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Abstract

We consider a data set with missing observations but known aux-
iliaries for the sample and develop a real donor imputation. For each
unit with missing observations we construct a distribution over a set
of possible donors. We want the expectation (or distribution) to be
chosen so that the expectation (or distribution) of the imputed values
should equal the distribution of the units’ true values. This is obtained
by letting the expected values of the auxiliaries equal the true value.
Several kernel estimation features are introduced to reduce the bias
associated with the unbalanced donor sets, due to sparse and bounded
data sets. To get the good properties of kernel estimates to carry
over, multiple imputation is used. Simulation studies indicate that
our method has a good performance compared to competing meth-
ods. This is particularly noticable in notoriously difficult situations
e.g. when the relationship between the study and auxiliary variables
is nonlinear. The displayed simulations are based on two auxiliary
variables, but the algorithm is generally formulated for any number of
auxiliaries.
Keywords : Boundary bias, Imputation algorithm, Missing data, Real
donor imputation, Multiple imputation.

1 Introduction

1.1 Background

Missing data is always a nuisance. The ‘holes’ in the dataset precludes many
simple standard techniques. If only units with no item nonresponse are
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considered a complete data set is obtained but the estimate will be less
efficient and usually quite biased. A general solution is to fill in the missing
values by imputed values which are drawn from the predictive distribution of
the missing value (Rubin, 1976). The most important factor for imputation
to reduce (nonresponse) bias, improve precision, and preserve associations
between variables is using auxiliary variables which are predictive of both
the nonresponse propensity (Rosenbaum and Rubin, 1983) and the missing
values (Little, 1988).

Real donor imputation (Laaksonen, 2000) is attractive since the imputed
values are copies of actually observed (realistic) values on units from a donor
pool, but the ever present imbalance between the donor pool and the (donee)
unit which is being imputed may result in e.g. biased estimates, especially
with sparse or bounded data. The characteristics of donor pools can be
improved by adapting features from kernel estimation (Pettersson, 2013),
and we believe that this potential has not recieved sufficient attention.

We use simulations to investigate the properties of an algorithm which
avoids strong parametric assumptions, appeals to the general properties of
kernel smoothers and utilizes known background information. Our goal is
to make parameter estimation almost unbiased in combination with multi-
ple imputation and under the assumption of a missing at random response
mechanism.

1.2 Notation

Assume that a sample S with n units has been drawn from a population U
with N units. Each unit i is characterized by two related variables Xi and
Yi. In our simulations all units’ values are assumed to be multivariate iid
random variables and thus exchangeable. The goal is to estimate a func-
tion T ((Xi, Yi), i ∈ U), e.g. the mean T =

∑N
i=1 Yi/N . The vectorvalued

(continuous) auxiliary variable Xi is known for all N units in the frame.
The study variable Yi, was meant to be obtained from all the n units in the
sample, but there was some nonresponse. This is described by an indicator
variable Ri, i ∈ U, which indicates whether Yi will be observed if unit i is
selected. When the sample has been drawn Ri is first observed, and Yi is
observed if Ri = 1. We will consider q ≥ 2 auxilary variables, but only a
single study variable, so that r =

∑n
i=1Ri is the number of observed units.

Formally Yi and Ri may, however, be vectorvalued. Nonresponse may cause
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the r responders and n− r nonresponders to differ in distribution of Xi and
Yi.

We suggest an imputation method which can be used for any data set
with these properties, but it is mainly intended for a situation when data are
missing at random (MAR) (Rubin, 1976), meaning that the response prob-
ability is related only to known or observed values. Assuming MAR simpli-
fies the general response mechanism PR|XY (ri|xi, yi, θR) to PR|X(ri|xi, θR).
The responders and nonresponders may then be treated as conditionally ex-
changeable under the full data model

fXY R(xi, yi, ri|θX , θY , θR) = fX(xi|θX)fY |X(yi|xi, θY )PR|X(ri|xi, θR) (1)

where the parameters θX , θY and θR are the model probability vectors for
X, Y and R. Using observed responding units as donors when imputing the
nonresponding donee units can therefore be justified if MAR holds and the
imputation method is derived from the correct model.

In real donor imputation each donee unit i with missing values is assigned
a donor pool or subset Si,k of S containing the ki donor units (from the p
currently available donor units, where p ≥ r) with the closest match to donee
i according to some auxiliary-based distance. The specific potential donors in
Si,k are determined by a donor pool matrix Hi = hi ·Gi, where hi is a scalar
and Gi is a non-negative matrix deciding the shape of the donor pool. To
each of the ki units in the donor pool Si,k, we assign a selection probability
λi,j , creating a probability measure λi = (λi,1, ..., λi,ki). The missing value
yi on unit i is imputed by randomly drawing a donor j using λi, finding its
corresponding value yj , and finally, imputing it.

1.3 Literature review

Our real donor imputation algorithm may be denoted as a hot deck method
(Andridge and Little, 2010). In resemblence to Pólya sampling (Feller, 1971),
previously imputed donee units are allowed to act as potential donors to
forthcoming donees, so an imputed dataset becomes a realization from the
Pólya posterior (Ghosh and Meeden, 1997).

Proper consideration of the uncertainty caused by the fact that yj differs
from yi can be made through explicit formulas, resampling of single imputed
datasets, or by multiple imputation (Little and Rubin, 2002). In multiple
imputation the missing values are indepently imputed B ≥ 2 times given
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the data. Each imputed dataset is analyzed separately, and the final esti-
mates come from averaging the results. The variability between the imputed
datasets should reflect a reasonable level of uncertainty to estimate the vari-
ance increase due to the missing data.

The properties of an estimator T̂ of T is related to the donor pools.
Imputation approaches to selection of donor pool size (Marella, Scanu and
Conti, 2008; Pettersson, 2012; Schenker and Taylor, 1995) parallel bandwidth
determination in kernel estimation (Härdle, 1990; Silverman, 1986). Donor
pools with few potential donors result in strong dependence between the B
values imputed on a missing value, which in repeated sampling can give rise
to high variability of T̂ . Larger donor pools reduce the imputation variance
but may instead increase the bias of T̂ .

