parameters (w; �1; �2; �1; �2) and where 0 � w � 1
is the weight parameter. Another distribution often used to describe fatter
than normal tails is the double (two-sided) exponential, or the Laplace (L)
distribution. It arises as the di¤erence between two exponential random
variables with the same parameter value. The pdf of the L distribution is:

fL(yt;�2) =
1

2�
exp

�
�jyt � �j

�

�
; (4.2)

where �2=(�; �) ; � 2 R is the location parameter and � > 0 is the scale
parameter. Again studying Figure 3.3 the L distribution seems promising,
but it cannot describe the signi�cant skewness in the data. Instead we choose
the asymmetric Laplace (AL) distribution with pdf:

fAL(yt;�3) =

8><>:
1
2 
exp

n
yt��
 

o
if yt � �

1
2�
exp

n
��yt
�

o
if yt > �

; (4.3)

where �3 consists of the three parameters (�; �;  ): The main advantage of
the AL distribution is that it is skewed (when  6= �), conforming with the
empirical evidence in Table 3.1. Another property of this distribution is that,
unlike the pure L distribution, the kurtosis is not �xed. The AL distribution
also has a discontinuity at �. To further improve �exibility, Gaussian noise
is added. To the author�s best knowledge this distribution has not been used
before to model �nancial time series data. We assume that the probability
density distribution of the Di¤ ln Dow Jones series (yt) can be described as
a weighted sum of Normal and AL random densities, i.e.:

fNAL(yt;�4) =
w

�
p
2�
exp

(
�(yt � �)

2

2�2

)
+(1� w)

8><>:
1
2 
exp

n
yt��
 

o
if yt � �

1
2�
exp

n
��yt
�

o
if yt > �

; (4.4)

where �4 = (w; �; �; �;  ). Distribution (4.4) is referred to as the mixed
Normal-Asymmetric Laplace (NAL) distribution. Note that equal medians
but unequal variances are assumed for the components. Figure 4.1 shows
NAL densities for �ve di¤erent values of the weight parameter w.
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Figure 4.1: NAL densities using a N(0,0.01 ) and an AL( =0.005 ; �=0.02 )
and weightings of them using w=1, 0.8, 0.5, 0.2 and 0.
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A graphical examination of the PIT histograms (see Section 2) might serve as
a �rst guide when determining the density forecasting accuracy of the above
distributions. One intuitive way to assess uniformity is to test whether the
empirical cumulative distribution function (cdf) of fztg is signi�cantly dif-
ferent from the 45� line (the theoretical cdf). This is done using e.g. the
Kolmogorov-Smirnov (K-S) statistic or �2-tests.

Assessing whether zt is i.i.d. can be made visually by examining the cor-
relogram of fzt � zgi (with i = 1; 2; 3; 4) and the corresponding Bartlett
con�dence intervals. Thus, we examine not only the correlogram of fzt � zg
but also check for autocorrelations in higher moments. Using i = 1; 2; 3 and
4 will reveal dependence in the (conditional) mean, variance, skewness and
kurtosis. This way to evaluate density forecasts was advocated by Diebold
et al. (1998).

In order to illustrate why the NAL distribution (4.4) is a plausible choice
we once more study the entire series. Figure 4.2 shows the contours of cal-
culated PIT histograms together with Kernel estimates (using the Gaussian
Kernel function and Silverman´s bandwidth) for the L and the cumulative
benchmark N distribution.
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Figure 4.2 Density estimates12 of zt
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The N histogram has a distinct non-uniform �moustache�shape �a hump
in the middle and upturns on both sides. This indicates that too many of
the realizations fell in the middle and in the tails, relative to what we would
expect if the data were normally distributed, see Figure 3.3. The "seagull"
shape of the L histogram is �atter than that of N, but is nevertheless non-
uniform. The L histogram is the complete opposite of the N histogram with
too few observations in the middle and in the tails.

Neither of the two distributions is appropriate to use as forecast density
function. It may be possible to �nd a suitable weighted average of them
(the Normal-Laplace (NL) distribution) or, accounting for the asymmetry,
the NAL as de�ned in (4.4). However, assessing whether zt � i.i.d. U(0; 1)
shows the disadvantages with the above distributions. Neither of them is
particularly suitable to describe heteroscedastic data (such as the entire Di¤
ln series), see Figures 4.3 a-d) of the autocorrelation functions (ACF) of
fzt � zgi using the N distribution as forecast density.

12100 bins were used. If the forecast density were true we would expect one percent of
the observations in each of the 100 classes, with a standard error of 0:0295 percent.
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Figure 4.3: Estimates of the ACF of fzt � zgi ; i=1,2,3 and 4, for yt assum-
ing normality
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The strong serial correlation in fzt � zg2 and fzt � zg4 (panels b and d)
shows another key de�ciency of using the N density - it fails to capture the
volatility dynamics in the process. Also, the L correlograms indicate ne-
glected volatility dynamics. This was expected. Neither single (N or L), nor
mixed distributions (NM, NAL) are able to capture the volatility dynam-
ics in the entire series. One could model the conditional variance using e.g.
GARCH type models (as in Diebold et al., 1998), or State Space exponential
smoothing methods, see Hyndman et al. (2008). Here we are more interested
in �nding an appropriate distribution to describe the data. Instead of mod-
eling the conditional variance, as said in Section 3 the data are divided into
three parts according to their local volatility (each of which is homoscedas-
tic).

Figure 4.4 further supports the homoscedasticity assumption in the high
volatility data (yt;H), assuming normality.
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Figure 4.4: Estimates of the ACF of fzt � zgi ; i=1,2,3 and 4, for yt;H as-
suming normality
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The series of medium and low volatility assuming the N, L, NM and NAL
distributions give similar ACF:s. Standard tests do not signal autocorrela-
tion in these series assuming any of the distributions. This means that our
demand for independence is satis�ed, and �nding the most suitable distri-
bution for density forecasts is a matter of �nding the distribution with the
most uniform PIT histogram. This is done using the K-S and �2 tests for
yt;H ; yt;M and yt;L separately, when the parameters have �rst been estimated.
These are issues of the next section.

