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Abstract

Some multiple real donor imputation methods are proposed which

maintain the structure of a dataset with nonresponse. They utilize

unit- and aggregate-level information which may be known for the

full population, for a subpopulation, for the sample or only for the

response set. Only imputed datasets which satisfy the constraints

derived from the aggregate information are accepted. The imbalances

of real donor unit pools is offset by letting the distribution of the

imputed values approximately equal the distribution of the true values

given what is known. The methods are intended for a general use e.g.

for multi-purpose surveys and surveys with various types of estimands

on different levels, and are exemplified by simulations with a realistic

dataset.

Keywords : Missing data; Real donor multiple imputation; Boundary

bias, Multiple imputation.

1 Introduction

Missing data due to e.g. item and unit nonresponse are usually unavoid-
able when conducting a survey. Good estimation methods should be flexible
enough to counteract this by taking all relevant and accessible information
into account. Methods which are able to fit most estimation techniques are
also desirable. Many methods are not sufficiently general to handle item and
unit nonresponse simultaneously and may be tedious to customize in order to
fit complex situations while taking various forms of background information
into account. We will explore whether kernel imputation (Pettersson, 2012;
2013) can be used for this purpose.

1



Kernel imputation has been used for missing data imputation when esti-
mating a population mean from a simple random sample where the expecta-
tion of the study variable is a continuous function of the auxiliary variables.
By making use of ideas in Nelson and Meeden (1998) and Meeden (2003) we
will explore how kernel imputation can be modified to:

• constrain the imputed data to known (sub)population aggregates of
auxiliary (or study) variables, and

• utilize data from other similar studies.

When such statistical information, which does not originate from the data
itself, is utilized we denote our method as informed kernel imputation. In
addition we will consider:

• estimates of regression coefficients in addition to mean estimates. With
several values missing for the same unit we will use a common donor
approach,

• applications to a realistic dataset. Previous simulations (Pettersson,
2012; 2013) examining kernel imputation features were undertaken on
simulated data,

• other sampling designs in addition to simple random sampling, e.g.
with varying selection probabilities,

• different kinds of nonresponse causes, and

• informative designs and the probability (or propensity) to obtain re-
sponse.

In order to analyze a dataset with missing data one always makes as-
sumptions on the missing data mechanism. Delimiting an analysis to the
complete case (CC) implies the strong assumption that that the values of in-
complete observed units are missing completely at random (MCAR). In the
absense of further knowledge, assuming a missing at random (MAR) mech-
anism, stating that the reason for missing can be explained by the observed
data, is often a good compromise between realism and simplicity. Examples
of explicit modelling and analyzes through maximum likelihood or regres-
sion imputation are covered by Little and Rubin (2002), and calibration,
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which implicitly entails a form of MAR and linear models, by Lundström
and Särndal (2007). Andridge and Little (2010) give an overview of hot deck
imputation, which also implies some form of MAR assumption.

Kernel imputation is primarily intended for MAR mechanisms. On simu-
lated data the method has been shown to perform almost as well as compet-
ing methods when imputing a study variable which is a linear function of the
continuous auxiliaries, but usually much better when this functional form is
nonlinear (Pettersson, 2012; 2013). It is to a great extent nonparametric and
employs a real donor approach (Laaksonen, 2000) which has the attractive
property that the imputed values are copies of actually observed realistic
values. It reduces error by resolving the real donor weakness that the set
(or pool) of potential donor values often is imbalanced, through adaption of
features from kernel estimation. The inherent dependence on the number
of donors or size of donor pools in kernel estimation is also reduced. The
method handles both item and unit nonresponse and other forms of missing
data. To be able to estimate the imputation random error it uses a multiple
response technique. Each imputed dataset is analyzed as if it were complete,
but inference is drawn under a multiple imputation combination rule (Ru-
bin, 1987). To preserve relationships (both with observed values and among
missing values) the imputations are conditional on observed variables and
may be multivariate in a common donor manner.

In Section 2 we describe how the kernel imputation method of Petter-
son (2012; 2013) is used to construct balanced real donor pools such that
the distribution of the imputed values approximately equals the distribution
of the true values. We then present the methods which we use to utilize
different kinds of statistical information in combination with imputation of
nonresponse in Section 3 and discuss theoretical considerations. Simulation
based on a realistic dataset in order to exemplify kernel imputation with
utilization of various statistical information is set up in Section 4 and the
results are presented in Section 5. The paper is then concluded in Section 6.
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2 Kernel imputation

2.1 Notation

In a population U with N units each unit i is characterized by three related
variables Xi, Yi and Zi, which may all be vectorvalued. Our interest is in
estimating an arbitrary population estimand T (Zi, Xi, Yi, i ∈ U). Variable Zi

is an auxiliary which is assumed to be known for all units in the population
and may e.g. include both register and design variables. Given a sample S
with n units, Xi is fully observed except for unit nonrespondents, while Yi is
exposed both to item and unit nonresponse. For notational convenience we
ignore unit nonresponse unless otherwise indicated. A response indicator Ri

is defined for i ∈ S, such that Ri = 1 if Yi is observed and Ri = 0 if Yi is
missing.

