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Abstract

Missing data is a nuisance in statistics. Real donor imputation can be
used with item nonresponse. A pool of donor units with similar
values on auxiliary variables is matched to each unit with missing
values. The missing value is then replaced by a copy of the
corresponding observed value from a randomly drawn donor. Such
methods can to some extent protect against nonresponse bias. But
bias also depends on the estimator and the nature of the data. We
adopt techniques from kernel estimation to combat this bias.
Motivated by Polya urn sampling, we sequentially update the set of
potential donors with units already imputed, and use multiple
Imputations via Bayesian bootstrap to account for imputation
uncertainty. Simulations with a single auxiliary variable show that
our imputation method performs almost as well as competing
methods with linear data, but better when data is nonlinear,
especially with large samples.

Keywords Bayesian bootstrap; Boundary and nonresponse bias; Missing
data; Multiple imputation; P6lya urn models; Real donor imputation.

1. INTRODUCTION

In sample surveys missing data often has to be dealt with. Imputation is
a standard treatment for sporadically missing values in the sample data due
to item nonresponse. Given observed auxiliary variable(s) X related to the
incomplete study variable Y, an imputation model is usually estimated from
units where both x and y values are observed, modelled by a missing at
random (MAR) mechanism which assumes that the probability of



missingness only depends on observed values. The missing y values are
then replaced by imputed values, and multiple imputation can account for
the fact that imputed values differs from the true ones, so that standard
methods can be used (Rubin, 1987). Imputed values may be non-observable
values derived from a model, or real-donor values derived from observed
values (Laaksonen, 2000). Donors to each donee (or recipient) are usually
found by selecting units close to the donee according to some distance
measure on X.

Imputation methods employing parametric models may be effective
(Schafer, 1997), but their benefits diminish with sample size and can lead to
severe bias if the underlying assumptions are violated. Methods based on
nonparametric models can then provide robustness to nonresponse bias at
the cost of some efficiency. Bias of methods based on nonparametric
models also depends on the derivation of the imputed values, and the nature
of the bounded data. The bias of a mean estimate of y is related to the
individual unit bias of x, the expectation over donor x’s minus the actual x,
through individual unit bias of y. When X is continuous, the asymptotic bias
of x for an interior donee can easily be set to zero. This is more difficult for
donees that lie on the boundary of the data. By viewing imputation as
pointwise kernel smoothing, and adopting bias reduction techniques from
that area, we propose a real donor method which aims at mitigating such
bias of individual x as to implicitly reduce bias of the mean estimator of y.

Our method starts out from the popular hot deck imputation; see Little
and Andridge (2010) for a review. For each donee unit where y is missing, a
pool consisting of k potential donor units with observed y-values is
identified. The missing y value of the donee is then filled in by a copy of the
observed y value from a unit in the donor pool. Adjustment cells imputation
bring together all zero distance donors and donees, having the same
categorized x, creating an illusion that individual x’s are unbiased. Cells
may therefore only contain donees. This is avoided by non-categorizing
distance measures, which produce donor pools that can be better matched to
the donee, but the number of k nearest neighbour (kNN) donors has to be
decided. Justified by Bayesian exchangeability through Polya sampling
(Feller, 1971), we extend the set of potential donors to include previously
imputed donees, and handle imputation uncertainty through multiple
imputation.

Individual bias in x is first addressed by relating distances between the
donee and the donors to the donor selection probabilities, giving closer
donors higher donation probability. Siddique and Belin (2008) set selection
probabilities inversely proportional to the distance between predictive
means of donor and donee units, while Conti, Marella and Scanu (2008) let



a Gaussian kernel decide the selection probabilities. We propose to use an
Epanechnikov (1969) kernel, which asymptotically can minimize mean
squared error of an estimate. We expect reduction of variance in general
and boundary donee bias of x.

Boundary bias can also be reduced by letting the selection probabilities
be found from local linearization (Simonoff, 1996). Aerts, Claeskens, Hens
and Molenberghs (2002) use non-negative constrained weights
asymptotically equivalent to kernel weights as selection probabilities. We
calibrate our selection probabilities by a Lagrange function, similar to
calibration of design weights (Deville and Sarndal, 1992), but on a
pointwise level.

Our third bias reduction method is inspired by Rice (1984), who
tightened the kernel at the boundary. By reducing k for boundary donees, on
average closer but fewer donors are obtained compared to interior donees,
which contribute to the bias reduction of x.

The paper is structured as follows; Section 2 presents real donor
imputation with P6lya urn sampling and multiple imputation. Our proposed
methods are described in Section 3, and further studied by simulations in
Section 4. The paper is then concluded in Section 5.

2. BACKGROUND ON REAL DONOR AND MULTIPLE
IMPUTATION

A simple random sample (SRS) of i=1, ..., n units from a population of
N units is drawn with the aim to estimate the mean y = 3"y, /n of the study
variable Y, and the value y; is observed in the sample. The indicator R;=1 for
the r units where y; is observed, while R;=0 for nonresponding units. In real
donor imputation, each donee i should have a donor pool of k; units. Denote
by gi the number of units that possibly could enter pool i. Given our SRS
design, we simply set ki=q;=r for all i, and use all respondents as potential
donors. Later we allow k;, g;, and r to differ, and may omit index i when it is
dispensable.