5. Estimation
The parameters are estimated for the three periods of high, medium and low
volatility, respectively. For each part separately, the �ve parameters in the
NM and NAL distributions (4.1 and 4.4) will be estimated using the method
of moments (MM) for the �rst four moments. The noncentral and central
moments and the cumulative distribution function (cdf) of (4.1) and (4.4)
were derived in Stockhammar and Öller (2008). Equating the theoretical
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and the observed �rst four moments in Table 3.1 using the �ve parameters
yields in�nitely many solutions13. A way around this dilemma is to �x �1
in the NM to be equal to the observed mode, which is here approximated
by the maximum value of the Kernel function of the empirical distribution,
max fK (yi) where i = H;M;L. Here, b�1;H ; b�1;M and b�1;L are substituted
for max fK (yt;H) = �0:0025, max fK (yt;M) = �0:0001 and max fK (yt;L) =
0:0011. In the NAL distribution, � is �xed to be equal to the MLE with
respect to � in the AL distribution, that is the observed median, cmd. Here,b�H = cmdH = �0:00359, b�M = cmdM = 0:00081 and b�L = cmdL = 0:00070.
Fixing one of the parameter in each distribution makes it easier to provide
guidelines to forecasters concerning which parameter values to use, and when.
With the above parameters �xed, the NM and NAL parameter values that
satisfy the moment conditions are:

Table 5.1: Parameter estimates

NMH NMM NML NALH NALM NALLbw 0:8312 0:7803 0:7898 bw 0:8447 0:7651 0:7994b�2 0:0141 0:0059 �0:0021 b� 0:0292 0:0091 0:0041b�1 0:0229 0:0081 0:0041 b 0:0365 0:0036 0:0042b�2 0:0604 0:0098 0:0011 b� 0:0563 0:0070 0:0015

Note that the estimated weights in all cases are close to 0:8. To further
improve user-friendliness, it is tempting to also �x the weights to that value.
If this can be done without losing too much in accuracy it is worth further
consideration. With w = 0:8 (and the �´s �xed as above), the remaining
three MM estimates are:

Table 5.2: Parameter estimates

NMH NMM NML NALH NALM NALLb�2 0:0008 0:0065 �0:0023 b� 0:0321 0:0088 0:0041b�1 0:0217 0:0081 0:0040 b 0:0137 0:0040 0:0042b�2 0:0582 0:0097 0:0018 b� 0:0312 0:0079 0:0015

13We tried to make use of the �fth moment, but in none of the three parts did it
signi�cantly di¤er from zero.
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Table 5.2 shows that not much changes if we �x w. The exception is for the
NAL estimates of high volatility data, where both the magnitude and the
ratio of b to b� changes dramatically. Giving less weight to the N distribu-
tion is compensated for by a larger b� and decreasing b and b� and vice versa:
Because of the positive skewness in yt;H ; yt;M , b H < b�H and b M < b�M . Thatb L > b�L accords well with the results in Table 3.1. Note that yt;H and yt;L
have completely opposite properties in Table 3.1, yt;H having a mean below
zero and positive skewness and the other way around for yt;L. The relative
di¤erence between b and b� is approximately the same in Table 5.2. yt;M
shows yet another pattern with above zero mean and positive skewness (b 
about half the value of b�).
In order to compare the distributional accuracy of the above empirical distri-
butions we make use of the K-S test. Because of the low power of this test,
as with all goodness of �t tests, this is supplemented with �2 tests. The K-S
test statistic (D) is de�ned as

D = sup jFE (x)� FH(x)j ;

where FE(x) and FH(x) are the empirical and hypothetical or theoretical
distribution functions, respectively. Note that FE(x) is a step function that
takes a step of height 1

n
at each observation. TheD statistic can be computed

as

D = max
i

�
i

n
� F (xi); F (xi)�

i� 1
n

�
;

where we have made use of the PIT (2.1) and ordered the values in increasing
order to get F (xi). If FE(x) is the true distribution function, the random
variable F (xi) is U(0; 1).

Table 5.3 reports the value of the D statistics (in parentheses), and also the
p-values of the �2 test using 10 and 20 bins when testing H0;1 : yt;k � N,
H0;2 : yt;k � NM(1); H0;3 : yt;k � NM(2); H0;4 : yt;k � NAL(1) and H0;5 : yt;k �
NAL(2) (k =high, medium or low). The number of degrees of freedom when
calculating the p-values are in parentheses. Note that the �xed parameters
in the NM and NAL distributions are treated as estimated, resulting in the
reported number of degrees of freedom. The NM(1) and NAL(1) distributions
are based on the parameter estimates in Table 5.1 while NM(2) and NAL(2)
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are based on the estimates in Table 5.2.

Table 5.3: Goodness of �t tests

High Medium Low
K-S (0:038) (0:060) (0:045)

H0;1 : yt;k � N �2(7) 0:56 0:04 0:78
�2(17) 0:73 0:21 0:88

K-S (0:071) (0:092) (0:099)
H0;2 : yt;k � NM(1) �2(4) 0:01 0:00 0:00

�2(14) 0:07 0:03 0:01

K-S (0:064) (0:062) (0:079)
H0;3 : yt;k � NM(2) �2(4) 0:00 0:03 0:01

�2(14) 0:06 0:24 0:10

K-S (0:027) (0:041) (0:028)
H0;4 : yt;k �NAL(1) �2(4) 0:65 0:25 0:48

�2(14) 0:93 0:19 0:67

K-S (0:025) (0:046) (0:028)
H0;5 : yt;k �NAL(2) �2(4) 0:81 0:34 0:53

�2(14) 0:94 0:36 0:75

Table 5.3 shows that the NAL distributions are superior to the N and NM
on average. Also, there is no great loss of information by �xing the weight
parameter. In fact the NM �t was improved after �xing w, but the �t was
nevertheless inferior to both the NAL and (surprisingly) the N distribution.
Also the NAL(2) �t is slightly superior to the NAL(1). The NM distributions
thus have a relatively poor �t to the extreme volatility parts of Di¤ ln DJIA.
In general the N �t is, contrary to earlier results, quite good, particularly
for the high and low volatility observations but, because of the skewness in
the data, the NAL �ts even better. Interestingly, In Stockhammar and Öller
(2008) the NAL was also found to accurately describe GDP growth data.

Figure 5.1 shows the absolute deviations of the empirical distribution func-
tions of the probability integral transforms from the theoretical 45� lines (the
measure the K-S test is based on, cf. the K-S values in Table 5.3).
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Figure 5.1: Absolute deviations of the N, NM (1),NAL(1) and N, NM (2),
NAL(2) from the theoretical distributions
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The N, NM and NAL distributions are marked with thin solid, dashed and thick solid lines, respectively,

and the upper, centre and lower panels are the high, medium and low parts of the series. The panels to

the left and right hand side are the distributions in Table 5.1 and 5.2, respectively.

Figure 5.1 adds further information about the �t. The left tail �t is inferior
to the right tail �t. This is particularly prominent for the NM. It conforms
well with Bao and Lee (2006) who came to the same conclusion using vari-
ous nonlinear models for the S&P daily closing returns. Except for the low
volatility part the �t close to the median is generally acceptable. Because
of the similarity in distributional accuracy between the NAL(1) and NAL(2)
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the latter distribution is the obvious choice. With both � and w �xed it is
easier to interpret the remaining parameters. Figure 5.2 shows the forecast
densities of the NAL(2) distributions for the three parts of extreme volatility.

Figure 5.2: Forecasting densities of the NAL(2) distributions for yt;H (dashed),
yt;M (solid) and yt;L (dashed/dotted)
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Here a jump at the median of each distribution is evident14. But this is of
little importance when it comes to density forecasting where the tail behav-
iour is more interesting. The negative median in yt;H means that for high
volatility data we expect a negative trend. But due to the skewness, large
positive shocks will be more frequent than large negative cf. Table 3.1. Pos-
itive skewness is apparent also in the medium volatility data but for low
volatility data, large negative shocks are more frequent than large positive.