The number of donors ki may be determined as those donors in S ly-
ing within a range hi from xi. Approaches to deciding hi include rules-
of-thumb from distributional assumptions (Silverman, 1986), least-squares
cross-validation (Scott and Terrell, 1987), plug-in estimates (Chacon and
Duong, 2010; Wand and Jones, 1994), and smoothed cross-validation (Duong
and Hazelton, 2005; Jones, Marron and Park, 1991). While these approaches
are less biased when x is sparse, a nearest neighbour (NN) approach may pro-
vide better matching with more dense x and automatically ensures nonzero
ki:s. Given p eligible donors and q auxiliary variables, the ideal NN ap-
proach of setting ki ≈ p4/(4+q) is best used when the exact size of ki is not
so important (Silverman, 1986).

Within a donor pool, higher donation probabilities may be assigned to
potential donors closer to the donee if λi is determined from a kernel (Conti,
Marella and Scanu, 2008; Pettersson, 2012; 2013) or some other function (Sid-
dique and Belin, 2008). Given an optimally chosen bandwidth parameter, the
Epanechnikov (1969) kernel can be shown to minimize the mean integrated
squared error (MISE) (Silverman, 1986) asymptotically with an increasing
n in kernel estimation. Canonical kernels (Marron and Nolan, 1989) can be
used to neutralize the interplay between the donor pool size and the selection
probabilities when donor pool selection approaches are compared. See also
(Aerts, Claeskens, Hens and Molenberghs, 2002; Pettersson, 2012; 2013) for
determination of donor selection probabilities in kernel imputation.

Since E[xj ] − xi 6= 0 real donor pools are always ’individually biased’,
except when donor pools are formed from categorical auxiliaries where xj =
xi∀j. However, categorization by introducing subjectively chosen bound-
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aries in the data would only mask differences in continuous auxiliaries. The
individual bias of donees that lie within the convex hull of their donors-
auxiliary values {xj , j ∈ Si,k} may be eliminated if λi,j is calibrated (Aerts,
Claeskens, Hens and Molenberghs, 2002; Pettersson, 2012; 201). Calibration
can be made e.g. by viewing the expected imputed value E[ŷi] of the study
variables as a zero degree polyonomial estimate (Fan and Gijbels, 1996), and
then linearize λi. Missing values have also been imputed by E[ŷi] (Chu and
Cheng, 1995). Design weight calibration (Deville and Särndal, 1992) on a
pointwise level can also be used to define calibrated selection probabilities.

Special attention is needed when xi is close to the boundary of the convex
hull of {xj , j ∈ Si,k}. The closer a donee is located to the boundary of the
convex hull of {xj , j ∈ Si,k}, the more individually biased the imputation
becomes due to the area without donors outside the hull. This is known as
boundary bias in kernel estimation (Simonoff, 1996) and can not be com-
pletely removed through calibration. But bias can be reduced if the donor
pool is made oblong along the convex hull of {xj , j ∈ Si,k}. This technique
is similar to linear discriminant adaptive nearest neighbour analysis (Hastie
and Tibshirani, 1996) although the donor pool is made oblong along the ob-
served boundaries between classes of the study variable, in order to increase
the prediction power when finding NN units for classification. At the cost of
higher variance, bias can also be reduced by shrinking the total donor pool
of boundary donees (Pettersson, 2012; 2013)

1.4 Outline

In Section 2 we adapt the three features from Petterson (2013) to multivari-
ate conditions and include them in an algorithm in Section 3. By setting
donor selection probabilities λi,j proportional to the Epanechnikov function,
the better matched donors are assigned larger λi,j . Next we calibrate the
selection probabilities so that E[xj |λi] = xi. Thirdly, we change the size
and shape of the donor pools to improve the fit for boundary donees. Sim-
ulations with these imputation algorithms are then undertaken in Section
4. The MSE of T is seen to be considerably reduced by the proposed fea-
tures, mainly due to reduction of bias, while variance is less affected. Using
the ideal NN donor rate the method show some sensitivity to the number of
donors but are generally better than in comparison to other approaches. It
performs at least as well as other competing imputation methods. The paper
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is concluded in Section 5.

2 Methods

2.1 Our basic real donor multiple imputation method

We have in this description sorted the data, which consists of q ≥ 2 auxiliary
variables and one partially observed study variable, so that the r units with
complete data come first followed by the n − r units with missing y-values.
At first we assume that no auxiliaries are available. In that case our method
will be a version of the finite population Bayesian bootstrap (Lo, 1988) which
we describe first in our terminology.

We successively impute the missing values for donee units i = r+1, ..., n.
Unit i is imputed using the set Si,p = Si,i−1 of all available donors, implying
that both the r observed and the p− r previously imputed donee units may
be used as potential donors. The p potential donors to donee i are then
each assigned donor selection probabilities λi,j = 1/p for j = 1, ..., p, where
λi = (λi,1, ..., λi,p). When all n − r units are replaced we have a complete
data set. We use a multiple imputation technique which means that this is
repeated so that we get B complete data sets in the end. For each new data
set the n− r units with missing data are randomly permuted.