For each donee i, a donor j is selected with probability 2, , and the
imputed value y, is a copy of y;. When all n-r missing values have been
imputed, an estimate of y is
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Since the expectation of an imputed value is

E(yi):-zqﬂ‘ijyj’ (2)
the individual bias of y, is
B(yi):E(yi)_yi' (3)

Due to the SRS design it follows that e(y,)= y . The bias of (1) is therefore
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Now assume a known auxiliary variable X and a MAR mechanism, so that
the response probability does not depend on y; P(R=1|Y,X)=P(R=1|X). We
further assume that the expected value of Y does not depend on R,
E(Y|X)=g(X), which is another consequence of MAR. Denote the x-value of

i

the donor selected for donee i by x,. Its expectation is g(x,) = Zq; A x. . We

may expect to reduce (3), and thereby (4), by reducing the bias of x;

B(;(i):E()A(i)_xizz;tijxj_xi' (5)

q
j=1

2.1 ADJUSTMENT CELLS AND K-NEAREST NEIGHBOUR
IMPUTATION

As a background we first describe two common methods for imputation,
adjustment cells and nearest neighbour imputation. Our suggested method
in Subsection 3.3 is based on the latter. All methods are illustrated on the
simple dataset in Table 1, where x is observed on all n=7 units, while y is
only observed on r=5 units. Table 1 is ordered after x. The cut off between
the two adjustment cells is set to x=0. Let 2, =1/k, for donee i=3, 6 and

donor j. Since donor pools are determined from x, we usually have that
ki<d;.

Example 1. Imputation within adjustment cells. Only units within the
same adjustment cell may be used as donors. So although qz=r=5, the k;=4
potential donors for Unit 3 are Units 1, 2, 4 and 5, and B(x,)~ -0.013 . We
randomly draw one of them, say Unit 4, and impute the missing y-value as
y, = 0.022 . Unit 7 is the only (ke=1) potential donor to Unit 6, so
B(%,)=0.231 and we impute y, = —0.099 . If single donor situations are not

allowed, a common solution is to collapse adjustment cells. Units 1, 2, 4, 5
and 7 are then the (ks=q3=5) potential donors to Unit 3, and B(x,)~ -0.107 .



Assume again we draw Unit 4. Unit 6 has the same donors, so
B(%,)~ —0.247 . If the imputed Unit 3 also had been allowed to act as a donor

(so that ks=gs=r+1=6) we would have had B(x,)= —0.265 .

Table 1. Data in Examples 1-5, with x and y generated by model NO in
Subsection 4.1.

Unitno 1 2 3 4 5 6 7
x-cat. 1 1 1 1 1 2 2

X -0.413 -0.381 -0.255 -0.152 -0.125 0.099 0.330
y -0.555 -0.476 Missing (-0.136) 0.022 0.349 Missing (0.335) -0.099

Note: (the true but unknown value in parenthesis is given here for
illustrative purposes.)

Example 2. Imputation by KNN. We now discard the categorization of X,
and use 4NN imputation (i.e. ks=ke=4). Since Units 1, 2, 4 and 5 are the
closest (among the g3=5) units to donee Unit 3, B(x,)~ -0.013 as in Example

1. Assume unit 4 was drawn. Unit 6 then has Units 2, 4, 5 and 7 as donors
with B(x,)=-0.181 . By allowing the imputed Unit 3 as a donor (so that

Qe=r+1=6) we get B(x,)~ -0.150 based on Units 3, 4, 5, and 7.

Adjustment cells imputation effectively matches donors to a donee and
is widely used. But having a single donor can severely affect variances, as
explained in Subsection 2.3. Collapsing cells is a simple solution, but KNN
can provide better matching. Since Unit 3 has half of its donors on each side
(as ks=4) we call it an interior unit, while Unit 6 with only a single donor on
the right is called a boundary unit. We will make use of this distinction in
Subsection 3.3, where we suggest how to further improve kNN matching
and try to reduce bias. Allowing imputed donees to act as donors for
subsequent donees differs from usual donor imputation, but a Bayesian
justification based on Exchangeability and Pélya urns is given in
Subsection 2.2.

2.2 IMPUTATION BY POLYA URN SAMPLING AND BAYESIAN
BOOTSTRAP

Descriptions of imputation methods which use previously imputed
values in subsequent imputations can be found in Rubin (1987) and Kong,
Liu and Wong (1994). These methods attempt to impute the missing values



by draws from their posterior predictive distributions, and rely on a
Bayesian motivation going back to de Finetti’s (1931) theorem on
exchangeable sequences. If the probability distribution for any finite
sequence of n random variables drawn from an infinite series of random
variables is the same, then any such infinite series is exchangeable. A
sequence of independent and identically distributed (iid) random variables
is always exchangeable, but the opposite is not true. But under some
assumptions any exchangeable sequence is distributed as a sequence that is
iid given some parameters which in turn have a prior distribution. Hewitt
and Savage (1955) generalized de Finetti’s theorem to non-binary variables,
and Diaconis and Freedman (1980) showed that it is approximately true for
long but finite sequences of variables, implying finite exchangeability.

Pélya urn sampling produces an exchangeable but non-iid series, see
Feller (1971). Assume a sample of n units where we have observed either
the value O or 1 on variable Y. Then 1) draw a single unit at random from
the sample, 2) duplicate the drawn unit, and 3) replace both the drawn and
the duplicated unit into the sample. The procedure is then repeated, but now
with the updated sample of size n+1. By repeating the procedure ad
infinitum, the generated sequence of values on the units is then an infinite
exchangeable sequence. Blackwell and MacQueen (1973) generalized
Pdélya urn sampling to allow for more than two categories, and Ferguson
(1973) extended to continuous variables.