In a situation of a very large local variance, here de�ned as b�t > 0:03 for the
last 45 days, we propose the use of the high volatility NAL distribution and
the corresponding estimates in Table 5.2. Similarly we suggest the NAL(2)M
and NAL(2)L estimates in Table 5.2 if the local variance falls between 0:0095
and 0:0097; or fall below 0:0044. For the intervening values a subjective choice
is encouraged using the estimates in Table 5.2 and their corresponding dis-
tributions in Figure 5.2 as guidelines. Note that this approach is facilitated

14The discontinuity at the median can be avoided using e.g. the convoluted NAL version
of Reed and Jorgensen (2004). Since this approach did not prove promising in Stockham-
mar and Öller (2008), we do not pursue it here.
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using the simpli�ed NAL distribution. Another option is to regularly rees-
timate the parameters using the MM method and the latest set of moment
estimates. During the worldwide �nancial crises of 2008 and 2009 we would
most often use the NALH estimates (or values close to them). On the con-
trary we suggest the use of the NALL estimates during calm, or "business as
usual" periods. This is exempli�ed in the following section.

6. Application
The proposed density forecast method is here applied to the Di¤ ln DJIA
series Feb. 1, 2009 to Jun. 30, 2009, thus showing a realistic forecasting
scenario. According to Figure 3.4 the local volatility at the end of January
2009 is very large (b�t � 0:03). Following the earlier discussion we should in
this situation choose the NAL(2)H distribution when calculating density fore-
casts, but to serve as comparisons we will also include the density forecasts
made using the NAL(2)M and NAL(2)L distributions. We have used the (neu-
tral) median in each distribution as point forecasts. Other point forecasts
could, and probably should, be used in real life practice. Figure 6.1 shows
the original Di¤ ln series Dec. 1, 2008 to Jun. 30, 2009 together with the 95
percent con�dence intervals for the point forecasts using the NAL(2)H , NAL

(2)
M

and NAL(2)L distributions, calculated from Feb. 1, 2009.

Figure 6.1: Interval forecast comparison, Dec. 1, 2008 - Jun. 30, 2009
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The forecasting horizon (5 months) in the above example is too long to be
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classi�ed as a high volatility period. The corresponding distribution works
best only for the �rst half of the period. For the later half it is probably
better to use parameter values closer to the NAL(2)M distribution. In practice,
frequent updates of the forecasts are recommended.

7. Conclusions
In this paper we have looked at a way to deal with the asymmetric and het-
eroscedastic features of the DJIA. The heteroscedasticity problem is solved
by dividing the data into volatility groups. A mixed Normal - Asymmetric
Laplace (NAL) distribution is proposed to describe the data in each group.
Comparing with the Normal and the Normal Mixture distributions the NAL
distributional �t is superior, making it a good choice for density forecasting
Dow Jones stock index data. On top of good �t the simplicity of this distri-
bution is particularly desirable since it enables easy-to-use guidelines for the
forecaster. Subjective choices of the parameter values is encouraged, using
the given parameter values for scaling.

The fact that the same distribution �ts both stock index data and GDP
growth indicates a analogy between �nancial and growth data not known
before. The NAL distribution was derived as a representative of a Schum-
peterian model of growth, the driving mechanism for which was Poisson
(Aghion and Howitt, 1992) distributed innovations, see Stockhammar and
Öller (2008). Interestingly, the same mechanism seems to work with stock
index data.
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Abstract

This paper explores the connection between Dow Jones industrial average (DJIA)
stock prices and the US GDP growth. Both series are heteroscedastic, making
standard detrending procedures, such as Hodrick-Prescott or Baxter-King, inad-
equate. The results from these procedures are compared to the results from het-
eroscedasticity corrected data, thus the e¤ect of the neglected heteroscedasticity
is measured. The analysis is mainly done in the frequency domain but relevant
time domain results are also reported.

Keywords: Spectral analysis, detrending �lters, heteroscedasticity, the connec-
tion between stock prices and economic growth.

1. Introduction
Numerous time domain studies have described the relationship between eco-
nomic variables. Some other studies have investigated the relationship be-
tween, say economic growth, and non-economic variables such as the current
age distribution in a country or energy consumption, see e.g. Lee (2005). In
the frequency domain similar studies are also quite common. Öller (1990)
used a frequency domain approach to investigate the �t and comovements
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of business survey data and industrial production data in Finland. The ex-
change rate comovements of 12 countries were studied by Orlov (2009).

National product series, such as GDP, typically contain a unit root (Granger,
1966). Trends and unit roots show up as low or in�nite frequency variations
in the spectral density. Standard analysis requires stationarity and hence
economic time series are detrended prior to further analysis. Done properly,
detrending eliminates an in�nite peak at zero frequency. Given a �nite time
series, it is impossible to design an ideal �lter, and one has to make a good
approximation. Filters may distort the frequency content of the cyclical part.
Simple �rst-di¤erencing, for instance, ampli�es the higher frequencies at the
expense of lower frequencies. Moreover, in the case of short series, abrupt
variations in the frequency response give rise to Gibbs´ phenomenon, see e.g.
Priestley (1981, pp. 561).

The most widely used detrending �lters are the ones suggested by Hodrick
and Prescott (HP) (1997), Beveridge and Nelson (BN) (1981) and Baxter
and King (BK) (1999). Ma and Park (2004) used the HP �lter in a comove-
ment study of the interest rates in US, Japan and Korea. The HP �lter was
also applied in Uebele and Ritschl (2009), prior to a comovement study of
stock markets and business cycles in Germany before World War I. The BK
�lter has been used by i.a. Stock and Watson (1999). Most studies focus
solely on business cycle frequencies suggested by Burns and Mitchell (1946)
of between 6 and 32 quarters. But much information may be extracted also
outside this frequency band. This is further discussed in Section 4.

To the author´s best knowledge no detrending �lter exists, which takes the
highly possible event of heteroscedasticity into consideration. This is sur-
prising because in spectral analysis contributions to the variance at speci�c
frequencies are of prime interest. Neglecting heteroscedasticity will distort
frequency domain results, see the discussion in e.g. Engle (1974). Because of
this, the heteroscedasticity removing �lter of Stockhammar and Öller (2007)
will be considered here. The univariate and comovement frequency domain
results from the �lter proposed in ibid. will be compared with the results
from the ones that do not take heteroscedasticity into account. The detrend-
ing �lters will be further discussed in Section 3.

In Stockhammar and Öller (2008) it was shown that a Normal - Asymmetric
Laplace (NAL) mixture distribution accurately describes the frequency dis-
tributions of US, UK and Australian GDP quarterly series. Interestingly, in
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Stockhammar and Öller (2010) the same distribution was found also to work
well for Dow Jones industrial average (DJIA) daily closing prices. This fact
encouraged a closer look at the movements of stock indexes and GDP series.
This will be pursued here using the above �lters to detrend the series prior
to spectral analysis of their relations. Frequency domain techniques allow a
study of the correlations di¤erentiated by frequency (coherency), and thus
to concentrate on cycles. Because if the two series are related, the strongest
coherency is expected to occur on business cycle frequencies. Comovements
of two series may also be studied in the time domain using cross correlation
coe¢ cients. As a check of the results, relevant time domain estimates are
also reported.