In kernel imputation each unit i with missing (or unobserved) values is
matched to a donor pool Si,k containing the ki nearest available neighbour
donor units with complete data, where nearness is measured by a distance

function on (Xi, Zi), e.g. di,j = 1
hi

(
xj − xi
zj − zi

)
G−1

i (xjzj − xizi) which is

a quadratic distance measure where hi is a scalar and Gi is a non-negative
matrix.

A probability measure λi = (λi,1, ..., λi,ki) is assigned to each pool Si,k

where λi,j are the donor selection probabilities of the ki units. The missing
value yi is imputed by randomly drawing donor j with probability λi and
imputing its value yj . The expected value of the imputed unit corresponds
to a pointwise kernel smoother

∑
j λi,jYj = ỹi (Härdle, 1990).

2.2 Reduction of individual bias

A disadvantage of using real donors is that the matching between auxil-
iary values of a donee i and its pool is biased, in the sense that (xi, zi) 6=∑

j∈Si,k
λi,j(xj , zj) = E(xj , zj) = (x̂i, ẑi). The individual bias is accentuated

when (xi, zi) lies close to the boundary (i.e. convex hull) of the possible
donors’ auxiliary values, i.e. when most values lies at one side of (xi, zi).
Such donor pools might introduce a bias in the imputed study value ỹi.

By reducing the individual bias in (x̂i,ẑi), the bias in ỹi will hopefully be
reduced, and thereby also the possible bias in T (x, y, z). Several methods
are given in Pettersson (2012, 2013). An optimal choice of λi which approx-
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imately minimizes MSE in kernel estimation is by letting them be decided
by an Epanechnikov (E) kernel (Silverman, 1986). The selection probabili-
ties may often be calibrated (L) to eliminate most of the bias in (x̂i, ẑi). If
calibration is not feasible for some donees at the boundary of (xi, zi), one
may at least attempt to reduce it by shrinking (S) the size hi parameter so
that the furthest donors are removed, or by reorienting (R) Gi so that the
donors which contribute most to the bias are substituted by donors which
contributes to the bias to a lesser extent. A more thorough description of
these methods can be found in Pettersson (2013).

3 Informed imputation

3.1 Stepwise using previously imputed units

Given a sample and a correctly specified structure of the full data model a
direct estimate would be both quick and efficient. But in realistic situations
robustness to model misspecification is desirable. Less immediate estimators
such as those derived from stepwise Pólya sampling techniques may then be
preferable.

In the simplest case with no auxiliary variable (x or z) and a sample
of n exchangeable units, e.g. a simple random sample, the basic idea is to
1) draw a single donor unit at random from the response set, 2) duplicate
the drawn donor, and 3) replace the subsequent unit to be imputed in the
response set by the duplicated unit. This procedure is repeated until all
missing values in the sample have been imputed. Each donee being imputed
utilizes not only the complete cases but also the previously imputed units.
The wider distribution of the estimates from such imputed datasets reflects
the imputation variance as it appears in the multiple imputation combination
rule (Rubin, 1987).

The imputation process can be extended to impute the remaining N − n
units in the population. Estimates from such imputed sample or population
datasets may be treated as draws from a Pólya posterior. The Pólya poste-
rior estimates have been shown to possess several desirable (frequentist and
Bayesian) properties (Ghosh and Meeden, 1997).

With several related variables either completely or partially observed, it
is more reasonable not to treat the missing values as directly exchangeable.
In that case a modification of the Pólya sampling procedure will probably
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become more efficient if donees and their donors are conditionally/almost
exchangeable. Kernel imputation is such a modified Pólya sampling. The
selection probabilities in step 1 must then be increased for units which are
better matched on the observed variables among the fully observed (or pre-
viously imputed) units and the donee unit to be imputed. In what follows
we refer to this imputation method as "modified Pólya sampling".

