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Abstract

We present an algorithm for imputation of incomplete datasets based on
Bayesian exchangeability through Pólya sampling. Each (donee) unit with
a missing value is imputed multiple times by observed (real) values on units
from a donor pool. The donor pools are constructed using auxiliary variables.
Several features from kernel estimation are used to counteract unbalances
that are due to sparse and bounded data. Three balancing features can be
used with only one single continuous auxiliary variable, but an additional
fourth feature need, multiple continuous auxiliary variables. They mainly
contribute by reducing nonresponse bias. We examine how the donor pool
size should be determined, that is the number of potential donors within the
pool. External information is shown to be easily incorporated in the imputa-
tion algorithm. Our simulation studies show that with a study variable which
can be seen as a function of one or two continuous auxiliaries plus residual
noise, the method performs as well or almost as well as competing methods
when the function is linear, but usually much better when the function is
nonlinear.
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To my family

"Well, the way of paradoxes is the way of truth. To test Reality we must see it on

the tight-rope. When the Verities become acrobats we can judge them."

Oscar Wilde (1854-1900) in The picture of Dorian Gray
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1 Introduction

Many datasets are incomplete. The reasons for the missingness vary with
the setting, e.g. failing measurement devices in an experiment, transmission
errors when collecting data from secondary sources, or unit or item nonre-
sponse in a survey due to refusal or skipping of a question in a questionnaire.
The issue of handling missing data is thus universal, but in this thesis we
typically refer to survey nonresponse, where the general trend has been an
increasing amount of missing data over the last decades.

Measures can (and should) be taken to prevent, counteract and learn
about the missing data, e.g. by following up nonrespondents in a survey.
Despite such efforts one usually faces an incomplete dataset when starting out
a statistical analysis. Since almost all statistical methods assume complete
rectangular datasets, the question is how to make valid and efficient inferences
from an incomplete dataset?

It may be tempting to exclude all units with missing values and simply
use the smaller dataset with completely observed units. This is known as
a complete cases (or listwise deletion) approach. There will always be a
loss of precision with this approach due to the fact that the sample size is
smaller than the intended one. If the intended sample size or the number of
completely observed units is relatively small this may be of great importance.
However, the potential nonresponse bias is usually a more serious problem
and is also at the centre of this thesis.

Nonresponse bias can be viewed as a function of the amount of nonre-
sponse and the mechanism(s) which lead to nonresponse. Rubin (1976a)
formalized a model for the missing data mechanism with indicators of the
missing values viewed as functions of the observed or the unobserved values.
The simplest situation is when a missing completely at random (MCAR)
mechanism is reasonable to assume, the bias would be zero and a complete
case approach would only suffer from the loss of precision. But in practice
this approach is often too simple and there is a high risk that the results will
be biased. The key to efficient and unbiased estimation with an incomplete
dataset lies in utilizing what we know to predict what we do not know, and
a good method should be flexible enough to take all relevant and accessible
information into account in an adequate way.

Typically we have access to design and register variables measured on all
units in the population and study variables measured on the units in the sam-
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ple. If the auxiliary variables are associated with the study variable(s) and
the (unknown) response probabilities, they may be used to reduce the error
in estimation. If they are only associated with the study variable(s) they can
only improve the precision. A missing at random (MAR) mechanism states
that the response probability is related to the observed (auxiliary) data, and
this is generally a more reasonable assumption than MCAR. In Papers I-IV
we assume a situation where a MAR assumption is reasonable, so that the
distribution of the unknown missing values can be modelled from the known
observed values. In Paper IV we also assume access to additional information
as support. The third possible mechanism, not missing at random (NMAR),
or missing not at random (MNAR), states that the probability of missingness
depends on the missing values themselves, and may therefore not be mod-
eled from our observed values but would need additional information to be
uncovered, e.g. from a follow-up on nonrespondents. Bias would otherwise
be irreducible. In practice a mixture of missingness mechanisms is probably
acting simultaneously on the data, and we can only hope for partial reduction
of nonresponse bias.