This paper is organized as follows. Section 2 presents the data. In Section 3
the �lters are described then used to detrend the series prior to the comove-
ment investigation of Dow Jones stock index data and US GDP in Section
4. Section 5 concludes.

2. The data
Here, quarterly �gures 1947-2007 (244 observations) of the seasonally ad-
justed DJIA and the US GDP are studied as appearing on the website
www.�nance.yahoo.com and the website of the Bureau of Economic Analy-
sis, www.bea.gov, respectively. The DJIA series was converted to quarterly
�gures from daily closing prices and calendar e¤ects have been accounted for.
These series together with their logarithms are presented in Figure 2.1.
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Figure 2.1: DJIA (dashed line) and US GDP (solid line), the original series
(left panel), logarithmic series (right panel)
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The issue of detrending the above series to enable spectral analysis of their
relationships is discussed in the next section.

3. Detrending �lters
As emphasized by Granger (1966), business cycle peaks in spectral densities
are often buried in the massive share of low frequency (trend) variations. Sev-
eral �lters have been suggested to reduce the trend domination and to isolate
the business cycle. The components of a time series can be de�ned in at least
two ways (Cogley, 2001). One is the �lter-design approach and the other is
the model-based approach. For completeness, members of both approaches
are compared in this study. In the �lter-design approaches, the trend and
business cycle are de�ned as components passing through an ideal15, low,
high or band-pass �lter, whose bands are predetermined according to the
assumed variation at speci�c frequencies. The approaches are typically ad
hoc by nature, in the sense that the statistical properties of the business
cycle are not speci�ed. Here, in the presence of �nite-length time series, it is
impossible to design an ideal �lter and a good approximation will have to suf-
�ce. The HP and BK �lters described below are examples of this approach.
To overcome some of the criticism mentioned below of the �lter-design ap-
proach (see e.g. Harvey and Jaeger, 1993), the model-based approach has
been suggested. The BN �lter described in Section 3.3 is an example of the
model-based approach.

15An ideal �lter completely eliminates the frequencies outside the predetermined ones,
while passing the remaining ones unchanged.
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The simplest way to detrend a time series yt is to calculate the �rst di¤er-
ences16 (FD), yFDt = �yt where yFDt is the detrended series from the FD �lter
and � = (1 � B), where B is the backshift operator such that Bjyt = yt�j.
The FD of the logarithmic (Di¤ ln) DJIA and US GDP are shown in Figure
3.1 (upper panel) together with their spectral densities17 (lower panel).

Figure 3.1: The Di¤ ln series (upper panel) and the corresponding spectral
densities (lower panel)
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Heteroscedasticity is evident in the upper panels in Figure 3.1, especially
in the �ltered US GDP. There are some drawbacks using �rst di¤erences.
First, it is not a symmetric �lter. This is however of no consequence when
applying cross-spectral functions on two FD detrended series. As indicated
by the lower panels in Figure 3.1, the densities of the FD series are still
dominated by low frequency variations. This is because the true integrating

16Another way to get rid of unit roots in bivariate studies is to model in error correction
form, given that the root is present in both series.
17See e.g. Jenkins and Watts (1968) for a thorough treatment of the spectral and cross-

spectral functions used in this paper.
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order of the series is somewhere between one and one and a half, see the
discussion in Stockhammar and Öller (2007). Candelon and Gil-Alana (2004)
concluded that the US GDP series is integrated of order I(1:4): That is, an
additional fractional di¤erence of order 0:4 will eliminate the spectral density
domination at low frequencies. Also, the FD �lter reweights the densities
towards higher frequencies as indicated by the gain function in Figure 3.2.

Figure 3.2: The gain function of the FD �lter18

Despite the drawbacks with FDs they have been used in comovement studies
like this one, e.g. by Wilson and Okunev (1999), and recently by Orlov
(2009). Also, Knif et al. (1995) used the FD �lter prior to cross-spectral
analysis of the Finnish and Swedish stock markets.

Calculating deviations from centered moving averages (MA) generated as

yc;MA
t = yt �

1

2p+ 1

pX
i=�p

yt+i;

where k = 2p + 1 is the window length and yc;MA
t is the cyclical component

calculated from the MA �lter, is another method of detrending time series.
Figure 3.3 shows the gain of various values for k:

18The gain function of the �rst di¤erence �lter is G (w) =
p
2 (1� cosw), where w is

the frequency.
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Figure 3.3: The gain functions of yc;MA
t using k=3 (dashed line), k=9 (solid

line) and k=15 (dotted line)19

The MA is a symmetric �lter but p observations are lost in both ends. Apply-
ing the MA(k = 15) �lter on the DJIA and US GDP series yields the �ltered
series in Figure 3.4 (upper panel). The corresponding spectral density and
the spectral densities of the MA(k = 3) and the MA(k = 9) �lter are also
included (lower panel).

Figure 3.4: The MA( k=15 ) detrended DJIA and US GDP (upper panel).
The lower panel shows the spectral densities of the cyclical components calcu-
lated from the MA( k=3) (dashed line), MA( k=9) (solid line) and MA( k=15)
(dashed/dotted line)
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19The gain function of the moving average �lter that estimates the cycle is G (w; k) =q
1� 1�cos kw

k2(1�cosw) .
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Comparing with the FD �lter, the MA �lter removes more of the low fre-
quencies in the series, see Figures 3.1 and 3.4. As the window length gets
wider, the spectral peaks are shifted to the left. Both the FD and MA �lters
produce series found to be stationary using the Phillips-Perron (PP) or the
augmented Dickey-Fuller (ADF) tests. But they are still signi�cantly het-
eroscedastic according to the ARCH-LM test.

The most widely used detrending �lters are described in subsections 3.1-3.320.
The detrending and heteroscedasticity removing �lter of Stockhammar and
Öller (2007) is described in 3.4.

3.1 The Hodrick-Prescott �lter

Perhaps the most commonly used �lter to detrend economic time series is
the one suggested by Hodrick and Prescott (1997). The HP-�lter was de-
signed to decompose a macroeconomic time series into a nonstationary trend
component and a stationary cyclical component. Given a non-seasonal time
series, yt, the decomposition into unobserved components is

yt = gt + ct;

where gt denotes the unobserved trend component at time t, and ct the un-
observed cyclical component at time t. Estimates of the trend and cyclical

20The �lter proposed by Christiano and Fitzgerald (2003) is here omitted. The asym-
metric and time-varying features of this �lter generate phase shifts, and nothing can be
said about the stationarity of the output (even if the input is stationary).
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components are obtained as the solution to the following minimization prob-
lem

min
[gt]

N
t=1

(
NX
t=1

c2t + 

NX
t=3

(42gt)
2

)
; (3.1)

where 4gt = gt�gt�1 and gmin is the HP-�lter and the cyclical component is
calculated as: yc;HPt = yt�gt. The �rst sum of (3.1) accounts for the accuracy
of the estimation, while the second sum represents the smoothness of the
trend. The positive smoothing parameter 
 controls the weight between the
two components. As 
 increases, the HP trend becomes smoother and vice
versa. Note that the second sum, (42gt), is an approximation to the second
derivative of g at time t. The HP-�lter is symmetric and can eliminate up to
four unit roots in the data, see e.g. Cogley and Nason (1995). For quarterly
data (the frequency used in most business-cycle studies) there seems to be
a consensus in employing the value 
 = 1 600. The gain of deviations from
the HP trend using various values on 
 is presented in Figure 3.5.