3.2 Conditioning on the design

Imputation should make use of auxiliary variables which are predictive of
the missing values (Little, 1988) and the propensity to respond (Rosenbaum
and Rubin, 1983). A general imputation method should therefore be able
to appropriately incorporate features of an informative design, e.g. unequal
probabilities, πps-sampling, stratification, clustering and multi-stage sam-
pling.

We suggest that inclusion probabilities and other design variables (e.g.
stratum indicators, cluster units, or size measurements) therefore can be
treated like other auxiliary variables and may be used in the construction of
donors pools by including them in the distance metric and for finding good
donor selection probabilities λij . Nonlinear design variables may improve the
choice of the donor pools and the λij . But if the design variables already
are included in the quadratic distance, there is no need to also include the
inclusion probabilities.

The expectation of a calculated distance should be unaffected by inclusion
of uninformative design variables, so such variables could as well be left out
of the distance calculation. Features of the design with limited significance
to the matching should be included in the metric so that a donee with rela-
tively few or bad matches within the same stratum may get potential donors
from neighbouring strata. The effect of giving a vaguely informative design
variable excessive influence in a metric may result in reduced efficiency, but
it may be better than not giving it any influence at all and risking bias due
to overestimated similarities between disjoint design subsets.

3.3 Constraining to known quantities

We consider each imputed (population) dataset as independently drawn by
modified Pólya sampling. But in many cases there is external knowledge
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about population aggregates. If the population is pinned or bounded by
other knowledge, then one solution is to reject imputed datasets that do not
comply with this knowledge. Assume that a population mean is known to
lie within a certain bound. One may then use an acceptance-rejection rule
to filter out the datasets whose estimated mean lies within the bound.

If the constraints are extensive, this type of rule may become computa-
tionally demanding since few population draws would be accepted. With
very detailed or exact constraints, an alternative is to accept a dataset which
approximately meats the requirements or to pick the one that closest meats
the constraints. If there is complete failure to accept any draws and the
possibility of unfulfillable constraints can be ruled out, this might be a sig-
nal of a badly fitted or incomplete imputation model, and might be used as
a means for improving the imputation method. The distribution of all im-
puted datasets should give a hint on this issue, as well as on the (potential)
importance of applying the constraints.

3.4 Using external unit level information

Although a survey is conducted in order to gather new information there
may exist similar units in other studies (which may be used as proxies) e.g.
from registers or a similar survey at a previous occasion or of a similar pop-
ulation. If data is sparse, e.g. if there exists no or only one close donor,
an obvious option is to use such external units as potential donors in our
donor pools. This borrowing of units conforms to the traditional cold deck
imputation approach, and might involve modifying the data, e.g. by restat-
ing wages with inflation. It may be particularly attractive when the data in
a conducted survey is sparse or believed not to be exhaustive enough, e.g.
due to insufficient coverage by the sampling frame, but risks introducing bias
due to discrepancies between the survey and the external data. The degree
of exchangeability to external units may be accounted for in the distance
calculation in the same way as design features e.g. by an indicator variable
for the unit origin.

Since values in the external data already may have been imputed, an in-
teresting question is whether previously imputed values on units should be
used or not. Such considerations would depend on the similarity between
the missing data generating processes and the necessary missing data as-
sumption. Given a reasonable common MAR assumption for all the data,
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an alternative may be to borrow all unimputed data, simultaneously impute
the survey and the external units, and then discard the latter group. This
may be an optimal method, but if one wants consistency, i.e. if one wants
already published statistics not to change, a better choice might be to use
all of the previously imputed set.

3.5 Preserving associations between variables

When estimating T (x, y, z) from imputed datasets it is desirable that the
relevant associations have been preserved between the variables, both within
the imputed variables and between the imputed and observed variables. If T
is the mean of y in a subdomain defined by z, this can be accomplished by
including z in the distance metric when imputing y, possibly without the use
of x. But if T is the mean of y in a subdomain defined by x, or a coefficient
from a regression involving all of x,y and z, then the association between the
two variables with missing values x and y becomes important, in these two
cases the mean and the covariance structure respectively.

Most imputation models impute each variable separately, possibly uti-
lizing previously imputed variables when imputing the remaining variables
with missing values or reimputing the imputed dataset using previously im-
puted datasets in a MCMC manner (van Buuren and Groothuis-Oudshoorn,
2010)). Due to their univariate character, such methods can be efficient but
may fail to preserve associations between variables.