In sample surveys it is common to assume some kind of MAR and com-
pensate for the unit nonresponse through weighting. The design weights,
which under the chosen design are used to make the sample representative
of the population, are then adjusted. In calibration weighting (Deville and
Särndal, 1992), the weights are also adjusted so that resulting estimates com-
ply with known (sub)population quantities. Weighting can counteract bias,
but sometimes at the cost of efficiency. Estimates based on weights are also
more sensitive to the chosen form for response probability modelling com-
pared to e.g. likelihood methods (Little and Rubin, 2002), though there
need not always be a direct trade-off between bias and variance (Little and
Vartivarian, 2005).

Item nonresponse is often handled through imputation, where the missing
values in the incomplete dataset are replaced by values that are generated
under a missing data model. In a report from the EUREDIT project on
evaluating methods for data editing and imputation the goal of imputation
is well stated as: "Ideally, an imputation procedure should be capable of
effectively reproducing the key outputs from a ’complete data’ statistical
analysis of the data set of interest." (Chambers, 2001, p.15). The properties
which are most desirable depend on the goal of inference. The report lists
the following properties (from hardest to easiest to achieve):
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(1) Predictive Accuracy: The imputation procedure should maximize preser-
vation of true values.

(2) Ranking Accuracy: The imputation procedure should maximize preser-
vation of order in the imputed values.

(3) Distributional Accuracy: The imputation procedure should preserve the
distribution of the true data values.

(4) Estimation Accuracy: The imputation procedure should reproduce the
lower order moments of the distributions of the true values.

(5) Imputation Plausibility: The imputation procedure should lead to im-
puted values that are plausible.

In the survey context estimation and distributional accuracy are usually most
relevant, while the preservation of true values seldom is, since the statisti-
cal statements in principle are never made at the unit level. The goals of
imputation can be operationalized as: (I) In order to reduce bias and im-
prove precision the imputations should be conditional on, in principle, all
the observed variables. This also enhances the possibilities of preserving the
association between missing and observed variables. (II) The imputation pre-
diction model should take contextual and subject matter knowledge about
variables being imputed into account. Unless motivated by it, the model
should avoid excessive extrapolation beyond the range of the data. (III) If
we are interested in preserving the associations between missing variables
the imputations should be multivariate. (IV) To be able to provide valid
estimates of a wide range of estimands, the missing values should be drawn
from their predictive distribution, as to preserve the distribution and enhance
variance estimation. (V) Estimation of sample variance should take into ac-
count that the imputed values are not the true unobserved values. (Little,
1988; Little and Rubin, 2002).

Not all methods in the plethora of imputation methods meet all these
requirements. As with other prediction methods they can be classified into
parametric, semiparametric or nonparametric ones. A correct parametric
method is naturally most efficient, whereas semi- and nonparametric meth-
ods with fewer and weaker assumptions become more robust when the as-
sumptions fail, especially when sample sizes are large. The actually imputed
values can be classified as model-donor values, which are derived from a
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(behavioural) model and thus are values that are non-observable and even
impossible in a real life world; or real-donor values, which are derived from
a set of observed values on respondents and thus are natural possible values
(Laaksonen, 2000). Model-donor values may be preferred if the observed
values do not cover all potential values exhaustively, e.g. if there are no
respondents within an area, or if the share of respondents is low. Paramet-
ric methods often employ model-donors (Tanner and Wong, 1984; Schafer,
1997) but also real-donors (Rubin, 1987; Little, 1988; Heitjan and Little,
1991; Laaksonen, 2000). Nonparametric methods often employ real-donors
(Sande, 1983; Andridge and Little, 2010) but can also be a weighted mix-
ture of real-donors (Kim and Fuller, 2004), which thus is best described as a
model-donor approach.

The nonparametric real-donor hot (and cold) deck imputation methods
originate from the time of punch card machines. Nowadays these methods
typically refer to when the conditional predictive model for a unit with miss-
ing value (the donee or recipient) is obtained through matching to a donor
pool of nearest neighbour units with observed values (the donors). Hot deck
imputation refers to methods where the donors are found within the same
sample as the donees, as in Papers I-IV, and cold deck imputation to meth-
ods where the donors are found from outside of the sample, as in Paper IV.
In Paper IV we use a common donor approach where several values are im-
puted simultaneously from the same unit, as a means to try to preserve the
associations between the imputed variables.