For the first donee with i = r + 1, a donor unit is drawn from the donor
pool Sr+1,r using probabilities λr+1 where λr+1,j = 1/r, ∀j. The value of
the drawn donor is then copied and imputed on the donee. The potential
donor pool Sr+2,r+1 for donee i = r + 2 is then set to be Sr+1,r updated
by adding the imputed donee unit. Donor selecton probabilities are also
updated to 1/(r + 1). The procedure of drawing, imputing and updating is
then repeated for the remaining non-observed units in S, resulting in a fully
imputed dataset Sn+1,n from which T can be estimated by some ordinary

estimator T̂ . This Pólya sampling procedure implies that Sn+1,n is a draw
from a Dirichlet distribution. By repeating the whole procedure B ≥ 2 times,
we get B different fully imputed datasets. The empirical distribution of the
estimates T̂1, ..., T̂B is then an approximation of the distribution of T given
Sr+1,r.
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A point estimate T̂ is given by the multiple imputation combining rules

T̂ = B−1
B∑

b=1

T̂b. (2)

Its variance can be estimated by

V̂ (T̂ ) = σ̂2within + σ̂2between, (3)

where σ̂2within = B−1
∑B

b=1 σ̂
2
b is the average of the B estimated variances,

and σ̂2between = (B + 1)B−1(B − 1)−1
∑B

b=1 (T̂b − T̂ )2 is the variance of the
estimates. The inflating factor (B + 1)B−1 is a correction for using a finite
B. The approximate large-sample relative efficiency of an estimate based on
B = 20 compared to B = ∞ imputed datasets and 40%(80%) rate of missing
information is 99.0%(98.1%) (Rubin, 1987).

In our case we have access to an auxiliary x. It is reasonable to alter
the process by using its values and only imputing study variable values from
units with similar auxiliary varible values. We do this by first defining a
donor pool matrix Hi = hi ·Gi, where Gi and hi define the donor pool type
and size, and then a distance DH,i,j . If e.g. DH,i,j = (xj −xi)H

−1
i (xj −xi)

t

and Gi = I then DH,i,j is the Mahalanobis distance between xj and xj . A
donor pool Si,k is then made up of the ki ≤ p units whose distance DH,i,j < 1
for j = 1, ..., ki.

2.2 Probability distributions and individual calibration

With x known we do not only refine the donor pools by using subsets Si,k

with close units but also improve the dependence on x within the donor pools
by using donor selection probabilities that depend on x,

λi,j = K(DH,i,j)/

k∑

υ=1

K(DH,i,υ), (4)

where K() is a non-negative kernel function. The closer a donor is to the
donee the larger its assigned donor selection probability will be. The expec-
tation of an imputed value

E[ŷi] =

k∑

j=1

λi,jyj (5)
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is now equivalent to a pointwise kernel smoother.
A uniform function Kunif ∝ max{0, IxtH−1

i x≤1} assigns all units in Si,k

equal probabilities of becoming the donor, while an Epanechnikov kernel
Kepan ∝ max{0, (1 − x

tH−1
i x)IxtH−1

i x≤1} assign larger probabilities the
closer a donor is to the donee. Under some regularity conditions the lat-
ter will minimize the MISE of kernel estimators approximately for large p
(Härdle, 1990). The difference in scaling between the uniform and Epanech-
nikov kernels is removed by assigning them the same canonical form (Marron
and Nolan, 1989).

We denote donees close to (or at) the boundary of the convex hull of
{xj , j ∈ Si,k} as boundary donees, and other donees as interior donees.
We first consider interior donees. Special features for boundary donees are
discussed in Section 2.4.

Let x̂i denote the value xj of the randomly selected donor j to donee i.
In a pool Si,k the xj values of the donors usually scattered unevenly around
the donee xi. The expectation of x̂i

E[x̂i] =

k∑

j=1

λi,jxj (6)

will usually differ from the donee value xi, so x̂i will have an individual bias

B[x̂i] = E[x̂i]− xi =

k∑

j=1

λi,jxj − xi. (7)

Similarly we define the individual bias of ŷi as

B[ŷi] = E[ŷi]− yi =

k∑

j=1

λi,jyj − yi. (8)

The individual properties of (7) and (8) are often directly related to overall
properties, where e.g. the bias of a sample total is the sum of the imputed
values individual biases. Asymptotic results (Silverman, 1986) give that the
bias (8) tends to zero as p → ∞ if k

p → 0, that the variance tends to zero if

k = O(p), and that the MSE tends to zero if k = O(p4/(4+q)).
The variables x and y are often locally linearily related. By making (7)

equal to zero through calibration we hope to reduce (8) and thus the total
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bias. The calibrated λ∗i,j may for each i be found through minimization of a
Lagrange function (Pettersson, 2013, p. 8)

min

k∑

j=1

L(λ∗i,j − λi,j) +Λ1(

k∑

j=1

λ∗i,j(xj − xi)) + Λ2(

k∑

j=1

λ∗i,j − 1) (9)

with respect to Λ1,Λ2 and λ∗i,j , j = 1, ...k, where L() is a distance function
and Λ1 and Λ2 are Lagrange multipliers. As long as there are possible
donors at all sides of xi, i.e. xi belongs to the interior of the convex hull
of {xi, i ∈ Si,k}, it is possible to obtain donor selection probabilities whích
fully eliminates the individual bias of a donee. Features to counteract the
bias for boundary donees are discussed in Section 2.4.

2.3 Deciding donor pools

The properties of final estimates are strongly influenced by the choice of pool
size and shape. We mimic several suggested approaches in kernel estimation
for simultaneously selecting hi and ki, and apply them to imputation. The
choice is always a trade-off since a small hi (or ki) leads to small bias while
a large hi (or ki) leads to small variance.

In four approaches we first determine the pool size hi, from which ki is
indirectly determined. In the first approach we use a simple rule-of-thumb
based on distributional assumptions (Scott, 1992, p. 152); secondly we use
least-squares cross-validation (Duong and Hazelton, 2005, p. 489); thirdly
we use a plug-in approach (Duong and Hazelton, 2003, p. 24); and finally
smoothed cross-validation (Duong and Hazelton, 2005, p. 489). To ensure
at least one donor in each pool we use the restriction that ki ≥ q + 1, ∀i .

We also use a nearest neighbour approach where we first decide the num-
ber of donors ki ≈ pq/(q+2), from which the pool size is indirectly determined.
This approach may find donors that are better matched to the donee in dense
regions and easily ensures that no donee get zero donors.