Real donor imputation offers the possibity of imputing several missing
values on a unit simultaneously by copying them from the same donor in
a common donor approach, and thereby transfer the observed associations
to the unobserved values. Associations among variables being imputed and
variables included in the distance calculations can then be preserved. This
common donor imputation strategy may be limited. The full data distribu-
tion of many variables may not be covered by a sample without increasing
the number of observations. With multiple values missing in the same units
an alternative is then to impute variables in blocks where relations are most
needed to be preserved.
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4 Simulation

4.1 Population and external sample

In this simulation set, we study the effect from incorporating different kinds
of prior information in kernel imputation. The simulations focus on estimat-
ing three variables, one population mean and two regression coefficients, as
illustrated by simulations in a realistic dataset. The dataset originates from
a study on juvenile delinquency during 1959-62 (SOU, 1971), which was com-
plemented with population register data in the eighties. We will use this data
as a base for our simulation study, but with some changes in order to make
it suitable for our purpose. Our primary goal is to illustrate the method and
even though we believe our results to be fairly close to the truth they should
not be used for criminological conclusions. (An exact description of the data
preparation can be obtained from the author).

Our data consists of two samples. The data from 1960-62 is used to form
a population, U60, with 3650 boys. This is about 10 % of all 11-15 year old
boys in Stockholm during that period. We also obtained an external sample,
S59, of size 200 from the year 1959 with the same variables. This sample can
be considered as coming from a similar study performed two years earlier. It
will be utilized in a cold deck manner as described in Section 4.3.

For each boy in U60 and S59 the data contains the following items:

Assumed fully observed from population register (z in previous notation):

• A_, Geographical area (in U60/S59); A0=highly congested (1033/84
boys), A1=modestly congested (2617/116 boys) .

• SG, Social Group, 0=high (merged from the two highest Social groups,
I and II), 1=low (corresponding to Social group III).

• SC, School credits at the age of 15, summed.

Assumed observed on unit responders in the sample (x in previous notation):

• FT , Family type, 0=living with both parents, 1=split family.

• PR, Number of prosecutions at legal courts until the age of 29. Col-
lected from the Swedish legal registers. (One prosecution may corre-
spond to many crimes. The figure does not include crimes with "nolle
prosequi").
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Assumed observed on item responders in the sample (y in previous notation):

• PS, Average pension savings as income deductions by tax authorities
until the age of 34. Collected from pension registers. This is a good
indicator of how much they worked in regular jobs during that period.

Table 1: Categorical varibles in U60 and S59. Both variables refer to ages 11-15y.
ρ is the correlation between a variable and pension savings.

Variable Description, U60 S59
name (categories) Area Share(%) ρ Share(%) ρ

FT
Family type, A0 76/24 0.04 73/27 -0.01
(Whole/Split) A1 78/22 0.43 59/41 0.46

SG
Social group, A0 64/36 0.10 69/31 0.23
(High/Low) A1 56/44 0.12 49/51 0.14
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Table 2: Continuous varibles in U60 and S59. q_ denotes a quantile. ρ is the
correlation to pension savings.

Variable Description
name (age) Set Area Mean Std q0 q50 q100 ρ

SC

School
U60

A0 31.5 8.6 15 30 46 .08
credits A1 31.1 7.8 11 30 50 .02
(11-15y)

S59
A0 29.6 8.9 15 27 46 .03
A1 29.6 8.1 15 29 45 .04

PR

Number
U60

A0 5.3 15.4 0 0 125 -.61
of pros- A1 2.2 11.4 0 0 178 -.38
ecutions

S59
A0 6.3 16.4 0 0 57 -.64

(16-29y) A1 2.0 9.5 0 0 80 -.28

PS

Average
U60

A0 289 119 1 304 467 1
pension A1 313 94 2 332 524 1
savings

S59
A0 274 134 1 331 464 1

(16-34y) A1 285 110 26 325 459 1

The numeric aspects of the binary variables are described in Table 1.
In some imputation simulations we will assume that only the distribution
of SG is known in the two areas A0 (64/36 %) and A1 (56/44 %) or that
the marginal distribution (58/42 %) in U60 is known for SG (see Section
4.3). The continuous variables are described in Table 2. We will sometimes
assume that the correlation ρ between pension savings and the number of
prosecutions (PR) is known separately in areas A0 (-.61) and A1 (-.38) or
only totally (−.48) in U60 (see Section 4.3).

4.2 Sampling and response mechanisms

From the population U60 we drew a sample (S60) of 400 units, with stratified
random sampling. Exactly 100 boys were drawn from each of the four possible
combinations of area and social group.
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Table 3: Response parameters, probabilities and probabilty ranges for response
mechanisms. The parameters denoted S59 or S60 are used for unit nonresponse
and R59 or R60 for item nonresponse.