Finite population Bayesian bootstrap (FPBB) (Lo, 1988) is based on
Pdlya urn sampling from a sample (of size n) to a large finite population (of
size N). If a sample is drawn by SRS and the observed units are randomly
drawn from the sample itself by SRS, then the observed units may be
treated as a part of an exchangeable series of variables. In our example
(Table 1) we may treat the sample as the population, and the five observed
units as our sample. P6lya sampling may then be applied to reconstruct the
remaining n-r units from the r observed ones, corresponding to imputation
within the collapsed adjustment cells using Unit 3 as potential donor to Unit
6 in Example 1 (where kg=qs= r+1=6). Knowing the full population size,
Pélya sampling can be done to the whole population, starting from the r
observed units, and sequentially impute all N-r units. An estimate of y is

then simply the mean of the bootstrap population.

As N - «, FPBB approaches the model based Bayesian bootstrap by
Rubin (1981). They raise two objections to bootstrap methods in connection
to the exchangeability assumption. First they ask whether it is reasonable to
assume that all possible distinct values of a variable have been observed in
a sample. The objection is definitely valid with the continuous and very
small sample in Table 1. Assuming unlimited precision all realized values



of a continuous variable are unique, so we will not observe all values until
we have observed the whole population. But our ability to grasp the data
distribution should improve with the sample size, unless data is censored or
if missingness in other ways is concentrated to certain regions of the data.
This (strong) dependence on sample size is a characteristic common to
nonparametric methods, simply because they refrain from parametric
assumptions.

Assuming all possible distinct values are observed, Rubin’s second
objection is that the probabilities of occurrences for similar values might be
dependent. This calls for smoothing of probabilities, but bootstrapping
assumes strict independence. If the distribution of realized or bootstrap
samples differs much from the true population, some estimators might
perform poorly. As for the first objection, the larger the sample, the more
likely we are to observe the distribution of the true data, so benefits from
smoothing should, in general, diminish.

2.3 BAYESIAN BOOTSTRAP AND MULTIPLE IMPUTATION

Imputation by FPBB basically corresponds to multiple imputation
(Rubin, 1987). A general overview of variance estimation with single
imputation is given in Little and Rubin (2002), and an overview for hot
deck imputation in Andridge and Little (2010).

Assume a sample from a finite population of exchangeable units with n-
r missing values on variable Y imputed d=1, ..., D times. The distribution
of the estimates

7, -1y v+ 9.1, d=1,....D, (6)
n\'o i1 )

then reflects the imputation uncertainty due to that imputed values for the

same unit differs between the imputed datasets. A point estimate of y is

given by

Yo =

A ™

1
D
and the variance of y_ is estimated as

v(?ﬁ):%s YW 8)
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Component 5, -y (5, - 7,| accounts for imputation uncertainty, and
D-17o 0
sampling uncertainty is covered by the variance component w_ = iiw
D=
where
_ : 21
wa - (4 j{zyd. Mfzyd.— }J,dl (©)

is the estimated variance within a bootstrap set. The ter

population correction. If both the n-r non-responding and the N-n non-
sampled units in each bootstrap set had been imputed, then a population
estimate similar to (7) would have been

Z::?d,N E;W(zy + zyd.}- (10)

i=r+l1

Sampling uncertainty vanishes with a completely imputed population, so
(8) simplifies to

e N e Ee L (11)

D D AD-1)&

With missing values deterministically imputed, as in the uncollapsed cell in
Example 1 with a single donor (ks=1), all imputed bootstrap sets will have
the same value imputed, so By (or B,) will be underestimated. In particular,

if all values are deterministically imputed, then y, , =..= ¥, , = ¥, , implying
that 8, =0, so that v (§, =0 in (11).

3. KERNEL ESTIMATION AND KERNEL IMPUTATION

One may look at donor imputation from the view of kernel estimation.
We give a brief introduction to the area, describe the connections to
imputation, and suggest how to improve estimation and achieve bias
reduction of (7) or (10) using auxiliary variable X.

3.1 SHORT BACKGROUND ON KERNEL ESTIMATION

Kernel estimation is a method to estimate a density. Assume that q
values are observed on x and a density f(x) at a point x; is to be estimated.



Denote the distance x;-x; by %, . Given a kernel function K, the pointwise
kernel estimate of f at x; is then

)=—3 K| L|==YK
S L)
where K is typically symmetric, unimodal and integrates to 1. We restrict to
situations where K is proportional to the indicator function |([zij \ <h), which

is 1 if the statement is true. Function K, is K scaled by the bandwidth (or
smoothing) parameter h, which determines that K is positive if [x,| < h, and

zero if |§ij | > h. The choice of h is usually more important than K. If h is

fixed for all i, the number of units ki>0 within the range x, +n is random.

Instead, if the number of units k; is fixed at k, the bandwidth h; will be
random. Methods to select a fixed h or k range from subjective judgement
of plots and simple automatic rules of thumb, to more sophisticated
methods based on cross-validation and plug-in estimates (Wand and Jones,
1995). Fixing h is more frequent, and a fixed Kk is best used when the exact
size is noncritical, typically with k ~ q** (Silverman, 1986).