2.4 Boundary adjustment of donor pools

We start by denoting a donee i as a boundary donee if xi lies outside or close
to the boundary of the convex hull of {xj , j ∈ Si,k}, and other donees as
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interior donees, see Figure 1a for an example. Generally it is easier to find a
relatively balanced donor pool for interior donees since the donee vector xi

is (closely) surrounded by xj of potential donors.
Since the potential donors xj tend to lie only on one side of boundary

donees xi the expected individual bias (7) is nonzero. Expected bias of
boundary donees diminishes when xi approaches the boundary, except for
when NN is used, since the number of donors then is independent of the
location of xi. It may still be possible to make the bias zero unless the donee
has no potential donors at all on one side.

Two measures can be taken to, at least, mitigate (7) in this case. The
first one is to remove the furthest (and thus most bias-threatening) potential
donors and increase the selection probabilities of the closest ones by shrinking
hi (or ki). Only the closest donors will then remain in the donor pool, so (7)
is expected to approach zero although with higher variance. Secondly, when
x has at least two dimensions it is possible to change Gi so that the donor
pool becomes oblong along the boundary of x. Donors along the boundary
may then be substituted for donors that were orthogonally distant from the
boundary in Si,k, see Figure 1. Their donor probabilities λi,j are also altered
accordingly.

3 Kernel imputation algorithm

The algorithm is divided into three parts; each is described in Sections 3.1-3.3
respectively. The algorithm is described for one donee and one imputation
round. The initation section (A1) consists of initial donor selection and
boundary definition. In the calibration section (A2) an attempt to eliminate
the individual bias in x̂i is made through restricted linearization of the donor
selection probabilities. The boundary section (A3) aims at reducing the
individual bias in x̂i of boundary units by changing Hi. It is always ensured
that ki ≥ q + 1.

3.1 (A1) Initiation

Suppose we are going to impute yi for a certain i. For notational convenience
we first standardize the data set so that mean and variance is equal to x = 0

and Σ̂i = I. We then calculate distances DH,i,j for all j = 1, ..., p units, and
find hi and ki. In the NN approach the donor pool Si,k border is interpolated
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Figure 1: Donor pool of boundary unit decided by (xj −xi)G
−1

i (xj −xi)
t < h. (a)

Original donor pool with G = I; (b) reoriented donor pool with G 6= I. Donees are

represented by (⊗), potential donors by (#), and non-potential donors by (•).

between the kith and (ki+1)th potential donor. If Gi = I the donor set Si,k

is identified as the ki complete units for which DH,i,j ≤ 1. The ki donors are
assigned nonzero donor selection probabilities λi,j as in (4).

If xj = xi so that the donee has no individual bias, A1 is terminated; see
Appendix A. Otherwise a boundary matrix Qi, to be defined below, is used
to test whether unit i lies at (or close to) the boundary of the donor pool,
which means that none (or few) of the xj are located on one side of xi. Let
the boundary vector

Q
(vector)
i =

−−→
xjxi∣∣∣−−→xjxi

∣∣∣
=

1

ki

ki∑

j=1

(xj − xi)√
DH,i,j

(10)

be the normed normal from the mean xj of the ki donors in Si,k, and let

Q
(plane)
i be a matrix spanning the (q − 1) dimensional normed boundary

plane (which is a single vector if q = 2) orthogonal to Q
(vector)
i , so that

Qi =
[
Q

(vector)
i Q

(plane)
i

]
, see Figure 2.

Also let Q
(vector)
i,j = −−→

xjxi be vectors from donee i to the ki potential
donors. To be able to determine whether the donors lie above or below the
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Figure 2: Initial detection of boundary donees. The donee is represented by (⊗),
potential donors by (#), and the mean of potential donors by (△).

boundary plane, we first decide η as the minimum acceptable proportion,
out of the ki potential donors in the donor pool, that may lie either above or
below the boundary plane. We then let

aj =





1/ki if Q
(vector)
i ·Q(vector)

i,j > 0 (above)

0 if Q
(vector)
i ·Q(vector)

i,j = 0 (on)

−1/ki if Q
(vector)
i ·Q(vector)

i,j < 0 (below)

for j = 1, ..., ki,

where Q
(vector)
i · Q(vector)

i,j are scalar products. Donee i is then definied to

be a boundary unit if
∣∣∣
∑ki

j=1 aj

∣∣∣ > |2η − 1|.

3.2 (A2) Calibration of selection probabilities

By calibrating the donor selection probabilities the individual bias (7) can
often be almost eliminated. In order to prevent individual selection probabil-
ities to become very large we introduce a constraint λi,j ≤ max(λmax, 1/ki)
where λmax ∈ (0, 1]. Setting λmax = 1 means no restriction while the
strongest possible restriction λmax ≤ 1/ki results in equal selection prob-
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abilities for all ki donors. When possible, the following steps calibrate λi,j∀j,
and otherwise leave them unchanged.

1. Set λsumi = 1 and λmax
i = max(λmax, 1

ki
).

2. Minimize L(λ∗i,j−λi,j) subject to {
∑k

j=1 λ
∗
i,j(xj − xi)} = 0 and (

∑k
j=1 λi,j

∗) =
λsumi , where L() is a distance function. With the Euclidean distance
L()2 the calibrated selection probabilities are given by

λ
∗
i = −[λi[W

t]−1W−1 + [0 0 1][W−1]t]/2, where W =



x1 − xi 1

· · ·
xki − xi 1


.

3. If the solution is singular, set λ∗i,j = λi,j and go to step 7.

4. If any λ∗i,j < 0, set those λ∗i,j = 0 and temporarily remove unit(s) j
from the calculations. Then return to step 2.

5. If max(λ∗i,j) > λ
(max)
i , set that λ∗i,j = λ

(max)
i and temporarily remove

unit j from the calculations. Then set λ
(sum)
i = λ

(sum)
i − λ

(max)
i and

return to step 2.