Exact matching (Fechner, 1966 [1860]) on continuous auxiliaries is impos-
sible, and though sometimes practical, categorization of such variables would
introduce false boundaries in the data. A variety of metrics have been used
in the survey context (Rubin, 1976b; Little and Rubin, 2002). Two common
approaches are propensity score matching (Rosenbaum and Rubin 1983) and
matching based on the Mahalanobis distance (Cochran and Rubin, 1973; Ru-
bin 1979). They can also be combined (Rosenbaum and Rubin 1985; Rubin,
2001). Given auxiliaries with ellipsoidal distributions the metrics possess the
desirable property of reducing bias in all linear combinations of the auxil-
iaries (Rubin and Thomas, 1992). We use Mahalanobis matching in Papers
I-IV.

An estimate of a study variable mean from a dataset imputed by a rea-
sonable conditional parametric (Buck, 1960) or nonparametric (Cheng, 1994)
real-donor imputation method giving good mean predictions of the missing
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values should be approximately unbiased. But by treating the imputed val-
ues as actual responses the precision would be overstated for two reasons.
First the sampling variability would be underestimated, and secondly the
uncertainty about the imputation model would not be propagated. The lat-
ter is especially difficult to handle in the single imputation approaches to
variance estimation (Särndal, 1992; Little and Rubin, 2002; Brick, Kalton
and Kim, 2004). The estimate could be improved upon by using a random
(real- or model-donor) draw instead of a conditional mean, but this would
generally not fully suffice to propagate the uncertainty. However, a general
simulation approach which approximately could accomplish this, while pro-
viding unbiased estimates, is multiple imputation (Rubin, 1976a; 1978; 1987;
Herzog and Rubin, 1985; Little and Rubin, 2002). Multiple imputation has
a Bayesian justification but usually also shows good frequentist properties
(Wang and Robins, 1998).

The idea of multiple imputation is to set up a posterior predictive model
for the missing values, and then replace each value by multiple draws from
this posterior. If each missing value is replaced B > 1 times, standard
statistical procedures can be implemented separately on each of the resulting
B datasets. Using a combination rule on the B estimates would give a final
estimate with the proper precision (Rubin, 1987). The process of combining
results from different imputed data sets is essentially the same, regardless
of the type of statistical analysis. This can provide valid inference even in
complicated cases (Herzog and Rubin, 1985).
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Figure 1: Pólya urn sampling

The base for the imputation methods proposed in this thesis is a nonpara-
metric multiple real-donor approach, originating from (Eggenberger-)Pólya
urns (Eggenberger and Pólya, 1923; Feller, 1968). The Pólya urn in Figure 1
is commonly used to illustrate (elementary) sampling procedures. It contains
balls of different colours, which are sampled by randomly drawing, copying,
and replacing balls in the urn. The sampling probabilities are thus given
by the composition of the balls of the different colours at the time of each
random drawing. If infinitely many balls are sampled, the composition of the
sampled balls would equal a draw from a Dirichlet distribution with parame-
ters corresponding to the composition of the balls in the initial urn. Likewise,
if a finite number of balls are sampled, a draw from a Dirichlet-Multinomial
distribution gives the number of balls of each colour.

By treating the units in a completely observed sample as the balls in
an initial Pólya urn, and then perform Pólya urn sampling up to the size
of a finite population (Lo, 1988), a bootstrap draw from a ’Pólya posterior’
distribution (Ghosh and Meeden, 1997) is generated. For large populations,
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such draws are approximately finitely exchangeable (Diaconis and Freedman,
1980), and has the ’Bayesian bootstrap’ (Rubin, 1981) as the limiting case.

The Pólya posterior is a noninformative unique stepwise Bayes approach
(Hsuan, 1979; Ghosh and Meeden, 1997). Imputation of a sample, or pop-
ulation, can then be achieved by treating a response set as a sample, and
the intended sample as the population. Pólya urn sampling is then carried
out until the sample is fully imputed. Alternatively, if the imputation model
is compatible with the sampling model, the full population may be imputed
instead of the intended sample. If the process of imputing the data is re-
peated B > 1 times, the generated data distribution is an approximation to
the multiple imputation posterior distribution.