A commonly used measure of accuracy is the mean integrated squared
error (MISE)

MisE ()= [E(F(x)- 1(0) ax = [ (B{F ()] ax + [V {f (), (12)

where a pointwise approximation of the bias component is given by

q

317 )= £ )l 100 = 3 Bl G - 1), (13)

j=1

and an approximation of the variance with independent x; is given by
vii(x))= kiv K, ). (14)

Given that K is symmetric and h (or k) is reduced, bias in (13) will decrease
while variance in (14) will increase. The variance goes to zero as gh — o

(or k - =), while bias depends on the curvature of f and is asymptotically
unrelated to g, unless h - o (or k/q —» 0) @S q - « . Bias then converge to
zero if x; lies in the interior (unbounded) part of x, while if x; lies within a
bandwidth h from the boundary of x, the bias will not vanish. Given an
optimal choice of h, MISE in (12) is approximately minimized if K is set to
the unimodal Epanechnikov (1969) function

K (%)= - (& P h (R, < n). (15)

4
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3.2 KERNEL IMPUTATION

Assume Kj is a positive function scaled so that zq: K,(x,)=1, where

x, = x; — x, and the sum is over the donor pool described in Subsection 2.1.
When the selection probabilities are given by 2, = k, (x,) we call the
technique kernel imputation. The expectation of y, in (2) thus becomes the
Nadaraya-Watson (1964) estimator

q q
E(yi): zﬂijyj = z Kh(;(‘ij)yj :
j=1 j=1

With a uniform kernel k" (%, )o 1(%,|<n), the donee i has k potential

donor units within the range x +h with selection probabilities

2, = K¥(%,)=1/k , and g-k units outside the range with 2, = 0. When donor
data at x; is sparse, fixing k instead of h will cover more distant donors,
which avoids situations with no or few donors. With donors densely located

in a vicinity of x;, using an adaptable parameter h; (caused by the fixed k)
will in general result in donor pools that are better matched to donee .

3.3 KERNEL IMPUTATION WITH BIAS REDUCTION

We suggest the use of multiple kernel imputation but also add three special
devices, mainly to decrease imputation bias, but also to decrease the
random errors. The bias &(y,) in (4) is related to B(x,) in (5) and &{f (x,)} in
(13) through B(y,) in (3) and 2, =« K, (x, ). Given a model E(Y|X)=g(X) and a
response mechanism P(R=1|X), we will probably reduce s&(y,) by reducing
B{f(x,)} Or B(%,). Examples 3 to 5 are in line with this, and each presents
one of our three proposed devices.

Example 3. Imputation with Epanechnikov selection probabilities. It is
easy to believe that giving donors close to the donee higher probabilities is
better than using a uniform kernel function. This is the idea behind this
example. Due to the optimality properties shown by the non-negative
Epanechnikov function in Kernel estimation, we suggest to use it here. In
Example 2, donee 3 had k=4 donors, with B(x,)~ -0.013 and E(y,)=-0.176 .

With Epanechnikov probabilities 2% = k * (x,,) from (15), the closer
(furthest) donor is more (less) likely to donate. With h;=0.3715, Units 1, 2,
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4 and 5 are assigned probabilities 0.238, 0.252, 0.260 and 0.250, so
B(%,)~ -0.010 and e(y,)=-o0.170 . Suppose that we draw Unit 4. If hg=0.417

units 3, 4, 5 and 7 will get the probabilities 22 at 0.125, 0.274, 0.304 and
0.297, so that B(%,)=-0.113 and e(y,)=0.06s8 , compared to B(x,)~ —0.150
and e(y,)~0.052 in Example 2.

Given a symmetric kernel function the expected bias of interior donees
is zero, so we only expect a reduction of variance by the change from K""
to K. But given the same bandwidth h (or k), we do expect some reduction
of bias for boundary donees since we switch from K" to the parabolic
shaped K.

Example 4 Imputation with adjusted selection probabilites. A technique
which fully eliminates B(x,) is to adjust the probabilities given by the kernel
so that the expectation over the x-values equals the donee x;. More
technically we propose to replace 2, by 2, as close as possible but such
that e(x )= x, holds. 2, is easily found by Lagrange minimisation as the
solution to

min zk: L(2, - 2,")+ Al{(zk: 2, (%, )l + A{Zk: 2, —1} : (16)
[E Li= J i=1

ApBg Ay =L, k 4=

where (2, - 2,) is a distance function and A, and a, are Lagrange
multipliers.

For the data in Table 1 and using Euclidean distances we get 4 '~ 0.217 ,
A9~ 0235 , 22~ 0.277 and 2%~ 0.272 , With E(y,)~ -0.143 . Assuming Unit 4

34

is drawn, we get 22~ 0.011, 2%'~0.217 , 2%'~0.263 and 2®'~0.508 , With
E(y,)~ 0.036 . Both B(x,) are zero.

By solving (16) it is possible to obtain 2, that results in B(x,)=0 for

both interior and boundary donees, as long as there are possible donors at
both sides of x;. (Other restrictions, for example, deterministic situations,
may also prohibit unbiased solutions). The proposed adjustment of selection
probabilities resembles the use of approximate kernel regression weights in
imputation (Aerts, Claeskens, Hens, and Molenberghs, 2002), or calibration
of design weights (Deville and Sarndal, 1992) but on a pointwise level.

Example 5. Imputation with fewer donors at the boundary. Problems
occur at the boundaries since there may be none or only few possible donor
x-values at one side of x;. We suggest that the width of the kernel then
should be decreased. With multidimensional x one could also use an oblong
donor pool instead of a spherical (quadratic) one.
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Consider only boundary Unit 6. Setting k=2 shrinks the bandwidth from
he=0.417 to hg=0.241, which results in selection probabilities 42 ~ 0.624

and 2% ~o0.376 for donors 5 and 7, with B(%,)~ -0.0s3 and e(y,)~o0.181 ,
compared to B(%,)~-0.150 and e(y,)~ 0.0s2 from Example 3. Applying the
Lagrange adjustment in (16) results in 22 '~ 0.508 and A% '~ 0.492 , with
B(%,)=0 and E(y,)~0.128 .

The expected bias of boundary units is directly related to the bandwidth
and the reduction of [s(x, )| from shrinking k is in line with this. But this bias
reduction is expected to come at the cost of higher v (x,) since we use fewer
possible donors.

4. SIMULATION STUDY

Here we use our suggested bias reduction methods from Subsection 3.3
in a design-based simulation study with simulated data, and compare with
other imputation methods.