6. Restore the units that were temporarily removed from the calculations
in steps 4 and 5.

7. Use λ∗i,j as donor selection probabilities.

3.3 (A3) Bias reduction through pool shape and width

To reduce individual bias (7) of boundary donees the donor pool Si,k the pool
is reoriented (by changing the matrix Gi) or shrunk (by shrinking the scalar
hi). The maximum number of times (c) the two features may be applied on
a donee i is equal to the number of auxiliary variables q; see also Appendix
A.

The total shrinkage after q processings is determined by a constant α ∈
[0, 1], where α = 0 is the largest possible and α = 1 is no shrinkage. The
possible shrinkage is curtailed since each new donor pool is restricted to
contain at least q + 1 potential donors.
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The degree of reorientation is determined by a constant β ∈ [0,∞], where
β = 0 is no reorientation, and β = ∞ is full reorientation such that the norm

of Q
(vector)
i becomes zero.

1. Set Qi =
[
Q

(vector)
i p−β Q

(plane)
i pβ/(q−1)

]
to change the boundary ma-

trix according to the location of the donors.

2. Set Gi = (
(
QT

i QiG
−1
i

)
) −1 to adjust the pool shape through the

boundary matrix.

3. In the nearest neighbour approach, to adjust the width, set ki =
kip

α(q−c)/q and then determine hi. Else, set hi = hip
α(c−q)/q2 .

4. Use Hi = hi ·Gi as in A1 to find the new set of ki donors.

4 Simulation study

In the simulations we illustrate the kernel imputation algorithm with its
different features using a bivariate auxiliary variable. Simulations with a
trivariate auxiliary gave similar results and are not shown here. We study
different ways of finding the donor pools, and comparisons are made to com-
peting imputation methods. Similar simulations with a univariate auxiliary
variable may be found in Pettersson (2012; 2013). In line with those stud-
ies we hypothesize that including the features will help remove bias, and
also improve variance estimation. The effect on the variance itself is less
obvious. Since the NN approach puts relatively more focus on locally adapt-
ing the donor pools, it should be more able to reduce bias, while the other
approaches may be relatively more shifted towards variance reduction with
uniform auxiliaries, although the differences among them might not be very
pronounced.

4.1 Setup of simulation study

A population of N=1600 units is constructed. Two auxiliary variables are
generated from independent uniform distributions, xt ∼ U(0, 1), t = 1, 2.
Three study variables yu = fu(x1, x2) + eu, u = 1, 2, 3, are generated from
the auxiliaries, where f1 = Φ−1(x1)+Φ−1(x2), f2 = (Φ−1(x1))

2+(Φ−1(x2))
2
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and f3 = sin(πx1) + sin(2πx2), and Φ is the standard normal distribution.
The expected values of these random variables are 0, 2, 2/π for u=1, 2 and
3 and the variances 2, 4 resp 1-4/π2. We finally add random noise terms,
generated from independent normal distributions eu ∼ N(0, V ar[fu]). The
population is described in Table 1.

Table 1: Means, variances and correlations in the simulated population.

Variable x1 x2 y1 y2 y3
Mean 0.50 0.49 0.03 2.14 0.67

Variance 0.001 0.001 4.143 8.111 1.073
Correlation to x1 1 0.012 0.482 -0.013 -0.019
Correlation to x2 0.012 1 0.516 -0.016 -0.490

We draw 1000 independent samples of size n = 400. To avoid very few or
many missing observations we independently create exactly 50 % nonresponse
on yu in each sample with Poisson sampling. For each unit we draw a value
z ∼ U(0, 1), and then let the 200 units in each sample for which (z(x1 +
2x2)/3)

1/4 was largest become nonresponders.
The missing data is imputed B = 20 times. We compare the methods

described in Section 2.3 for selecting donor pool size. The nearest neighbours
are found by Mahalanobis distances. We also compare choices of donor pool
size. These are fixed to be k=1, 2, ..., 30 as p=200. As more donees are im-
puted, the number of potential donors increase. The size of the donor pool
is then set to [Ap4/(4+q)], where [ ] denotes the integer part and A is deter-
mined so that this holds also for p=200. Four other methods suggested in the
literature are also included for comparison. In the rule-of-thumb (RT ), least-
squares cross-validation (CV ), plug-in (PI), and smoothed cross-validation
(SC) approaches all 400 sampled units are used when the h is estimated. To
account for the fact that the number of potential donors varies, h is adjusted

by the factor (p/400)1/(4+q).
We use all 16 combinations of the four features in our proposed algorithm

to impute the missing data. Each method is denoted by the components it
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contains. The basic method (U) uses uniform selection probabilities and has
no features included. In the initiation section A1 Epanechnikov selection
probabilities (E) can be used instead of the uniform probabilities. The selec-
tion probabilities may be calibrated by solving the Lagrange equation (L) in
A2 using the Euclidean distance function. In A3 the matrix G of donee units
at the boundary (as detected in A1 or A2) may be modified so that the donor
pool is reoriented (R), and h may also be shrunk (S). For boundary donees
we fix the parameters for shrinkage and reorientation at α = .97 and β = .03.
This may be a conservative choice but should be sufficient to illustrate the
effect of features R and S.

Comparisons are made to what an analysis made on the complete data set
without any missing values would have given (CD) and to what an analysis
based only on the complete cases would have given if they were assumed to
be the full sample (CC ). We impute a single nearest neighbour (1NN ) donor,
which would be the deterministic outcome if our method was used with the
donees always obtaining the values of the closest donor units. Comparison
is also made to imputation methods which draw from Bayesian predictive
distributions. First we use multiple linear regression imputation from the
R-package MICE (Buuren van and Groothuis-Oudshoorn, 2011), both with
random model donors (REGmod) (Rubin, 1987, p167) and predicitive mean
matching (Rubin, 1987, p168) real donors (REGreal). These linear mod-
els should fit imputation of y1 well. Imputation is also made with random
model donors (SPLmod) and predictive mean matching real donors (SPLreal)
by regressing the study variables on restricted cubic spline transformations
of the auxiliaries on replacement samples using the R-package Hmisc (Har-
rell, 2010). The R-package sbgcop (Hoff, 2010) is used for imputation when
semiparametrically estimating a Gaussian copula (COPmod) with the univari-
ate marginal distributions treated as nuisance parameters, and draws made
from the posterior distribution of the correlation matrix based on a scaled
inverse-Wishart prior distribution and an extended rank likelihood.