The proposed multiple kernel imputation method in this thesis should
be able to fulfil the above criteria on imputation methods. It sympathizes
strongly with the quotations that "the data will be allowed to speak for them-
selves" (Silverman, 1986, p.1) to achieve robustness, and that "any method
that is consistent for a wide class of functions must ultimately be ’local’"
(Scott and Wand, 1991, p.204). These statements surely become more rele-
vant the more data there is at hand, though our belief is that their relevance
also may hold for moderate sample sizes, with sparse and bounded data.
This belief is based on the fact that the method is aided by features from
kernel estimation.
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2 Kernel estimation

In estimation we often assume that the relationship between e.g. a study
variable Y and an auxiliary variable X can be described as

Y = f(X) + e, (1)

where the functional form, including the degree of parameterization, of f is
controlled by the analyst. While a parametric model is restrictive, in the
sense that a finite set of parameters is used, a nonparametric model instead
is very flexible, allowing essentially an infinite number of parameters. Semi-
parametric models lie in between. But the flexibility comes at a price, namely
that we need a sample large enough. While parametric estimates typically
converge at a rate n−1/2, convergence of semi- and nonparametric estimates
is slower. On the other hand, with a larger sample it is more probable to
observe the full data dispersion. Results can then be derived in finer details
using semi- and nonparametric models, but approximations or smoothing
are typically needed. More detailed descriptions of semi- and nonparametric
models can be found in Hastie and Tibshirani, (1990), Ruppert, Wand, and
Carroll (2003), Härdle, Müller, Sperlich, and Werwatz (2004).

When the object of study (Y ) is the density at a point X, a nonparametric
estimate can be obtained by taking a weighted average using the Xi points
that are close to X, where the weight function is a (typically symmetric
and unimodal) kernel function K(·). A bandwidth parameter H = g · h,
consisting of the orientation (g) and size (h), determines the size of K(·)
and thus which units are used in the estimate f̂(X) =

∑n
i=1K (Xi −X,H)

(Rosenblatt, (1956); Parzen, 1962). The kernel smoother (Nadaraya, 1964;
Watson, 1964) is of particular interest to this thesis, where f(X) is estimated
by

f̂(X) =

n∑

i=1

Yi
K (Xi −X,H)∑n
i=1K (Xi −X,H)

. (2)

For a particular class of this estimator the bandwidth H is indirectly de-
termined by the number of k nearest neighbour (kNN) units (Loftsgaarden
and Quesenberry, 1965; Mack and Rosenblatt, 1979; Silverman, 1986), rather
than the units that are located within a chosen bandwidth.

A key issue is choosing the bandwidth size (Jones, Marron and Sheather,
1996). Too small a neighborhood produces a highly variable undersmoothed
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estimate of f , while too large a neighbourhood produces a biased over-
smoothed estimate. Generally an optimal bandwidth should decrease with
the dimensionality of X and increase with the sample size. It may further
depend on the smoothness of the underlying distribution f , in that it should
be decreased (increased) at a high (low) density of f . It may further depend
on the type of kernel function K(·).

Automatic techniques determining the bandwidth usually minimize some
mean squared error function of f̂(X). They include rules-of-thumb (Silver-
man, 1986), least-squares cross-validation (Bowman, 1984; Scott and Ter-
rell, 1987; Sain, Baggerly, and Scott, 1994), plug-in estimates (Sheather and
Jones 1991; Wand and Jones, 1994; Chacon and Duong, 2010), smoothed
cross-validation (Jones, Marron and Park, 1991; Duong and Hazelton, 2005).
It may be advisable to compare several bandwidths (Scott, 1992; Marron
and Chung, 2001). If the density is low (high), the bandwidth can be locally
adapted by increasing (decreasing) it. In comparison to automatic methods,
the local neighbourhood is never empty with a k-nearest-neighbour (kNN)
approach. Given p eligible units and q auxiliary variables, the ideal kNN
approach of setting k ∝ p4/(4+q) (Silverman 1986, p.99) is best used when
the exact size of k is not so important. A general recommendation when
q = 1 is to use k ≈ √

p (Silverman, 1986, p.19).
There are some early references to kernel-based model-donor methods for