4.1. SETUP OF SIMULATION STUDY

We construct two related populations. First N=1 600 values are
simulated from a Un(0,1) distribution (u) and a standard normal distribution
(e) using R (R Development Core Team, 2009). The populations are then
constructed, one with a linear (L) relationship (x"'=u-1/2; y~'=u+e/7-1/2)
and one with a nonlinear (NO) relationship (x"'=u-1/2; yN=sin(un)+e/7-
2/m). From each population we draw 1 000 samples of size n=100, 400 and
900. In each sample we create 50 % nonresponse on y., using the MAR
mechanism P(y. is observed)oc 1-u**,

Table 2. Bias correction in kernel imputation

ID for kernel imputation methods U E L S EL ES LS ELS

Epanechnikov selection probabilities No Yes No No Yes Yes No Yes

Lagrange adjustment of biasedunits No No Yes No Yes No Yes Yes

Shrinkage to k=k™° at boundary No No No Yes No Yes Yes Yes
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The missing data in the sample or the population were imputed by all
combinations of the three bias correction methods: Epanechnikov (E)
selection probabilities, Lagrange (L) adjustment, and shrinkage (S) of the
donor pool for boundary biased units. The methods’ initial letters are used
for notation as displayed in Table 2. The k potential donors were found
using Euclidian distance and a square root rule k = q*, where q is the

number of eligible (observed and imputed) donor units.

Mean estimates of y“ and y™ from our methods are compared to
estimates based on complete data (CD) and complete cases (CC). Estimates
y- based on imputed samples are also compared to estimates from ten
single imputation methods, Sl; i=1,...,10, and thirteen multiple imputation
methods, MI; i=1,...,13. Estimates y_ based on fully imputed populations

are only compared to the MI; methods. All MI; and SI; methods are derived
from the R-packages described in Appendix 1. Appendix 2 and 3 contain
results for estimates of y* and y™ with the comparison methods.

The SI; point and variance estimates y; and v (y; ) are calculated as in
(6) and (9), while all multiple imputation estimates y and y, are

calculated as in (7) and (10), with variance estimates v (yj) given by (8) and
(11). We used either D=5 or D=20 replicates for all multiple imputation
methods. To simplify the description, we henceforth replace y~ by .
Empirical averages from simulations, with M representing n or N, are

1000

1 : ,
calculated as G,, = RZ G, » Where G is some function based on the
g=1

gMm !
g:th data, such as a point estimate y_ , the empirical mean squared error

M - ~ ~ .
MSE (¥, )= Miz (y,. -y ) bias B(y,,)=¥,, -y orvariance
i=1

V()= ﬁz (5. - v, ) the average estimated variance vy, ,, ), or the

average double sided confidence interval length ciL = Zt(lfaydf){\i(?ng )}1/2 and

coverage cic = |ﬂ)7ng < ciL /2}. The significance level of the t-statistic is

V\TM 2
D+1B, }
where w and B are the variances components of (8) as described in

Subsection 2.3 (Rubin, 1987). We always multiply . by 100 (100°) if

G, Isafirst (second) moment function.

q.M

always set to «=0.05, and the degrees of freedom v - (p + 1)[1+



4.2 RESULTS FROM SIMULATION STUDY
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Results for y* (7' ) are presented in Table 3 (4), and for comparison
methods in Appendix 2 (3). We only show results for sample sizes 100 and

900, and 20 imputed datasets for multiple (including kernel) imputation.
Results using n=400 ended up in between n=100 and n=900 with kernel

imputation. This was mostly the case for multiple imputation comparison

methods as well, except for bias (and sometimes for MSE dominated by

bias) which tended to be highest with n=400. Comparing D=20 and D=5,
most simulation results were up to 15 % lower for kernel imputation with

D=20 compared to D=5. Confidence coverage was only slightly smaller,

but interval lengths were down to 30 % shorter. Bias was rather unaffected
by D, with 8(5" ) as an exception which almost halved but from a low level.

Results for multiple imputation comparison methods had the same
tendencies, but were more mixed.

Table 3. Simulation results for estimates of y* , including 95 % confidence

intervals.

Sample size n=100, nonresponse r=50 | Sample size =900, nonresponse r=450
M ID MSE B Vv v~ CIC CIL| MSE B V v~ CIC CIL
U 144 0.69 139 119 932 141 | 0.85 0.17 082 079 955 3.7
5 E 138 047 136 11.8 929 140 0.84 0.13 082 080 958 3.7
S L 140 0.60 13.6 120 929 141 | 0.84 0.15 081 085 963 3.8
£ S 142 058 138 11.9 935 141 | 0.84 0.14 081 0.80 952 37

D
g EL 13.7 040 135 11.8 93.0 140 | 085 0.12 0.83 0.84 957 38
& ES 136 041 135 11.7 929 139 | 0.84 0.12 0.83 0.80 958 3.7
< LS 139 052 137 120 936 141 | 085 0.13 0.83 0.85 956 3.8
ELS| 136 0.36 135 118 936 14.0| 0.84 011 0.83 0.84 956 3.8
= U 62 078 56 44 910 86| 044 015 042 040 936 26
3 E 60 058 57 40 889 82| 045 0.13 043 040 937 26
g L 61 066 57 44 900 86| 048 0.17 045 045 937 28
= S 61 070 56 43 900 85| 044 0.13 042 039 949 26

o
< EL 61 052 58 40 895 82| 047 0.13 045 043 937 27
§ ES 59 051 57 37 886 79| 044 012 043 041 944 26
= LS 61 059 58 42 886 84| 048 0.15 046 045 940 28
ELS 60 045 58 39 894 80| 047 012 045 044 941 27

With the sample imputed in Table 3, bias decreased with increased

sample size and added bias corrections (E, S or L). Variance dominated

mean squared error, and seemed to decrease slightly with bias corrections
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and n=100. Average estimated variance was below the true value for n=100
and 400, but the underestimation was ameliorated by the added bias
correction and it almost disappeared for n=900. Confidence interval
coverage (CIC) was slightly below the stated 95 % for n=100 and 400, but
slightly above for n=900. Confidence interval lengths (CIL) decreased with
sample size. Patterns were similar for the whole population imputed but all
figures were lower. An exception is 8(3" ), which was smaller than s(5" ),

but became more alike with increased sample size.