For all the compared estimation techniques we calculate the same es-
timates and measures of goodness of fit. First, we estimate the popula-
tion means y of the three study variables. For each of them we calculate

root mean squared error RMSE=
√

1000−1
∑1000

g=1 (ŷg − y)2, where ŷg =
∑B

b=1 ŷb,g is the overall estimated mean in the B imputed datasets; BIAS=

1000−1
∑1000

g=1 (ŷg−y); variance VAR= 1000−1
∑1000

g=1 (ŷg−1000−1
∑1000

g=1 ŷg)
2;
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standard error SE=
√
V AR; and relative error of estimated variance REEV=

(V̂ AR − V AR)/V AR, where V̂ AR = 1000−1
∑1000

g=1 (σ̂yg + (B + 1)B−1(B −
1)−1

∑B
b=1(ŷg−ŷb,g)

2) is the average estimated variance from equation (3). In
our comparisons we divide bias and standard error by the root mean squared
error of the complete data RMSE(CD), and multiply all figures by 100.

4.2 Bias

4.2.1 Comparison of features and donor pool approaches

The estimated biases are given in Table 2. For many donor pool approaches
the four features (E, L, R and S) improve estimation, so that the feature
combination ELRS is among the least biased. For y1 and y3 PI, CV and
SC show rather small bias and are relatively unaffected by the features. L
seems to have the strongest, E the second strongest, and S the weakest effect.
Effects are generally additative. One exception occurs when estimating y2
where L is better used without E, except for NN. Adding feature L with RT
also causes bias to become positive instead of negative.

The bias reductive effect from including each of the features is relatively
evident for NN except when a small k is chosen, see Figure 3. Estimates of y1
are least biased when k ≈ 4 irrespective of the included features, and unbiased
estimation is not attainable. By including feature L when estimating y2 and
y3 almost unbiased estimation is enabled if k ≥ 13 (depending on which other
features that are included).

4.2.2 Comparison to other methods

In the simple monotone case with y1 the model donor linear regression
REGmod with random errors estimates y1 without bias, see Table 3. The
real donor regression and the two spline regression methods attain a slightly
lower bias than NN and 1NN, while COPmod only manages to remove about
half of the bias compared to the case CC without any imputation. When
estimating y2 the comparison methods show similar or larger bias compared
to CC, while NNELRS is almost unbiased. The real donor methods show
smallest bias when estimating y3.
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Table 2: Average bias with features E, L, R or S. RT=Rule-of-thumb;
LS=Least-squares cross-validation; PI=Plug-in; SC=Smoothed cross-validation;
NN=Nearest neighbour with k = 15. 1000 simulations and n=400. Bold values are
not significantly different from zero.

y1 y2 y3

NN RT PI CV SC NN RT PI CV SC NN RT PI CV SC

U 42 39 19 20 20 -181 -145 -99 -97 -104 51 37 17 18 19
R 40 37 20 22 20 -163 -122 -94 -93 -98 41 26 17 19 17
S 40 38 19 21 21 -171 -145 -99 -98 -104 47 38 18 19 20
RS 38 36 20 22 20 -153 -117 -92 -92 -96 38 25 17 19 16

E 37 39 21 21 19 -157 -138 -90 -93 -94 43 34 18 20 17
ER 37 35 18 22 18 -149 -115 -89 -94 -88 38 18 15 18 14
ES 39 37 17 19 17 -169 -146 -94 -101 -98 48 32 14 18 15
ERS 35 37 22 23 19 -137 -107 -83 -88 -86 34 21 18 21 15

L 33 28 22 21 22 -16 52 -69 -84 -58 15 -6 17 18 15
LR 32 27 23 23 21 7 76 -60 -78 -47 7 -14 16 19 12
LS 35 28 22 21 22 -14 52 -70 -85 -59 17 -6 17 18 16
LRS 30 26 23 23 22 5 76 -60 -79 -47 6 -15 17 19 12

EL 30 24 19 19 19 -12 71 -78 -96 -62 13 -18 16 18 13
ELR 30 22 20 23 20 9 97 -70 -85 -47 7 -26 15 19 11
ELS 32 24 18 20 19 -10 73 -78 -94 -62 15 -18 15 18 13
ELRS 28 22 20 24 19 9 97 -71 -86 -50 6 -26 15 19 10

4.2.3 Conclusions

Naturally, the model donor linear regression imputation method is good at
providing unbiased estimation when y1 with its monotonic relation to the
auxiliaries is imputed, but most other imputation methods show acceptable
levels of bias. The situation is opposite with y2 where all imputation methods
result in larger biased estimates of y2, except for NN which enables almost
unbiased estimation if a sufficiently large k and (at least) feature L is included
in the algorithm. Generally all four of our features are able to improve
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Figure 3: Average bias of ŷ1 (a); ŷ2 (b); ŷ3 (c); for nearest neighbour (NN) with
k donors and feature combinations E, L , R, S and ELRS. 1000 simulations and
n=400.

Table 3: Average bias for complete data (CD), complete cases (CC), nearest neigh-
bour (1NN), model and real donor linear (REGmod and REGreal) and splines
(SPLmod and SPLreal) regression, Gaussian copula (COPmod), and our method
(NNELRS) with k = 15 and all features. 1000 simulations and n=400. Bold
values are not significantly different from zero.