Mechanism Set α αFT αSG αPR αSC E[πi] min[πi] max[πi]

mar1
S60/S59 0 0 -2 0 .1 .82/.80 .55/.60 .97/.95
R60/R59 1 2 1 -.05 0 .71/.69 .53/.55 .75/.75

mar2
S59 0 0 2 0 -0.1 .80 .67 .90
R59 1 2 1 .05 -0.1 .69 .54 .94

Nonresponse was constructed using the following logistic model for re-
sponse

πi =
exp(α + αSCSCi + αSGSGi + αPRPRi + αFTFTi)

1 + exp(α + αSCSCi + αSGSGi+ αPRPRi + αFTFTi)
(1)

and the parameters in Table 3. In samples S60 and S59 we created unit
nonresponse, i.e. FT , PR and PS were set to missing. This resulted in
response sets R60 and R59 in which we created item nonresponse (on PS).
Two different models were used. The reason was that we wanted to see the
effect of having either the same or having different response mechanisms in
the main sample (S60 and R60) and the external sample (S59 and R59).
In the first scenario the same unit and item response mechanisms (mar1)
were used in both samples. The other scenario also used mar1 in the main
sample, while the external sample had a response mechanism (mar2) where
the impact of SG, PR and SC on the response probability were different.

4.3 Imputation and estimation

Both unit and item nonresponse were imputed with several setups. We used
a similar form as in Pettersson (2012; 2013) and calculated the number of
donors k in a donor pool as

k = [2Kp4/(4+q)] (2)
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where K is a size parameter, p is the number of eligible (including both fully
observed and previously imputed) donors, q is the number of continuous ob-
served variables, and [ ] denotes the integer part. Given, e.g. a size parameter
K = −1 and p = 100 fully observed or imputed units, for imputation of unit
nonresponse with q = 1 (item nonresponse with q = 2) we would have k = 20
(k = 11) potential donors.

In simulations reported in Section 5 we study the effects of nonresponse
on a population mean and one regression coefficient. We estimated the mean
population pension savings (µ) and the family type coefficient βFT of pension
savings from a linear regression equation

PS ∼ β0 + βFTFT + βPRPR (3)

using the Survey package in R (Lumley, 2012). βFT was estimated within
areas A0 and A1, and were denoted Ω and ℧ respectively.

Table 4: Mean and coefficients in population (U60) and external sample (S59).
Standard errors are given within paranthesis.

µ (Std) Ω (Std) ℧ (Std)

Population U60 5816 (0) 319 (0) 1625 (0)
Sample S59 5579 (157) 645 (530) 1767 (357)

The mean in the population (U60) and the coefficients in the areas (A0
and A1) are found in table 4 together with estimates based on the exter-
nal sample (S59). The process of drawing samples, imposing nonresponse,
imputing and estimating is repeated 1000 times, and all values are imputed
B = 25 times in each setup.

We use superscripts in the right position to denote estimates based on the
complete data for sample S60 without nonresponse (CD), the response set
R60 after removing also the partial nonresponse (CC), or the different kernel
imputation features of Pettersson (2012; 2013): Epanechnikov (E) selection
probabilities, Lagrange (L) adjustment, reorientation (R) and shrinkage (S)
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(see Section 2.2), e.g. θ̂U when no features are used, and θ̂ELRS when all
four features are used.

In addition to the potential donors units in S60, as discussed in Section
3.4, external donors units may also be used from R59, S59 after it has been
imputed, or simultaneously while imputing S59, S59+. The preimputation
of S59 is done with the same setup as the imputation of S60. This is noted
in the lower right corner, where e.g. θ̂∅ means no external units are potential
donors.

A superscript in the left position denotes that the estimator is subject to
some constraint. The superscript is µ or µA when the estimator is constrained
to the population mean or area means of SG, and by ρ or ρA when it is
constrained to the correlation between PS and PR in the population or the
areas, e.g. ρA θ̂ when constrained to the correlation in areas A0 and A1. Any
constraints are applied by imputing 200 datasets, and then rejecting all but
the 25 which are closest to fulfill the constraints.