Single imputation methods (in Appendix 2) had similar or slightly better
MSE compared to ELS, except Sls- Slg which also had large bias. They
always underestimated variance, and interval coverage decreased with
sample size. Many multiple imputation methods behaved as well or
somewhat better than ELS. Exceptions were Mls and Mly3 (and mostly Mly,)
with underestimated variance and poor coverage. Mly3 also had huge bias.
With the whole sample imputed Mlg also underestimated variance severely,
and Mlg and Mlyo had extremely large bias for n=100.

Table 4. Simulation results for estimates of y'° , including 95 % confidence
intervals.

Sample size n=100, nonresponse r=50 Sample size n=900, nonresponse r=450

<
O

MSE B \Y v» CIC CIL |MSE B \Y v~ CIC CIL

U 209 229 156 136 892 151| 130 068 084 086 913 338
3 E 176 165 149 130 921 148| 112 053 084 087 934 38
‘é_ L 181 183 147 140 916 153 | 114 055 084 094 944 40
g S 190 190 153 134 908 150| 118 058 084 086 928 338
(5]
g EL 163 137 144 133 923 149| 105 045 085 092 948 40
& ES 168 140 148 129 0915 147 | 105 046 084 087 936 3.8
S LS 172 160 146 136 921 151 | 107 049 084 093 943 40

ELS 159 123 144 131 929 148| 100 040 083 091 952 39
= U 140 245 80 65 831 104 | 088 065 046 043 826 27
S E 104 181 71 54 848 95| 073 051 046 043 86.6 2.7
e L 112 19% 74 66 873 105| 077 054 048 049 870 29
= S 115 197 76 60 862 100| 076 055 046 042 86.7 27
S
c—; EL 94 154 70 54 866 95| 066 043 047 046 903 28
& ES 90 148 68 49 863 90| 066 046 045 042 888 27
;: LS 101 166 74 60 874 100| 070 047 048 048 895 29

ELS 85 130 68 50 872 91| 062 038 047 046 909 28

In Table 4, both mse (3 Jand 8(y° ) decreased in all cases with added
bias correction and increasing sample size when the sample was imputed.
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Variance fell with sample size and somewhat with bias corrections for
n=100. The underestimation of variance lessened with sample size, and
V(7 ) was even somewhat higher then v (§'° ) with n=900. Confidence

interval coverage increased with sample size and added bias corrections, but
was always below the stated 95 % except for ELS with n=900. Confidence
interval lengths decreased with sample size. The patterns were similar when
the whole population was imputed, but all figures were lower except for
bias, which was somewhat higher with n=100, about the same with n=400,
and slightly lower with n=900.

With only the sample imputed, nearest neighbour methods SI;- Sl and
predictive mean matching methods Mls-Mlg in Appendix 3 had MSE
similar to ELS, but with lower bias and higher variance. Their
underestimation of variance also increased with sample size, with
worsening confidence interval coverage. With the whole population
imputed, Mls-Mlg gave small or zero estimates of variance. Method M,
gave better coverage rate than ELS, both with the sample and population
imputed, but overestimated the high variance severely and gave very wide
confidence intervals. All other methods had much larger MSE than ELS,
due to larger bias or variance. Several methods that rely on regression
models had MSE similar to complete cases, with bias dominating the MSE.

5. CONCLUSIONS

Our proposed imputation method for missing value of a study variable
assumes a relationship to a fully observed continuous auxiliary variable.
Common to other methods based on nonparametric models, our method
relies on having observed the data dispersion, which is more probable with
larger samples. The noninformative Bayesian approach with Polya urn
sampling only using the sample as a prior and with multiple imputation can
effectively address uncertainty with minimal assumptions. Given a missing
at random mechanism, the real donor approach with imputed values
selected among already observed (and thus presumably realistic) values,
can also effectively remove nonresponse bias even with nonlinearities in the
data. The use of kernel methods addresses the bias caused by having sparse
and bounded finite sample data.

As expected, the simulation study with linear data demonstrated a small
loss of efficiency compared to methods utilizing parametric assumptions,
but with the nonlinear data the improvement by bias corrections was
relatively larger, and comparison methods were generally outperformed. In
both cases, our three suggested devices (Epanechnikov kernel, Lagrange
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adjustment, and shrinkage at the boundary) always reduced bias. Properties
seemed to improve with increasing the sample size, which agrees with the
nonparametric reliance on the sample size. Many of the multiple imputation
comparison methods managed to give at least 95 % coverage with linear
data, which kernel imputation only did for the largest sample imputed.
However, except for one extremely inefficient comparison method, kernel
imputation with all bias corrections and the largest sample was the only
method which reached 95 % coverage with the nonlinear data. Since the
response probabilities were strongly related to the study variable through
the auxiliary, imputation methods with linear parametric assumptions
displayed bias (and hence MSE) sometimes even larger than for complete
cases when imputing the nonlinear data.