CD CC 1NN REGmod REGreal SPLmod SPLreal COPmod NNELRS

y1 -3 236 27 3 18 13 22 128 28
y2 -9 -84 -79 -131 293 -126 -83 -123 9

y3 -4 -118 24 35 8 48 20 -84 6

estimation. Among the donor pool approaches CV is least and RT is most
affected by the features. The effect on NN is most obvious if k is relatively
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large. L is the most important and E seems to be the second most important
feature in bias reduction. Both S and R contribute to bias reduction. Since
the parameters α and β were chosen conservatively their contributions might
be increased.

4.3 Standard error

4.3.1 Comparison of features

In Table 4 the standard errors of the methods are given. They are relatively
unaffected by the type of donor pool approach and which features are in-
cluded. For estimates of y2 with NN and RT standard error tend to increase
slightly when feature L is included.

Figure 4: Standard error of ŷ1 (a), ŷ2 (b), and ŷ3 (c), for nearest neighbour (NN)
with k donors and feature combinations E, L, R, S and ELRS. 1000 simulations
and n=400.
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Table 4: Standard error with features E, L, R or S. RT=Rule-of-thumb;
LS=Least-squares cross-validation; PI=Plug-in; SC=Smoothed cross-validation;
NN=Nearest neighbour with k = 15. 1000 simulations and n=400. Any two values
differing by at least 4 units are (almost) always signficantly different in a pairwise
test not adjusted for multiplicity.

y1 y2 y3

NN RT PI CV SC NN RT PI CV SC NN RT PI CV SC

U 137 134 138 138 136 143 136 141 142 139 143 139 141 142 139
R 136 134 137 137 136 143 137 140 141 140 142 138 140 140 139
S 136 134 138 138 135 143 135 141 141 139 143 139 141 141 139
RS 136 135 138 137 136 143 137 142 141 140 142 138 140 141 139

E 136 135 138 140 137 141 136 142 145 141 142 139 140 142 140
ER 136 130 139 143 135 141 137 146 151 142 142 136 143 146 141
ES 136 131 139 141 135 142 138 144 150 142 143 138 142 144 140
ERS 135 135 138 139 137 141 136 142 145 142 142 138 140 142 140

L 136 140 138 139 138 153 150 143 143 142 141 136 139 140 139
LR 136 140 139 138 138 154 152 144 143 143 140 137 140 140 139
LS 136 140 138 138 138 153 151 143 143 142 140 137 140 141 139
LRS 136 140 139 138 138 153 152 145 142 143 140 136 141 140 139

EL 134 135 140 143 138 150 150 147 152 145 139 135 141 146 140
ELR 134 135 139 143 138 151 150 148 151 146 138 135 143 146 141
ELS 134 135 139 141 137 150 150 146 151 145 139 135 142 144 139
ELRS 134 135 140 143 138 151 150 149 151 146 138 135 143 146 140

For NN a small k always leads to a relatively large standard error irre-
spective of the features in Figure 4. The features additatively reduce variance
except for L with y2, so that ELRS is preferred for y1 and y3, and ERS for
y2 (not shown in Figure). For y1 the differences are relatively small between
the features and are relatively independent of the size of k. The situation
is similar for y2 except for L. For y3 standard error tends to increase as k
increases, except when L is included.
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4.3.2 Comparison to other methods

The standard error of estimates of y1 and y3 in Table 5 is improved for all
methods, except for 1NN, when compared to complete cases CC. For y2 the
methods are comparable to CC, except for 1NN which is slightly higher, and
REGreal which is much higher.

Table 5: Standard error for complete data (CD), complete cases (CC), nearest
neighbour (1NN), model and real donor linear (REGmod and REGreal) and splines
(SPLmod and SPLreal) regression, Gaussian copula (COPmod), and our method
(NNELRS) with k = 15 and all features. 1000 simulations and n=400. Two
values differing by at least 5 units are signficantly different.

CD CC 1NN REGmod REGreal SPLmod SPLreal COPmod NNELRS

y1 100 152 155 125 133 127 129 129 134
y2 100 152 162 150 379 153 144 148 151
y3 100 156 158 147 146 148 141 149 138

4.3.3 Conclusions

For standard error it is not so important which type of donor pool approach or
which features that are included in kernel imputation, except for NN where
a very small k is bad. The effect on standard error when including different
features may be different depending on the type of data, see Figure 4. Two
of the real donor methods (NN and REGreal) may give higher standard
errors. This is reasonable for NN since it is a deterministic method which
neglects the imputation variance. The failure of REGreal when estimating y2
is probably a combination of a similar previously noted problem (Buuren van
and Groothuis-Oudshoorn, 2011, p19) with a badly suited linear imputation
model.
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Table 6: Relative error of estimated variance with features E, L, R or S. RT=Rule-
of-thumb; LS=Least-squares cross-validation; PI=Plug-in; SC=Smoothed cross-
validation; NN=Nearest neighbour with k = 15. 1000 simulations and n=400.
Bold values are not significantly different from zero.

y1 y2 y3

NN RT PI CV SC NN RT PI CV SC NN RT PI CV SC

U -14 -9 -23 -27 -20 -10 4 -17 -24 -14 -6 2 -16 -21 -12
R -13 -9 -22 -26 -19 -9 3 -16 -21 -12 -4 4 -14 -18 -10
S -14 -9 -23 -27 -19 -11 4 -18 -24 -13 -8 2 -16 -20 -12
RS -13 -10 -23 -26 -19 -9 3 -17 -21 -13 -5 2 -15 -19 -11

E -14 -11 -27 -34 -24 -9 2 -25 -33 -20 -8 2 -19 -27 -17
ER -14 -2 -29 -38 -21 -8 4 -29 -40 -19 -6 6 -23 -33 -16
ES -14 -4 -29 -37 -22 -10 2 -28 -40 -20 -8 2 -23 -32 -16
ERS -13 -10 -27 -33 -23 -9 4 -23 -31 -20 -6 3 -19 -26 -16

L -11 -14 -25 -29 -23 -14 -9 -20 -26 -17 -5 3 -16 -21 -13
LR -10 -14 -25 -27 -22 -14 -10 -20 -23 -16 -3 3 -15 -18 -12
LS -11 -15 -24 -28 -22 -14 -10 -20 -25 -16 -4 3 -16 -21 -13
LRS -10 -14 -26 -28 -23 -13 -10 -21 -23 -17 -3 3 -17 -19 -13