Figure 3.5: The gain of the HP �lter using 
=100 (dashed line), 
=1 600
(solid line) and 
=50 000 (dotted line)21

As with �rst di¤erences and deviations from moving averages, the HP-�lter
dampens frequencies close to zero. King and Rebelo (1993) criticized the
HP-�lter and provided examples of how it alters measures of persistence,
variability, and comovement when it is applied to observed time series. In
addition, Harvey and Jaeger (1993) and Cogley and Nason (1995) showed

21The gain function of the HP �lter that estimates the cycle is
G (w; 
) = 1� 1

1+4
(1�cosw)2 .
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that the HP �lter induces spurious cycles when applied to the level of a ran-
dom walk process. Criticism is also found in Maravall (1995) and Canova
(1998). Because of this, Kaiser and Maravall (1999) provided a computation-
ally convenient modi�cation of the HP �lter by including two model-based
features.

The upper panel in Figure 3.6 shows the HP(1 600) detrended series and the
corresponding spectral densities (lower panel). The spectral densities from
the HP(100) and HP(50 000) �lters are also included.

Figure 3.6: The HP(1 600) detrended DJIA and US GDP (upper panel).
The lower panel shows the spectral densities of the cyclical components cal-
culated from the HP �lter using 
=100 (dashed line), 
=1 600 (solid line)
and 
=50 000 (dashed/dotted line)
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As shown in Figure 3.6, detrending using the HP(
 = 50 000) failed. That is,
much of the trend remains in the HP(
 = 50 000) cyclical component. Using

 = 100, the cyclical components have almost no density at zero frequency
and peaks at 12 quarters both for DJIA and US GDP. Using the standard
value for quarterly data 
 = 1 600, the spectral densities are larger at zero
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frequency with the e¤ect that the peaks are shifted towards lower frequen-
cies and peaks at 16:5 quarters both for DJIA and US GDP (equivalent of
frequency w = 0:38 in cross-spectral formulas, see again Jenkins and Watts
(1968)). All series were found to be stationary and heteroscedastic.

3.2 The Baxter-King �lter

The above �lters are all approximations of an ideal high-pass �lter, which
would remove only the lowest frequencies from the data. The ideal band-pass
�lter removes both very low and very high frequencies, passing the intervening
frequencies. Baxter and King (1999) proposed a moving average type approx-
imation of the business cycle band de�ned by Burns and Mitchell (1946).
That is, the BK �lter is designed to pass through time series components
with frequencies between 6 and 32 quarters, while dampening higher and
lower frequencies. This is done using a symmetric �nite odd-order k = 2p+1
moving average. The cyclical component using the BK-�lter takes the form

yc;BKt =

pX
j=�p

hjB
jyt; (3.2)

where yc;BKt is the BK �ltered series and hj are the �lter weights obtained
by solving the optimization problem

min
hj
Q =

�Z
��

j�(w)j2 dw; (3.3)

where �(w) = �(w)��(w) is the error arising from approximating the Fourier
transform of the ideal �lter, �(w), by an approximation of the same, �(w).
For the solutions of (3.3), see Baxter and King (1999). Since the BK-�lter
is symmetric it does not induce phase shifts. Also, the �lter is designed to
produce stationary output. The BK �lter has the ability to remove up to two
unit roots. Ibid. suggested a value of p = 12 for the frequency band 6 to 32
quarters, and argued that the �ltering is basically equivalent for larger values
of p. Iacobucci and Noullez (2005) showed that the size of p beyond p = 12
matters, and suggested that one should select a value p > 12 irrespective of
the sample size and the band to be extracted. For this reason, the properties
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of the �ltered series using p = 12; 16; 24 and 36 are studied here.

As with all moving average smoothers, p observations will be lost at the be-
ginning and at the end of the �ltered series. Figure 3.7 shows the cycles and
spectral densities of the BK (p = 16) �ltered series (using band-pass 6 to 32
quarters).

Figure 3.7: The cycle and spectral densities of the cyclical components cal-
culated from the BK �lter using p=16
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The shape of the spectral densities using p = 12; 24 and 36 are very similar.
As the window length becomes larger the peak is shifted slightly to the right.
The spectral densities of the cyclical components from the BK �lter are very
similar in shape to ones from the HP �lter.

The standard frequency band of 6 to 32 quarters used to extract business cy-
cles seems to work well when applied to individual series. Section 5 will reveal
that this choice of band greatly in�uences the shape of the coherency and
phase functions, especially at frequencies shorter than 6 quarters. This might
remove important high frequency comovements encouraging an extension of
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the BK frequency band to between 2 to 32 quarters. This does not change
the frequency domain properties of the individual �ltered series much, see
Table 3.1. The two BK �lter alternatives are hereafter denoted BK(6;32)(p)
and BK(2;32)(p). The spectral densities of the BK �lter using frequency band
1 to 32; showed peaks at zero frequency for p = 24 and p = 36; and will
therefore not be included in this study.

3.3 The Beveridge-Nelson �lter

The model-based decomposition suggested by Beveridge and Nelson (1981)
is based on Wold�s representation theorem and separates a time series into a
permanent (P) and transitory (T) component. A shock at time t results in a
permanent change to the series if it a¤ects the permanent component, while
the e¤ect of the shock will dampen down over time if it a¤ects the transitory
component. The series, yt is thus decomposed as follows:

yt = Pt + Tt:

It is further assumed that yt is an ARIMA(p; 1; q) process (and thus �yt =
�Pt +�Tt). The �rst di¤erence, �yt, of an ARIMA(p; 1; q) process can be
expressed as an in�nite order moving average process

�yt = c(B)at

= c0at +  (B)(1�B)at;

where  (B) =  0+ 1(B)+ ::: , is an in�nite order polynomial. The perma-
nent and transitory components are identi�ed as

�Pt = c0at

�Tt =  (B)(1�B)at;

Note that Tt =  (B)at, thus Pt is a process of integrating order one, I(1),
whereas Tt is I(0). That is, one di¤erence is required to make Pt stationary
whereas Tt is stationary by de�nition. There are basically two ways to esti-
mate the BN components (Morley, 2007). Here the approach suggested by
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Beveridge and Nelson (1981) is used. Figure 3.8 shows the cyclical series and
the corresponding spectral densities.

Figure 3.8: Cyclical components calculated from the BN �lter (upper panel)
and the corresponding spectral densities (lower panel)22
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Note the high-pass properties of the BN �lter for the DJIA, for which the
�lter eliminates most of the low frequency variation, including the business
cycles. The �rst hump represents the business cycle, almost overshadowed
by the high frequency variations. The spectral densities of the US GDP
series are quite similar in shape to the ones in Figures 3.6 and 3.7. As
before, heteroscedasticity is revealed in the upper panel of Figure 3.8, as
noted before, especially in the US GDP series.

