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Abstract

Real donor matching is associated with hot deck imputation. Aux-

iliary variables are used to match donee units with missing values to a

set of donor units with observed values, and the donee missing values

are ‘replaced’ by copies of the donor values, as to create completely

filled in datasets. The matching of donees and donors is complicated

by the fact that the observed sample survey data is often both sparse

and bounded. The important choice of how many possible donors to

choose from involves a trade-off between bias and variance. We trans-

fer concepts from kernel estimators to real donor imputation. In a

simulation study we show how bias, variance and the estimated vari-

ance of a population behaves, focusing on the size of donor pools.

Keywords: Bayesian Bootstrap, Boundary and nonreponse bias; Mul-

tiple imputation

1 Introduction

The ’holes’ in an incomplete dataset is always a nuisance, since this precludes
most standard statistical methods from being directly applied. Datasets ob-
tained by excluding partially observed units (e.g. due to item nonresponse)
give inefficient and usually quite biased results. A better alternative is to
impute the missing values. In the extensive book on missing data by Little
and Rubin (2002, p.72) it is stated that
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”Imputations should generally be:

(a) Conditional on observed variables, to reduce bias due to nonresponse,
improve precision, and preserve association between missing and observed
variables;
(b) Multivariate, to preserve associations between missing variables;
(c) Draws from predictive distribution rather than means, to provide valid
estimates of a wide range of estimands.”

The most important factor in imputation is access to auxiliary variables
which are predictive of the missing values and the nonresponse propensity.
Real donor (hot deck) imputation (Laaksonen, 2000) uses auxiliaries to match
a donee unit with missing values to a set (pool) of close (nearest neighbour)
donor units with observed values, and then ’replaces’ the donee missing values
by copies of values of randomly drawn donor units. It is often applied within
cells from cross-classified categorical (and sometimes subjectively classified
continuous) auxiliares. We only discuss continuous variables with univariate
missingness. Point (b) is therefore not relevant here.

Point (c) can be fulfilled by using multiple imputation (Little and Rubin,
2002), which is a method for representing missing data uncertainty. The
missing values are then imputed several times, and each imputed dataset is
analyzed separately. The final estimates consist of the pooled results.

The size of donor pools becomes important here. Pools with few potential
donors give rise to strong correlation between the values imputed for a missing
value. In repeated sampling this results in highly variable final estimates,
similar to sampling from correlated (e.g. clustered) data. Larger donor pools
may instead reduce the quality of matches and increase the bias. The number
of potential nearest neighbour donors thus affects the trade-off between bias
and variance in imputation, in parallell with pointwise kernel estimators.
Features from this area have been applied in imputation to deal with the
sparse and bounded data (Aerts et al, 2002; Pettersson, 2012), and to decide
the donor pools (Schenker and Taylor, 1995; Marella, Scanu and Conti, 2008).
We discuss these issues in the following sections. In simulations we show how
different strategies for selecting the number of donors and the features for
bias reduction from Pettersson (2012) affects bias, variance, and estimates of
variance of a population mean estimate. To yield valid inference, our method
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is based on the Bayesian Bootstrap (Rubin, 1981).

2 Selecting the donor pool

The choice of bandwidth is important in kernel estimation. Several types
of bandwidths exist. A fixed bandwidth corresponds to having imputa-
tion donor pools consisting of units with an (auxiliary-based) distance to
the donee which is less than a value ǫ. A fixed ’rule-of-thumb’ bandwidth
based on distributional assumptions is often a good starting point (Silverman,
1986). Fixed bandwidths can be locally adapted by increasing (decreasing)
the maximum allowed distance if relatively few (many) donors are close to the
donee, i.e. if the density at the donee auxiliary value is low (high). Always
using the same number of potential donors in all donor pools corresponds
to a nearest neighbour bandwidth, which may find donors that are better
matched to the donee in dense regions, and automatically ensures that all
donoees obtain at least one potential donor. The trade-off between bias and
variance means that gains in precision from increasing the number of donors
may result in reduced quality of the matches and increased bias. Different
estimators may profit from different strategies of choosing the donor pool
size/bandwidth.

3 Bias reduction

A disadvantage of the real donors’ methods is that a donee and its pool of
donors usually are imperfectly matched. Particularly, this becomes a problem
when the donee auxiliary values lie at the boundary (i.e. convex hull) of the
donors’ auxiliary values, since there may be no or only a few potential donors
with observed auxiliary values that lie on one side of the donee auxiliary
value. The donor pool is then badly balanced with regard to the donee.
If such a pool is used for imputation, the risk is also larger that bias is
introduced in the imputed study variable.

Pettersson (2012) employs three methods to reduce this bias. First, since
the closest donors provide a better match to the donee, they are given higher
selection probabilities than more distant donors. Due to the optimality
properties in estimation the donor selection probabilities are decided by an
Epanechnikov function (Silverman, 1986). Secondly, the selection probabil-
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ities are calibrated so that the expected imputed auxiliary value equals the
auxiliary value of the donee. The third method not only reduces the selection
probabilities of the furthest donors in the pool but also completely removes
these furthest donors (which match the donee least and thus contribute most
to the bias), and only keeps the best matches, which gain larger selection
probabilities. The bias will be reduced, but donor pool variance is expected
to increase.

4 Simulation

We used the setup in Pettersson (2012) with a population of N = 1600
units, from which G = 1000 samples of size n = 400 were drawn, and
with each study variable imputed B = 20 times using the auxiliary vari-
able from which it was generated. Since bandwidth behaviour may de-
pend on the underlying distribution we used three auxiliaries; XUniform ∼
U(π/6, 2π); XNormal ∼ N(13π/12, 11π/48); and XGamma ∼ Z + π/6, where
Z ∼ Gamma(1, 1/2). All auxiliaries had approximately a range of (π/2, 2π),
although XGamma had an outlier at 6.28. We chose a logistic missingness
mechanism: logit(Pr(R = 1|X) = −1 + βz

∑5
i=1(X − (2iπ − 2)/4)2, where

the βz was adjusted to give on average 25% missingness irrespective of the
auxiliary (z = Uniform,Normal,Gamma).