Variance (and hence MSE) went down when the whole population was
imputed instead of just the sample. The effect is similar to what would have
been expected from applying (post-) stratification weights based on the
auxiliary. Since the bias share of MSE increased when sample was imputed
the confidence interval coverage rates fell. A similar but weaker effect was
seen when the number of imputed datasets was increased.

Several extensions of the proposed method could be explored, including
multivariate auxiliary and study variables, use of more or other prior
information, estimators other than means, alternative distance metrics, more
elaborate ways of choosing the number of donors, including the degree of
shrinkage, or other aspects related to boundary donees.
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APPENDIX 1. R PACKAGES AND CODE FOR ALTERNATIVE ESTIMATORS

R-Package 1D R-code
monomvn. Sly monomvn(data)
Gramacy (2010)
mvnmle. Sl, mlest(data)
Gross (2008)
pcaMethods.* Sl; lIsImpute(data,k=1,center=T ,correlation="pearson",verbose=F,allVar
Stacklies, Redestig iables=T)
and Wright (2011)  SI,  pca(data,method="nipals")
Sls pca(data,method="ppca")
Slg pca(data,method="svdImpute")
robCompositions. Sl impKNNa(data,k=1,metric="Euclidean",agg="median",primitive=T)
Templ, Hron and Slg impKNNa(data,k=5,metric="Euclidean",agg="median",primitive=T)
Filzmoser (2010)
SegKnn. Slg SeqKNN(data,k=1)
Kimand Yi (2008) Sl,, SeqKNN(data,k=5)
Amelia. MIl;  amelia(data,m = D)
Honaker, King and
Blackwell (2011)
Hmisc. Ml,  areglmpute(as.formula(~1(x)+1(y)),n.impute=D,type='"regression’,mat
Harrell (2010) ch="closest',nk=0,curtail=T,boot.method="approximate bayesian")

Ml;  areglmpute(as.formula(~1(x)+1(y)),n.impute=D,type="regression’,mat
ch="closest',nk=0,curtail=F,boot.method="approximate bayesian")

Ml,  areglmpute(as.formula(~1(x)+1(y)),n.impute=D,type="regression’,mat
ch="weighted',nk=0,curtail=T,boot.method="approximate bayesian")

Mls  areglmpute(as.formula(~1(x)+I(y)),n.impute=D,type="pmm’,match="c
losest',nk=0,curtail=T,boot.method="approximate bayesian")

Mlg  areglmpute(as.formula(~1(x)+1(y)),n.impute=D,type="pmm’,match="
weighted',nk=0,curtail=T,boot.method="approximate bayesian")

MI,;  areglmpute(as.formula(~1(x)+I(y)),n.impute=D,type="regression’,mat
ch="closest',nk=c(0,3:5),B=10,curtail=T,boot.method=
"approximate bayesian')

Mlg  areglmpute(as.formula(~1(x)+I(y)),n.impute=D,type="regression’,mat
ch="closest',nk=c(0,3:5),B=10,tlinear=F,curtail=T,boot.method="app
roximate bayesian™)

mi. Mly  mi(data.frame(data),n.imp=D,add.noise=noise.control(method="resh
Gelman (2010) uffling”,K=1,post.run.iter=20),n.iter=30)

Ml  mi(data.frame(data),n.imp=D,add.noise=noise.control(method="fadi
ng",pct.aug=10,post.run.iter=20),n.iter=30)

mice. Ml;;  mice(data,m=D,method="norm")
van Buuren and Ml;,  mice(data,m=D,method="pmm")
Groothuis-

Oudshoorn (2010)

sbgcop. Ml sbgcop.memc(data,nsamp=D)
Hoff (2010)

R-packages for single (SI) and multiple (MI) imputation methods are
available at http://cran.r-project.org/web/packages/ and (*)
http://www.biocondoctor.org/biocLite.R.

The object ‘data’ is created as ‘data <- cbind(x,y)’ in R, where ‘x’ is the
fully observed auxiliary variable vector, and ‘y’ is the partly observed study
variable vector. Object ‘D’ is the number of imputed datasets.
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APPENDIX 2. SIMULATION RESULTS, ALTERNATIVE y" -ESTIMATORS
Sample size n=100, nonresponse r=50