22The models with the smallest AIC among the adequate ones were an ARIMA(1,1,1)
and ARIMA(2,1,2), for DJIA and US GDP, respectively.
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3.4 A trend and heteroscedasticity removing �lter

None of the above �lters accounts for the highly possible event of het-
eroscedasticity in economic and �nancial series. Despite �rst order stationar-
ity in the detrended series, the null hypothesis of homoscedasticity is rejected
for every one of them. This is a major drawback when applying a frequency
domain approach (as in this study), see e.g. Engle (1974). Because of this,
Stockhammar and Öller (2007) proposed the following detrending and het-
eroscedasticity removing �lter

ezt = sy

266664
�
z
(i)
t

�d
HP (
)

 rPt+�
�=t��

�
z
(i)
�

�2d
=2�

!
377775+ y; (3.4)

where t = max[k � �; l � �];max[k � � + 1; l � � + 1]; ::: with k and l (both
odd) as the window lengths in the numerator and denominator, respectively.
� = (k � 1)=2, � = (l � 1)=2 and i = a; b from the detrending operations

(a) z
(a)
t = �yt�

t+�X
�=t��

�y� /k ; t = �+ 1; �+ 2; :::; n� � (3.5a)

and with y� delayed one period:

(b) z
(b)
t = �yt�

t+�X
�=t��

�y��1 /k ; t = �+2; �+3; :::; n��+1 (3.5b)

where yt is the logarithmic series at time t. This transformation is gener-

alized by raising z(i)t to the possibly non-integer power d,
�
z
(i)
t

�d
. In this

study, however, d = 1 has been used. Using di¤erent values on � in (3.5),
di¤erent degrees of integration are achieved. There are two extremes. For
� = (n�1)=2; the term

Pt+�
�=t���y� /k equals �y assuming that the original

series is I(1) centered at zero. The other extreme appears when k equals
one; that is � = 0: Operation (3.5b) is used only in the latter case and is
equivalent to the second di¤erence operation, �2yt. The choice of � depends

126



on the series studied. If it is close to I(1) then you should just choose � close
to (n � 1)=2, and if the series is close to I(2) then choose � = 0 in (b) or
a small value on � in (a). The operations in (3.5) contain �rst di¤erencing
implying a small phase shift, but everything else is symmetrical.

Filter (3.4) was designed to remove heteroscedasticity in time series data in
a simple, yet e¢ cient way. As proposed by Hodrick and Prescott (1997),

 = 1 600 is suitable for quarterly data, Stockhammar and Öller (2007) fur-
ther suggest the use of k = l = 15 and d = 1 in (3.4). The window length, l,
is hereafter assumed to be equal to 15. The upper panel in Figure 3.9 shows
the �ltered series using the proposed �lter. The spectral density functions of
the two time series �ltered by (3.4) (using 
 = 1 600 and di¤erent window
lengths, k) are presented in the lower panel.

Figure 3.9: The detrended and heteroscedasticity corrected �ltered series us-
ing 
=1 600 ; k=l=15 and d=1 (upper panel). The lower panel shows the
corresponding spectral densities using k=5 (dashed line), k=15 (solid line)
and k=25 (dashed/dotted line)
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Both �ltered series are found to be stationary according to ADF and PP
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tests, and (contrary to all other �lters discussed in this section) homoscedas-
tic according to the ARCH-LM test. The window length proposed in Stock-
hammar and Öller (2007), k = 15, results in a spectral peak at 10:4 quarters
both for DJIA and US GDP. Increasing the window length to k = 25 shifts
the peaks close to 14 quarters:

Table 3.1 summarizes the main spectral properties of the above �lters. The
peak frequencies are measured in quarters.

Table 3.1: Spectral density peaks

DJIA US GDP
Peak freq. value Peak freq. value
(quarters) (quarters)

FD 12:8 0:0009 10:6 0:00005

MA(k = 3) 7:9� 0:0002 9:0� 0:00001

MA(k = 9) 9:8 0:0017 9:8 0:00011

MA(k = 15) 13:5 0:0046 11:1 0:00024

HP(
 = 100) 12:0 0:0025 12:0 0:00013

HP(
 = 1 600) 16:5 0:0052 16:5 0:00023

HP(
 = 50 000) � � � �
BK(6;32)(12), BK(2;32)(12) 16:9 15:7 0:0054 0:0054 18:3 18:3 0:0002 0:0002

BK(6;32)(16), BK(2;32)(16) 16:5 16:3 0:0056 0:0055 17:8 17:7 0:0002 0:0002

BK(6;32)(24), BK(2;32)(24) 14:9 15:1 0:0048 0:0049 16:2 15:1 0:0001 0:0001

BK(6;32)(36), BK(2;32)(36) 14:5 14:3 0:0045 0:0044 15:8 15:6 0:0001 0:0001

BN 11:6� 0:0000 9:0 0:00012

(3.4),( k = 5,
 = 1 600) 4:2 0:0012 7:6� 0:00002

(3.4),( k = 15,
 = 1 600) 10:4 0:0011 10:4 0:00005

(3.4),( k = 25,
 = 1 600) 14:1 0:0011 14:1 0:00004

Mean 13:2 13:6

�The high frequency peaks are assumed to be spurious, cf. Figures 3.4, 3.8 and 3.9.

As summarized in Table 3.1, the length of the business cycle depends on the
choice of detrending �lter. The spectral peaks for MA(k = 9), HP(
 = 100),
HP(
 = 1 600) and �lter (3.4) (using 
 = 1 600; and k = 15; 25), are located
at the same frequency. That is a favourable feature improving the estimates
of cross-spectral densities. The individual spectral densities of the BK(6;32)(p)
and BK(2;32)(p) �ltered series are similar, but both seem rather nonrobust to
di¤erent window lengths (with peak frequencies located between 14 and 18
quarters). This accords well with the HP(
 = 1 600) �lter. Accounting for
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heteroscedasticity using �lter (3.4) and the suggested window length k = 15,
slightly shortens the cycle.

4. Comovements between the two series
The choice of detrending �lter not only a¤ects the shape of the individual
spectral densities, but also the cross-spectral functions. The cross-spectral
di¤erences of the detrending procedures are the issue of this section. Figure
4.1 shows the coherency and phase spectra between the cyclical components
of DJIA and US GDP using the FD �lter and the MA �lter. In creating all
subsequent phase spectra, the DJIA series have been put before US GDP.

Figure 4.1: Cross-spectral densities of the cyclical components of DJIA and
US GDP using the FD �lter (upper panel) and the MA( k =3) (dashed line),
MA( k=9) (solid line) and MA( k=15 ) (dashed/dotted line) (lower panel)
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The coherency function using the FD �lter in Figure 4.1 (upper panel) peaks
(K2

1;2(w = 0:72) = 0:26) at 8:7 quarters, which means that the relationship
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between the two series is closest at a frequency of just over two years. The
spectra of the two individual series, f1(w) and f2(w), peak at 10� 12 quar-
ters, essentially the frequency to focus on in the coherency plots. At these
frequencies, the approximate coherency is K2

1;2(w) = 0:23: Extending the
window length in the MA �lter shifts the coherency peaks to the right.