Imputation methods rely on the relation between study and auxiliary
variables, so we generated a linear YX = Xz + eXz

, a nonlinear YcosX =
cos(4Xz) + ecos(4Xz), and a mixed YX+cosX = Xz + cos(4Xz) + eXz+cos(4Xz)

study variable. The error terms et were generated from N(0, V ar(t)). The
probability of nonresponse on the study variables induced by the missingness
mechanism is thus highest (lowest) as cos(4Xz) = 1(0). Means and covari-
ances are found in Table 1. We abbreviate z to u, n and g for Uniform,
Normal and Gamma.

The number of potential donors k was determined in three ways. The first
method (kNN) initially used k = 2, ..., 30 potential donors, and gradually
increased the number as more values were imputed. Secondly, we used a rule-
of-thumb method (fix) where the donor pool consisted of units with distance
less than ǫ ∝ sXz

m−1/5 from the donee, where m is the number of potential
donors and sXz

is the standard deviaton of varible Xz. Thirdly, we used
a locally adapted version (adap) of fix, where ǫ was increased (decreased)
if the density at the donee auxiliary value was low (high) (see Silverman
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1986, p.101). We also used versions with all the bias reduction features from
section 3 applied on kNNb, fixb and adapb.

We compute Bias = 1
G

∑G
g=1(Ŷ g − Y ), where Ŷ g =

∑B
b=1 Ŷ b,g is the

overall estimated mean in the B imputed datasets and Y is the true mean,

V ar = 1
G

∑G
g=1(Ŷ g −

1
G

∑G
g=1 Ŷ g)

2, and relative error of estimated variance

V ar−V̂ ar
V ar , where V̂ ar = 1

G

∑G
g=1(sYg

+ B+1
B(B−1)

∑B
b=1(Ŷ g − Ŷ b,g)

2) is the av-

erage estimated variance.

Table 1: Means and (co)variances of simulated data

Mean Variance Covariance with Xz

z u n g u n g u n g

YXz
1.08 3.47 3.42 3.04 3.19 5.65 0.32 0.19 0.51

YcXz
-0.44 0.04 0.01 0.62 0.76 0.72 0.51 -0.04 0.48

YXz+cXz
0.64 3.51 3.44 6.08 5.95 8.74 2.89 0.17 3.08

Xz 1.03 3.42 3.38 0.27 0.51 2.81 0.27 0.51 2.81

5 Results

We present the results in Figures 1-3. The number of initial donors for kNN
and kNNb is plotted against bias, variance and the relative error in estimated
variance. We also add horizontal lines for fix, fixb, adap and adapb. Due to
the shrinkage feature, the initial number of donors is expected to be larger
then the final number of donors for the bias corrected methods.

Except for the least complex data YXuniform
and YXnormal

with small initial
k, bias is always smaller for kNNb compared to kNN . Bias tends to increase
as k increases for both methods, but kNNb at a lower rate. kNNb also has
lower bias than the fixed and adaptive versions with a few exceptions for YXz

when they are comparable. Bias corrected versions fixb and adapb always
give lower bias than their noncorrected counterparts fix and adap, except
for YXnormal

with adap.
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Figure 1: Bias of estimates from simulations

For small k, variance always falls as k is increased but is slightly higher
for kNNb compared to kNN . For larger k, the variance continues to fall or
flatten out, except for kNN where it sometimes increases, especially with
auxiliary XGamma. Both fixed and adaptive methods generally have lowest
variance, but nearest neighbour methods usually approached them as k was
increased, and for YcosXuniform

the variance for kNNb was always low. For
YXuniform

, methods without bias correction (which on average also used most
donors) had variance not far from complete data.
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Figure 2: Variance of estimates from simulations

6 Conclusions

Multiple real donor imputation has the advantage of requiring few model
assumptions. Moreover, the imputed values are actually observed values.
But some difficulties with continuous auxiliaries arise that need to be dealt
with. Since boundary donee units with missing values can only be matched
to donors on one side, donor pools will be biased. Relative sparseness of
donors also worsen the probability of forming good predictive donor pools.
The size of donor pools is important since it involves a trade-off between
bias and variance and affects the ability of estimating variances. This was
clearly seen here where the fixed/adaptive methods, which generally had
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Figure 3: Relative error of estimated variance of estimates from simulations

large donor pools, also had larger bias but smaller variance. Without any
bias reduction applied there is certainly a risk of increased bias (and variance)
associated with increasing donor pool sizes. Increasing the number of donors
for boundary donees naturally aggrevates the already insufficient matching.
Too few donors is, on the other hand, associated with high variance and
too-low variance estimates.

The bias reduction techniques adress the boundary bias and matching
problems by adapting the donor pools. Given sufficiently many initial donors,
it can make bias of the nearest neighbour method less dependent on the exact
number of donors, and also improve bias of fixed/adaptive methods. We only
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study one fixed (and adaptive) rule-of-thumb method in our simulation, and
blind use of it obviously involved a risk of large bias. Compared to a reason-
ably large nearest neighbour it only had lower MSE when the study variable
was a linear function of a uniform auxiliary. This seems to be associated with
its generally larger donor pools giving rise to larger bias. Simulations with
several other fixed methods (not presented here) generally also gave larger
bias but smaller variance then nearest neighbour methods. The effects from
local adaption of the fixed method seemed relatively small here and need
further investigation.
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