EL -10 -7 -32 -40 -24 -11 -5 -32 -43 -24 -4 5 -24 -34 -16
ELR -8 -7 -29 -38 -24 -10 -4 -31 -40 -23 -1 6 -24 -32 -17
ELS -9 -6 -30 -38 -23 -11 -4 -31 -41 -23 -3 5 -23 -32 -15
ELRS -9 -7 -31 -39 -24 -12 -4 -33 -40 -23 -2 5 -25 -33 -17

4.4 Relative error of estimated variance

4.4.1 Comparison of features

NN and RT have smaller REEV and the effects from adding the features
are relatively small, and almost estimates y3 without bias, see Table 6. The
REEV for PI, CV and SC is higher and is generally worsened (or unchanged)
when any of the features are included.

In Figure 5 REEV is considerably increased if k is increased, with a
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Figure 5: Relative error of estimated variance of ŷ1 (a); ŷ2 (b); ŷ3 (c); for nearest
neighbour (NN) with k donors and feature combinations E, L, R, S and ELRS.
1000 simulations and n=400.

strong leverage for including L when y1 or y3 is estimated. REEV is always
underestimated except for when y3 is estimated with a large k and feature L
is included.

4.4.2 Comparison to other methods

In Table 7 the model donor splines regression method SPLmod almost shows
an error-free estimation of variance for all estimates. Both CC and REGmod

are comparable to NNELRS with a large k, while 1NN severly underestimates
variance.

4.4.3 Conclusions

With few exceptions the variance is underestimated with any method, except
for SPLmod. For kernel imputation methods, REEV shows the same depen-
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Table 7: Relative error of estimated variance for complete data (CD), complete
cases (CC), nearest neighbour (1NN), model and real donor linear (REGmod

and REGreal) and splines (SPLmod and SPLreal) regression, Gaussian copula
(COPmod), and our method (NNELRS) with k = 15 and all features. 1000 simu-
lations and n=400. Bold values are not significantly different from zero.

CD CC 1NN REGmod REGreal SPLmod SPLreal COPmod NNELRS

y1 -7 -13 -63 -7 -10 2 -26 -15 -9
y2 -1 -6 -66 -10 -13 1 -21 -16 -12
y3 1 -3 -59 -10 -23 1 -24 -18 -2

dence on donor pool size as the standard error did, where low (e.g. NN with
large k) or high (e.g. NN with small k) gave rise to low or high REEV. This
is also seen in the failure of the deterministic 1NN, which does not account
for the uncertainty about the imputed values.

5 Discussion

As in previous studies (Pettersson, 2012; 2013), due to its different features,
the presented kernel imputation algorithm allows us to approach the goal
of almost unbiasedness when estimating a population mean from a data set
with missing values. This is in line with how similar features operate in
kernel estimation; see e.g. Simonoff (1996). As in kernel estimation, it is not
surprising that the donor pool size was strongly related to bias. Without any
bias reduction features applied increasing donor pool sizes were associated
with increased bias. For boundary donees an increased number of donors
could worsen the already insufficient matching. When unbalanced, small
donor pools might also result in bias because the donors could be badly
located. Having few donors might also cause high variance and too low
variance estimates.

The two methods with largest donor pools, NN and RT , initially also had
largest bias but improved if the four features were added. While RT tended to
overcompensate, NN was able to provide almost unbiased estimation given
a large enough k. The other methods PI, CV and SC for selecting the
donor pool was much less dependent on the exact feature setup. The small
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differences between them may be due to the uniformly distributed auxiliary
variables. Other type of auxiliaries may give other results; see e.g. Pettersson
(2012).

Among the features, the local linearization from balancing with Lagrange
calibration (L) enabled almost unbiased estimation when the relation between
the auxiliaries and the study variable was nonlinear. Given the canonical
fixed kernel variance, using Epanechnikov (E) instead of uniform (U) selection
probablities meant that the donor pools became larger and created more
possibilities for better balancing the donor pools. Reorientation (R) and
shrinkage (S) gave good but small contributions. Their relative contributions
could possibly be larger with higher dimensional auxiliaries with more severe
boundary problems.

Standard errors were less affected by the donor pool size. The trade off to
bias was not evident, which is rather surprising. However, as in other studies,
the reduction of bias does lead to an improvement of variance estimation
(Pettersson, 2012).

In the displayed simulations bias contributed largely to MSE in the CC
case without imputation. The compared imputation methods were successful
in removing most of the bias, except for the variable y2 and for COPmod.
With nonlinearities in the data our algorithm was most effective in removing
bias, especially for y2 where the other methods failed and the parametric
methods even increased the bias as seen in Table 3.

Our algorithm is therefore very promising since it can handle nonlinear-
ities very well and is only slightly less efficient when parametric imputation
methods would do better. The simulations are relatively limited in scope,
though other simulations not reported here show similar results. But in or-
der to test the method further it is highly recommended that future studies
investigate its behaviour with other nonresponse mechanisms, variable asso-
cations, sample functions, and more auxiliaries.
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A Appendix - The full algorithm

Start from the first donee, i = r + 1:

1. Set the processing indicator to c = 0 and apply A1. If A1 is stopped
due to zero boundary bias (i.e. xj = xi) go to step 5.

2. If donee unit i is detected as a boundary unit in A1, set c = 1 and go
to step 4.

3. Apply A2. If the solution is non-singular (i.e. the last step in A2 is
reached) or if c = q, go to step 5.

4. Apply A3. Then set c = c+ 1 and go to step 3.

5. Use selection probabilities λi,j to draw a unit j out of the ki donors.

6. Replace the missing value yi by a copy of yi,j from the drawn donor j.

7. If i = n, end the algorithm. Otherwise set i = i+1, and return to step
1.
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