The frequency to focus on in the phase spectrum is the peak coherency fre-
quency. In most cases in this study this corresponds to a relatively linear
(positive) part of the phase spectrum, see e.g. Figure 4.1. The slope is
estimated using linear regression on the frequency of interest and four obser-
vations on each side. Most �ltered series also indicate rather high coherency
at high frequencies (around 2 � 2:5 quarters). At this frequency, the trend
in the phase spectra is typically negative and is again estimated using a lin-
ear regression on nine observations surrounding the (high frequency) peak
coherency frequency. Put in practice, the phase spectrum for the FD �ltered
series indicates that DJIA leads US GDP on the business cycle frequencies
by on the average of 0:45 quarters. It also shows signs of feedback at high
frequencies, where US GDP leads DJIA by on average 1:34 quarters. This
could be due to the fact that share holders tend to follow early indicators and
react on unexpected values. It might also be an alias feedback, or perhaps
a combination of them both. Figure 4.2 shows the same measures using the
HP and BN �lters.

Figure 4.2: Cross-spectral densities of the cyclical components of DJIA and
US GDP using the HP �lter with 
=100 (dashed line), 
=1 600 (solid line)
and 
=50 000 (dashed/dotted line) (upper panel) and using the BN �lter
(lower panel)
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In Figure 4.2 (upper panel), the coherency function using the HP(100) and
HP(1 600) peaks at 8:1 quarters. Increasing 
 to 50 000 slightly shifts the
peak to the left. Using HP(1 600), the spectra of the two individual series,
f1(w) and f2(w), peak at around 16:5 quarters, for which the coherency is
K2
1;2(w = 0:38) = 0:23. The coherency function using the BN �lter is similar,

but note that its phase spectrum does not have the typical discontinuities
around w = 1:8 and w = 2:5. Also, both the HP(50 000) and the BN �ltered
series have low frequency discontinuities in the phase spectra. The phase
function is de�ned as the arctan of the ratio between the quadrature and the
co-spectrum resulting as discontinuities at frequency multiples of �

2
, see e.g.

Jenkins and Watts (1968) for details.

In Figure 4.3 the coherency and phase spectra for the BK(2;32)(p = 16) and
BK(6;32)(p = 16) �ltered series are presented. The densities using other values
on p show very similar patterns.

Figure 4.3: Cross-spectral densities of DJIA and US GDP using the
BK (2;32)( p=16) (solid line) and BK (6;32)( p=16) (dashed line) �lter
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The choice of frequency band to extract in the BK �lter has a large e¤ect on
the coherency and phase. The BK standard frequency band, 6�32 quarters,
by de�nition completely misses the information that can be extracted at
high frequencies. This results in a peculiar shape of the coherency function
which peaks far from the business cycle. As with the BN �lter, the phase
spectrum does not have the typical discontinuity at high frequencies. On the
contrary, the cross-spectral densities of the BK(2;32)(p = 16) �ltered series
are similar to the �ltered series discussed above and below. The smallest
coherency peak frequencies in the study were found for the BK(2;32)(p = 36)
and BK(6;32)(p = 36) �ltered series.

The cross-spectral densities between the two series detrended by �lter (3.4)
with 
 = 1 600 and k = 5; 15 and 25 are shown in Figure 4.4.

Figure 4.4: Cross-spectral densities of DJIA and US GDP using �lter (3.4)
with 
=1 600 and k=5 (dashed line), k=15 (solid line) and k=25 (dashed/
dotted line)
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The coherency function for the (3.4) �ltered series (using 
 = 1 600 and
k = 15) peaks on the average at 8:2 quarters at which K2

1;2(0:76) = 0:40. At
this frequency, �1;2(0:76) = 1:20 quarters, with feedback �1;2(2:77) = �1:48:
At the peak spectral frequencies of 10:4 quarters (see Table 3.1), K2

1;2(0:60) =
0:35. The results are summarized in Table 4.1.
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Table 4.1: Cross-spectral density peaks

Coherency Phase
Peak Value Value at peak At peak At high
freq.(q) spectral freq. coh. freq.(q) freq.(q)

FD 8:7 0:26 0:23 0:45 �1:34
MA(k = 3) 9:4 0:26 0:25 0:49 �1:59
MA(k = 9) 8:7 0:25 0:24 0:33 �1:84
MA(k = 15) 7:8 0:26 0:17 0:73 �1:51
HP(
 = 100) 8:1 0:28 0:23 0:65 �1:45
HP(
 = 1 600) 8:1 0:27 0:23 0:51 �1:40
HP(
 = 50 000) 9:0� 0:25 � 0:26 �1:39
BK(6;32)(12) 8:5� 0:29 0:21 0:35 �0:23
BK(6;32)(16) 8:9� 0:35 0:23 0:41 �0:10
BK(6;32)(24) 8:1� 0:39 0:24 0:24 0:14

BK(6;32)(36) 7:6� 0:35 0:17 0:09 0:13

BK(2;32)(12) 8:5 0:28 0:22 0:16 2:54

BK(2;32)(16) 8:2 0:38 0:21 0:51 �1:02
BK(2;32)(24) 8:5 0:36 0:26 �0:18 �0:44
BK(2;32)(36) 7:8 0:35 0:17 �0:23 �1:45
BN 8:7 0:27 0:24 0:67 �1:49
(3.4),( k = 5,
 = 1 600) 9:3 0:40 0:10 0:73 �1:35
(3.4),( k = 15,
 = 1 600) 8:2 0:40 0:35 1:20 �1:48
(3.4),( k = 25,
 = 1 600) 8:1 0:35 0:26 0:99 �1:02

Mean 8:4 0:32 0:22 0:44 �0:86

�The high frequency peaks are assumed to be spurious, cf. Figure 4.2 and 4.3.

The column to the far right shows the phase shift at the rightmost coherency
peak frequency, see Figures 4.1-4.4. The coherency seems quite robust to
di¤erent �lters. Its peak frequencies vary from 7:6 to 9:4 quarters, with an
average of 8:4 quarters. The choice of BK(6;32)(p) or BK(2;32)(p) does not
seem to matter much, but this is true only for the Burns and Mitchell (6 to
32 quarters) business cycle frequencies. Due to the extended high frequency
band, the BK(2;32)(p) has the ability to also describe variations at shorter fre-
quencies, see Figure 4.3. It is therefore in comovement studies advisable to
use this �lter (if the series are homoscedastic). The phase at peak coherency
frequency is less robust with values varying from�0:23 to 1:20 quarters (aver-
age 0:44). All �lters (with the exceptions of the BK(2;32)(24) and BK(2;32)(36)
�lters) reports that DJIA leads US GDP at peak coherency frequency. Both
BK �lters show scattered phase. Accounting for heteroscedasticity using �l-
ter (3.4) shows coherency peaks approximately on average frequency, with
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larger than average coherency values. Also, the homoscedastic series induce
the longest lead shifts at peak coherency frequency.

It is possible from cross-spectral analysis to detect lead or lag of the series
under a common cyclical period. The phase densities show both the lead
times and reveal the direction of the comovements. As a double check of
the results, the time domain Granger-causality test was performed on the
proposed (3.4) �ltered and stationary series (using 
 = 1600; k = l = 15 and
d = 1). The results are presented in table 4.2.