For each estimator we calculate root mean squared error

RMSE =

√√√√ 1

1000

1000∑

g=1

(θ̂g − θ)2 (4)

where

θ̂g =

B∑

b=1

θ̂b,g (5)

is the overall estimated mean in the B imputed datasets, bias

BIAS =
1

1000

1000∑

g=1

(θ̂g − θ), (6)

variance

V AR =
1

1000

1000∑

g=1

(θ̂g −
1

1000

1000∑

f=1

θ̂f )
2, (7)

standard error
SE =

√
V AR, (8)

and relative error of estimated variance

REEV =
V̂ AR− V AR

V AR
, (9)
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where

V̂ AR =
1

1000

1000∑

g=1

(σ̂yg +
B + 1

B(B − 1)

B∑

b=1

(θ̂g − θ̂b,g)
2) (10)

is the average estimated variance. The estimated SE is

ŜE =

√
V̂ AR. (11)

We always divide BIAS and SE by RMSE of the complete data estimator
θ̂CD, and multiply all figures by 100.
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5 Simulation results

5.1 Donor pool size

Figure 1: Estimates from 1000 simulations for (a) µ̂U
∅

(b) Ω̂U
∅

(c) ℧̂U
∅

with mar1
response mechanism. The x-axis is the size parameter K for number of donors
k = [2Kp4/(4+q)].

The donor pool sizes were relatively important. This can be seen in Figure 1.
With an increasing donor pool, SE of all three estimators fell, while estimated
SE was less affected, causing REEV to increase. REEV was closest to zero
with a large donor pool for µ̂U

∅
, constantly overestimated for Ω̂U

∅
, and close

to zero with a small donor pool for ℧̂U
∅
.

RMSE of µ̂U
∅

is lowest where BIAS is about zero, approximately as donor
size parameter K = 0. A larger donor pool causes the estimated SE to be
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less biased.
BIAS of Ω̂U

∅
and ℧̂U

∅
are always negative and the absolute bias increased

with the increase of the donor pool . BIAS had strong influence on ℧̂U
∅

causing RMSE to be smallest for the smallest donor pool, while RMSE was
smallest for Ω̂U

∅
for larger donor pools. SE were always overestimated for Ω̂U

∅

while REEV for ℧̂U
∅

were approximately zero as K = −2.5.

5.2 Kernel features

Due to the relatively strong dependence on donor pool size, we display results
for a smaller pool with K = −2.5 (which was relatively favourable to Ω̂ and

℧̂) and a larger pool with K = 1.5 (which was relatively favourable to µ̂).
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Table 5: Estimates from 1000 simulations with no kernel features (U), Epanech-
nikov selection probabilities (E), Lagrangean calibration of selection probabilities
(L), reorientation R or shrinkage (S) for boundary units, or all features combined
(ELRS).

RMSE BIAS SE REEV

* µ̂∗
∅

Ω̂∗
∅

℧̂∗
∅

µ̂∗
∅

Ω̂∗
∅

℧̂∗
∅

µ̂∗
∅

Ω̂∗
∅

℧̂∗
∅

µ̂∗
∅

Ω̂∗
∅

℧̂∗
∅

CD 100 100 100 -4 7 4 100 100 100 -1 -0 6
CC 147 158 160 57 53 58 135 149 149 -43 -4 1

K=-2.5
U 151 128 142 -50 -41 -61 143 122 128 -29 43 1
E 150 126 140 -52 -36 -59 141 121 127 -29 42 2
L 149 125 141 -45 -36 -60 142 120 128 -29 44 0
R 151 128 142 -48 -41 -61 143 122 128 -29 42 1
S 158 127 140 -61 -38 -49 146 122 131 -32 42 -5

ELRS 154 126 138 -56 -36 -47 143 121 129 -31 39 -4

K=1.5
U 131 117 161 17 -44 -113 130 108 115 -7 64 28
E 129 116 166 -2 -32 -121 129 111 114 -1 70 33
L 131 117 155 15 -34 -108 130 112 111 -3 69 37
R 132 117 163 29 -46 -117 129 107 114 -5 69 28
S 133 116 160 11 -41 -110 132 108 116 -7 68 25

ELRS 130 115 156 9 -28 -111 130 112 110 -2 74 45

Results for a smaller (K = −2.5) and a larger (K = 1.5) donor pool
are seen in Table 5. The effects of applying the kernel features were rela-
tively small and strongly related to donor pool size. For the mean µ̂∅ most
effects were similar to those reported by Pettersson (2012;2013) with model
simulated datasets. We summarize the results for the mean µ̂∅ as:

• A large donor pool was preferred. This was mainly due to the fact that
shrinkage (S) of a small pool worsened BIAS, SE and REEV. Due to
lower SE the estimator even had smaller RMSE of µ̂∅ for CC than for
kernel imputation with smaller donor pools.

18



• With larger donor pools, applying all kernel features (ELRS) simultane-
ously improved RMSE and BIAS. However, reorientation (R) increased
BIAS.