Sample size n=900, nonresponse r=450

M ID MSE B \Y vA» CIC CIL | MSE B \Y VA CIC CIL
- CD 9.7 -03 97 100 942 124 | 049 -01 049 051 951 238
CC 327 35 204 107 702 128 | 134 343 167 087 116 3.7
Sly 121 -15 121 101 923 124 | 073 -02 073 051 908 238
Sl 121 -15 121 99 923 123 | 073 -02 073 051 908 238
Sl; 209 277 132 87 796 116|113 324 085 045 18 26
Sly 395 481 164 50 426 87316 551 118 025 00 1.9
Sls 237 309 142 81 732 111|370 598 130 023 00 19
Slg 512 572 184 46 324 83 |443 655 140 023 00 19
Sl; 141 -06 141 99 891 123| 121 -02 121 051 784 28
Slg 133 008 133 9.2 887 118 | 092 -06 092 048 838 27
Slg 143 -03 143 99 886 123 | 124 -03 124 051 785 28
5 Sl 133 001 133 94 894 120| 095 -01 095 049 835 27
=}
§ Ml 125 -54 122 124 954 144 075 011 073 090 979 3.9
o Ml 123 004 123 122 957 143 | 074 0.03 073 082 968 3.7
g Ml 122 -14 121 128 955 147| 075 -03 075 085 974 338
8 Ml 122 005 122 122 952 143)| 073 0.03 073 082 973 3.7
S Ml 141 -06 141 99 893 123 | 120 -02 120 051 803 29
Mlg 129 011 129 106 930 133 | 080 025 073 063 931 3.2
Ml 123 0.04 123 121 949 143 | 0.74 0.03 0.74 082 96.7 3.7
Mg 122 006 122 122 953 143 | 0.74 0.03 0.74 082 97.0 3.7
Mlg 121 -03 121 132 96.1 149)| 074 -10 0.73 087 974 38
Ml | 124 -25 123 126 950 145] 075 -03 075 086 973 3.8
Ml | 122 -26 122 129 960 147 | 073 007 073 092 981 40
Ml | 127 019 127 122 949 143 | 112 009 111 076 904 3.6
Ml | 285 371 147 121 817 143|145 367 099 070 24 34
Ml 53 012 53 49 941 90| 039 -05 039 036 938 25
Ml, 54 044 52 87 986 121 | 041 0.03 041 068 989 34
Ml 52 011 52 107 988 134 | 040 -01 039 071 989 35
= Ml 57 046 55 95 982 127 | 041 0.03 041 069 982 34
S _Mis 75 029 74 0 0 0] 08 -06 084 000 65 0.2
(o
E Mlg 69 062 65 01 218 13| 045 024 039 010 658 1.3
2 Ml 56 046 54 9.0 984 123 | 039 0.04 039 069 995 34
c—; Mlg 53 045 51 86 979 120 | 040 0.03 040 069 99.0 34
g Mig 528 6.01 16.7 144 685 159 | 039 0.12 038 049 968 29
;.' Ml | 659 703 165 83 381 120 | 039 008 038 046 971 238
Ml 55 082 49 42 930 85| 037 000 037 060 993 32
Mly, 63 056 60 43 900 86| 076 027 068 022 710 19
Ml;3 | 590 629 195 05 95 31]263 502 110 025 0.0 21

Estimators are based on complete data (CD), complete cases (CC), multiply imputed
(M1) and singly imputed (SI) datasets. Confidence interval coverage (CIC) and length
(CIL) are from double-sided intervals with 5 % significance level.
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APPENDIX 3. SIMULATION RESULTS, ALTERNATIVE y" -ESTIMATORS
Sample size n=900. nonresponse r=450

Sample size n=100. nonresponse r=50

M ID MSE B Vv vr» CIC CIL | MSE B V vAr  CIC CIL
- CD 106 0.05 106 112 954 131 0.6 002 055 057 958 3.0
CC 639 66 199 92 428 118|440 651 155 075 00 34
Sly 403 44 211 107 658 128 | 402 6.20 175 054 00 29
Sl 403 44 211 105 653 126 | 402 6.20 175 054 00 29
Sl; 247 -5 245 94 761 120 21 035 200 048 650 27
Sly 291 31 193 55 574 91| 228 461 149 028 04 21
Sls 260 24 200 52 606 89| 250 483 158 029 02 21
Slg 259 24 201 52 607 89| 150 366 156 026 21 20
Sl; 152 04 151 10.7 89.3 1238 14 016 139 057 792 29
Slg 149 08 142 97 875 122 11 019 1.09 053 831 29
Slg 155 04 154 107 882 1238 15 015 143 057 783 29
5 Sl | 148 06 144 101 388 124 1.2 020 113 054 834 29
>
g MI, | 363 3.8 221 23.0 894 19.7| 443 652 177 238 14 64
o Ml, | 441 48 211 247 857 205| 408 624 188 228 20 6.2
& Ml; | 469 50 217 276 870 215| 411 626 184 231 16 63
& Ml, | 438 47 215 247 865 204 | 407 623 1.82 227 19 6.2
€ Mls | 1562 04 151 107 89.3 1238 14 016 139 057 796 3.0
Mlg | 139 07 134 115 931 138 1.7 095 084 068 799 34
MI; | 437 48 210 253 86.7 20.7| 404 6.21 184 227 16 6.2
Mlg | 435 48 209 250 863 206 | 405 6.22 183 229 20 6.3
Mlg | 427 46 217 223 854 195)| 399 6.17 184 190 11 57
Ml | 388 40 228 218 866 192| 404 622 176 203 15 59
Ml;; | 383 41 211 234 881 200| 428 640 175 231 13 63
Ml | 595 -22 546 746 937 351 21 085 137 186 100 17.6
Mlj; | 366 42 190 145 794 157 | 282 517 149 100 1.0 41
MI; | 979 85 263 242 610 201 369 591 195 193 17 57
Ml, | 926 83 231 420 801 266 | 375 595 203 357 92 78
Mi; | 105 89 259 539 844 301| 381 6.00 205 365 88 79
< Ml, | 986 87 231 455 810 27.7| 376 597 200 358 84 7.8
2 Mis 9.1 1.0 80 00 O 0 08 006 084 000 78 0.2
Q.
E Mlg 9.8 16 72 01 196 14 1.3 093 041 012 365 14
2 Ml; | 942 84 234 445 798 274| 375 596 201 355 81 7.8
c—; Mlg | 953 85 229 422 798 266 | 378 597 207 361 97 79
& Mlg | 453 51 192 180 796 17.7| 352 577 189 220 35 6.1
;.‘ Ml | 587 63 189 107 553 137 | 342 568 201 183 29 56
Ml | 110 93 235 173 463 174 | 373 595 188 266 36 6.8
Ml | 754 -13 736 146 969 479 23 -90 149 247 100 203
Ml;;| 386 43 199 07 209 34| 184 410 154 053 23 30

Estimators are based on complete data (CD), complete cases (CC), multiply imputed
(M1) and singly imputed (SI) datasets. Confidence interval coverage (CIC) and length
(CIL) are from double-sided intervals with 5 % significance level.