Table 4.2: Granger-causality tests, p-values
nLag 1 2 3 4 5 6 7 8

DJIA doesn´t Granger-cause US GDP 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:00
USGDP doesn´t Granger-cause DJIA 0:08 0:02 0:00 0:12 0:02 0:14 0:36 0:45

Table 4.2 shows that the null hypothesis of Granger-noncausality is rejected
for all lags from DJIA to US GDP, using the 0.05 signi�cance level. At lags
2; 3 and 5, there seem to exist a feedback - US GDP leads DJIA. This further
con�rms the phase densities in Figures 4.1-4.4 and is also supported by the
cross correlation function between the proposed (3.4) �ltered series:

Figure 4.5: The cross correlations between DJIA and US GDP

302520151050­5
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­0,3

Cross Correlation Function, Filter (3.4)

where the dashed lines denotes �2 standard errors for the estimates. Table
4.3 presents the cross correlations (at lag 1) between DJIA and US GDP for
the entire period, and for three subperiods (standard errors in parentheses
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and signi�cant correlations in bold �gures). The subperiods were chosen in
accordance with US GDP volatility, where 1947-1960, 1961-1983 and 1984-
2007 are periods denoted as high, medium and low volatility, respectively.
This is also in compliance with Stock and Watson (2003) who reported that
the US GDP variance declined over 50 percent from 1960-1983 to 1984-2002
when averaged over four quarters. The decline in volatility was even larger
in e.g. Italy and Japan, and also widespread across sectors within the US.
As indicated by Stockhammar and Öller (2007 and 2008), the volatility in
the US GDP was even larger before 1960. Note that the decreasing volatility
does not apply to DJIA, cf. Figures 3.1, 3.4, 3.6, 3.7 and 3.8.

Table 4.3: First order cross correlations between DJIA and US GDP
Full sample 1947-1960 1961-1983 1984-2007

FD 0:173
(0:064)

0:534
(0:135)

0:167
(0:104)

0:125
(0:102)

MA(k = 3) 0:151
(0:064)

0:448
(0:134)

0:061
(0:104)

0:060
(0:102)

MA(k = 9) 0:335
(0:064)

0:559
(0:134)

0:339
(0:104)

0:139
(0:102)

MA(k = 15) 0:336
(0:064)

0:574
(0:134)

0:294
(0:104)

0:152
(0:102)

HP(
 = 100) 0:338
(0:064)

0:642
(0:134)

0:294
(0:104)

0:074
(0:102)

HP(
 = 1 600) 0:329
(0:064)

0:573
(0:134)

0:250
(0:104)

0:196
(0:102)

HP(
 = 50 000) 0:092
(0:064)

0:309
(0:134)

�0:190
(0:104)

0:112
(0:102)

BK(6;32)(12), BK(2;32)(12) 0:285
(0:067)

0:275
(0:067)

0:514
(0:151)

0:537
(0:151)

0:225
(0:104)

0:242
(0:104)

0:083
(0:109)

0:048
(0:109)

BK(6;32)(16), BK(2;32)(16) 0:309
(0:069)

0:288
(0:069)

0:621
(0:158)

0:597
(0:158)

0:231
(0:104)

0:208
(0:104)

0:039
(0:112)

0:066
(0:112)

BK(6;32)(24), BK(2;32)(24) 0:223
(0:071)

0:218
(0:071)

0:606
(0:177)

0:578
(0:177)

0:193
(0:104)

0:150
(0:104)

�0:321
(0:118)

�0:265
(0:118)

BK(6;32)(36), BK(2;32)(36) 0:131
(0:076)

0:133
(0:076)

0:335
(0:224)

0:750
(0:224)

0:368
(0:104)

0:018
(0:104)

0:484
(0:129)

�0:427
(0:129)

BN 0:170
(0:064)

0:192
(0:134)

0:318
(0:104)

0:080
(0:104)

(3.4),( k = 5,
 = 1 600) 0:168
(0:064)

0:139
(0:134)

0:044
(0:104)

0:066
(0:102)

(3.4),( k = 15,
 = 1 600) 0:263
(0:064)

0:275
(0:134)

0:222
(0:104)

0:090
(0:102)

(3.4),( k = 25,
 = 1 600) 0:236
(0:064)

0:210
(0:134)

0:166
(0:104)

0:077
(0:102)

Table 4.3 further corroborates that the detrending method used has e¤ect on
estimated cross correlations. This is expected due to the one-to-one relation-
ship between cross covariances and spectral densities. In addition, Table 4.3
shows that the cross correlation generally decreases with US GDP volatility,
but less so using �lter (3.4). The choice of BK(6;32)(p) or BK(2;32)(p) has
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little e¤ect on correlations except when p = 36. Using p = 24, both �ltered
series show negative cross correlations in the low volatility part. Odd looking
negative correlation is also present in the medium volatility part using the
HP(50 000) �lter. The BN �lter shows for the same period the maximum
cross correlation. This could be due to the cross correlation between opposite
cyclical phases in the two series (see the feedback discussion above).

5. Conclusions
This paper reveals frequency domain relationships between the Dow Jones
industrial average stock prices and US GDP growth. Both series are het-
eroscedastic, making standard detrending procedures, such as Hodrick-Prescott
or Baxter-King, inadequate. Neglecting the heteroscedasticity distorts fre-
quency domain results and induces ine¢ cient estimation of the spectral den-
sities. Surprisingly, many frequency domain studies do not take notice of this
and mechanically use standard detrending �lters. Prior to the comovement
study, the univariate and comovement frequency domain results from these
�lters are compared to the results from the heteroscedasticity removing �lter
suggested by Stockhammar and Öller (2007). Thus, the e¤ect of the often
neglected heteroscedasticity is measured.

Accounting for the heteroscedasticity somewhat shortens the business cy-
cles. No matter which �lter is used, signi�cant comovements exist between
the DJIA and US GDP series. The coherency seems quite robust to the dif-
ferent �lters. Accounting for heteroscedasticity slightly shifts the coherency
peak to the left and with larger than average coherency values. The phase
shift is less robust, especially for the BK �ltered series. Most �lters report
that DJIA leads US GDP at peak coherency frequency (7:6� 9:4 quarters),
but also reveal a feedback from US GDP to DJIA at around 2�2:5 quarters.
The �ltered series using the suggested heteroscedasticity removing �lter in-
duce the longest lead shifts ( 1:2 quarters) at peak coherency frequency, and
also above average feedback lag (1:48 quarters). Using the BK �lter with
frequency band 6 to 32 quarters (as �rst suggested by Burns and Mitchell,
1946) by de�nition completely misses this information. The same applies to
the BN �lter. It is therefore advisable to extend the frequency bands to the
interval 2 to 32 quarters in comovement studies like this (under the condition
that the series are homoscedastic). The frequency domain results were cor-
roborated in the time domain using cross correlations and Granger-causality
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tests. When applied on subperiods in accordance with US GDP volatility,
most �ltered series showed scattered �rst order cross correlations, but less so
in the homoscedastic series.

Thus, the choice of detrending �lter a¤ects both univariate and bivariate fre-
quency domain (and time domain) results. More importantly, heteroscedas-
ticity matters and must be eliminated prior to comovement studies like this
one.
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