• SE was relatively unaffected by the kernel features, though shrinkage
(S) seemed to worsen SE.

• With a larger donor pool REEV was slightly improved.

For the coefficient Ω̂∅ we summarize results as:

• RMSE was slightly reduced or unaffected by all the kernel features.

• Adding kernel features with a small donor pool reduce either or both
of BIAS and SE, while with a large donor pool there was more of a
trade-off between BIAS and SE.

• BIAS had the opposite direction of the CC estimator, was relatively
large, but was reduced by all kernel features except for reorientation
(R).

• As seen in REEV the overestimation of SE was exacerbated as the donor
pool increased. With a small (large) donor pool the overestimation was
smallest with all (no) kernel features added.

For the coefficient ℧̂∅ we summarize results as:

• RMSE was relatively unaffected or slightly reduced by all the kernel
features. Two larger effects with a larger donor pool were Epanechnikov
(E) which increased RMSE, and Lagrange (L), which decreased RMSE.

• SE fell while BIAS and RMSE increased with the size of donor pool.

• As for the CC estimator, with a small donor pool SE was well estimated,
while it was overestimated with a larger donor pool.

• BIAS was improved considerably by shrinkage (S) with a small donor
pool, and worsened by Epanechnikov (E) with a larger donor pool.

• There seemed to be a trade-off between BIAS and SE when adding
kernel features.

19



5.3 Using external units

Table 6: Estimates from 1000 simulations with mar1 response mechanism when
utilizing external units for imputation.

RMSE BIAS SE REEV

* µ̂U∗ Ω̂U
∗ ℧̂U

∗ µ̂U∗ Ω̂U
∗ ℧̂U

∗ µ̂U∗ Ω̂U
∗ ℧̂U

∗ µ̂U∗ Ω̂U
∗ ℧̂U

∗

K=-2.5
∅ 151 128 142 -50 -41 -61 143 122 128 -29 43 1

R59 147 119 132 -73 -50 -64 128 108 115 -13 87 24
S59 146 116 127 -86 -58 -69 118 101 106 1 118 45

S59+ 143 120 133 -70 -53 -72 125 108 112 -9 86 32

K=1.5
∅ 131 117 161 17 -44 -113 130 108 115 -7 64 28

R59 113 108 147 -16 -41 -110 112 100 98 22 109 69
S59 107 105 140 -33 -45 -108 101 95 88 49 144 104

S59+ 115 110 151 -19 -43 -114 113 101 99 20 107 64

The use of external units from R59 in our simulations is summarized with
the following points; see also Table 6.

• In all situations the use of external units reduced SE and also RMSE.

• Using external units from the preimputed S59 had the largest effect on
all measures. The effects of R59 or S59+ where the external sample
was not preimputed were relatively similar.

• With small donor pools the BIAS increased when external units were
used.

• The effect (not shown here) from using the mar2 response mechanisms
on S59 and R59 instead of mar1 was relatively small on all measures.

20



5.4 Constraining to known quantities

Table 7: Estimates from 1000 simulations with mar1 response mechanism with
different constraints of known quantities.

RMSE BIAS SE REEV

* ∗µ̂U
∅

∗Ω̂U
∅

∗℧̂U
∅

∗µ̂U
∅

∗Ω̂U
∅

∗℧̂U
∅

∗µ̂U
∅

∗Ω̂U
∅

∗℧̂U
∅

∗µ̂U
∅

∗Ω̂U
∅

∗℧̂U
∅

K=-2.5
none 151 128 142 -50 -41 -61 143 122 128 -29 43 1

µ 145 131 144 -42 -42 -61 139 124 130 -27 -30 -62
µA 145 129 143 -43 -41 -60 139 122 130 -27 -26 -61
ρ 156 122 136 -58 -38 -44 145 116 129 -31 -21 -60

ρA 156 122 136 -58 -38 -44 145 116 129 -31 -21 -60

K=1.5
none 131 117 161 17 -44 -113 130 108 115 -7 64 28

µ 129 118 160 16 -45 -110 128 110 116 -4 -14 -42
µA 129 116 160 14 -43 -109 128 108 117 -4 -12 -42
ρ 139 112 150 -4 -42 -91 139 104 119 -17 -12 -41

ρA 139 112 150 -4 -42 -91 139 104 119 -17 -12 -41

The use of constraints had several significant effects, as seen in Table 7. The
difference between constraining to the population level (µ or ρ) and to the
area level (µA or ρA) was marginal. Constraining to the the known mean (µ)
of FT

• improved all measures for µ̂∅ irrespective of donor pool size and

• significantly reduced estimates of SE for Ω̂∅ and ℧̂∅, causing REEV to
fall.

Constraining to the the known correlation (ρ) between PR and PS

• significantly reduced RMSE of Ω̂∅ mainly through BIAS (with a small

donor pool) or SE (with a large donord pool), and ℧̂∅ mainly through
BIAS,
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• significantly reduced estimates of SE for Ω̂∅ and ℧̂∅, causing REEV to
fall and

• significantly increased RMSE of µ̂∅, either through BIAS with a small
donor pool or through SE with a large donor pool. REEV of µ̂∅ was
slightly worsened irrespective of donor pool size.

5.5 Combining kernel features, external units and con-

straints.

In this section we combine the kernel features, utilization of external units
and constraints, following up each of the subfigures of Figure 1 with similar
figures.
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5.5.1 Population mean µ

Figure 2: Estimates from 1000 simulations for (a) µ̂ELRS
∅

(b) µ̂ELRS
R59 (c) µµ̂ELRS

R59 .
The x-axis is the size parameter K used for calculating the number of donors k =
[2Kp4/(4+q)].

When moving from (a) µ̂elrs to (b) µ̂ELRS
R59 in Figure 2 we see that BIAS and

SE are shifted downwards. RMSE also shifts somewhat downwards except
for a small donor pool. When moving further to (c) µµ̂ELRS

R59 RMSE is shifted
slightly further downwards.
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5.5.2 Regression coefficient Ω

Figure 3: Estimates from 1000 simulations for (a) Ω̂ELRS
∅

(b) Ω̂ELRS
R59 (c) ρΩ̂ELRS

R59 .
The x-axis is the size parameter K used for calculating the number of donors k =
[2Kp4/(4+q)].

When moving from (a) Ω̂ELRS to (b) Ω̂ELRS
R59 in Figure 3 we see that SE and

RMSE are shifted downwards, while estimated SE is relatively unchanged,
causing REEV to increase. The same things are seen when moving further
to (c) ΩΩ̂ELRS

R59 but the effects are smaller.
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5.5.3 Regression coefficient ℧

Figure 4: Estimates from 1000 simulations for (a) ℧̂ELRS
∅

(b) ℧̂ELRS
R59 (c) ρ℧̂ELRS

R59 .
The x-axis is the size parameter K used for calculating the number of donors k =
[2Kp4/(4+q)].

When moving from (a) ℧̂ELRS to (b) ℧̂ELRS
R59 in Figure 4 we see that SE and

RMSE is shifted downwards, while estimated SE is relatively unchanged,
causing REEV to increase a little. When moving further to (c) Ω℧̂ELRS

R59
BIAS improves so that RMSE is shifted downwards.

6 Discussion

There is an apparent potential in informing kernel imputation by utilizing
external units (in a cold deck manner) or constraints from known quantities
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(on auxiliaries). Both of these features are relatively easily incorporated.
In our example with relatively sparse data, the use of external units helped
in reducing the variance, but complicated the variance estimation and also
introduced bias in estimates. In other situations it is recommended to use
any available validation measures to minimize the risk of bias, including the
plotting of the data. On the issue whether to borrow a respondent sample,
to borrow the preimputed sample, or to impute simultaneously, it seemed
as if the preimputed case had the strongest influence while the differences
was smaller between the other two approaches. Using different kinds of
nonresponse causes worked well in our case with a common MAR assumption,
but this needs to be further explored.

Utilizing constraints reduced error of the estimates. The correlation con-
straints which were irrelevant to the mean estimate were also harmful to it.
But the mean constraint did not seem harmful to the coefficients. It was
particularly difficult to estimate SE of regression coefficients, but using cor-
relation constraints was an improvement. It should be possible to enhance
the constraining effects simply by imputing more datasets to select among.
This is also probably needed if one would be fulfilling several constraints
simultaneously.

It was not our purpose here, but a major challenge is to decide the size
of donor pool, a topic which is discussed in Pettersson (2012; 2013) which
needs further exploration. Our simulations indicate that one may need dif-
ferent donor pool sizes for different estimates. It may be possible to find a
compromise which can be improved by combining several constraints, but
there is probably seldom a single best donor pool size.

To account for the design we included the stratum variables directly in
the distance measure. An extension could be to also include the response
propensities. The common donor approach could also be compared to a
single donor approach.

Taken together the kernel features improved estimation as in Pettersson
(2012; 2013), but not all features contributed in all situations. More investi-
gation is warranted to discover whether this were specific to the data or to
the context used in this study.
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