density estimation from incomplete data (Titterington and Mill, 1983) and
kernel density estimation for imputing values (Titterington and Sedransk,
1989) using a MCAR mechanism. Early references to kernel-based imputa-
tion under MAR include imputation of missing values by local mean esti-
mates (Cheng, 1994) and by local constant polynomial regression estimates
(Chu and Cheng, 1995). However, the papers included in this thesis concern
real-donor imputation, where we would interpret Yi in Equation (2) as the

potential donor values, and K(Xi−X,H)∑n
i=1

K(Xi−X,H) as the donor selection probabil-
ities. The latter are denoted by λi. Examples of real-donor imputation of
missing values using semi- and non-parametric techniques includes (Rubin
and Schenker, 1986; Heitjan and Little, 1991; Aerts, Claeskens, Hens, and
Molenberghs, 2002; Marella, Scanu, Conti, 2008). Asymptotic results for real
donor nearest neighbour imputation when estimating a population mean are
found in Chen and Shao (1997).

In parallel with kernel smoothers, the number of donors in imputation reg-
ulates the trade-off between bias and variance (Schenker and Taylor, 1995),
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so that fewer potential donors translate into a tighter bandwidth. Gains in
precision from increasing the number of donors may result in reduced qual-
ity of the matches and increased bias. Different estimators may profit from
different strategies of choosing the donor pool size/bandwidth. Donor pools
with few potential donors give rise to strong correlation between the val-
ues imputed for a missing value in multiple imputation. This may lead to
both higer variances and to biased variance estimators that underestimate
the true variance, as with repeated sampling from correlated (e.g. clustered)
data. Larger donor pools may instead reduce the quality of matches and
increase the bias.

Using sample data means that the support of the investigated data is
usually finite and bounded. While prediction with parametric models works
directly, nonparametric models give rise to a bias at the boundary of the
convex hull of the data (Silverman, 1986, p.29-32; Wand and Jones, 1995,
p.46-47; Simonoff, 1996, p.49-50). The bias is expected to be worse the
closer we are to the boundary end points, and can be reproduced into the
final estimates. The rate of convergence may also be slower.

Several methods have been used to reduce boundary effects, e.g. bound-
ary kernel methods (Gasser and Müller, 1979; Müller, 1991), transformation
methods to enforce more smoothing at the boundary (Marron and Ruppert,
1994), and reflection techniques (Karunamuni and Alberts, 2005). Not to vio-
late the definition of probability, for real-donor imputation one has to restrict
the choice of methods to those where K(·), which is directly proportional to
the selection probabilities λ, is non-negative.

With real-donor imputation, one implication of having sparse and bounded
data is that the donor pool will be unbalanced to the donee, in the sense that
the observable donee X will differ from the expected donor auxiliary variables
Xi when weighted by their selection probabilities.

The bias-variance trade-off has implications for the choice of kernel func-
tion K(·). Three common univariate kernel functions are shown in Figure 2,
and their functional forms and efficency relative to the Epanechnikov kernel
are given in Table 1.
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Figure 2: Three common univariate kernel functions.

Table 1: Three common univariate kernel functions and their efficiencies. (Si-
monoff, 1996, p.44)

Epanechnikov Gaussian Uniform

Kernel function 3
4(1− x2)I|x|<1

e−x2/2
√
2π

1
2I|x|<1

Univariate efficiency 1 1.051 1.076

In an imputation context, the choice of kernel function directly determines
the donor selection probabilities. The described Pólya urn sampling means
that uniform selection probabilities are applied to all potential donors. By
conditioning on X, only those with closest match are given uniform selection
probabilities.

As an example of imputation from a donor pool we use a donor pool of
juvenile offenders from the population used in Paper IV. The variable family
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type is missing for one donee. It can take the value ’living in a split family’
(white ball) or ’living with both parents’ (black ball). The number of school
credits, X1, is an auxiliary variable, which is a completely observed. It is
standardised and in Figure 3 the donee is assumed to have the value 0.

Figure 3: One auxiliary and uniform selection probabilities.

In Figure 3 the potential donors are given uniform selection probabilities.
Since the donors’ weighted mean of X1 differs from the donee value on X1,
this donor pool is unbalanced.
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Figure 4: Two auxiliaries and uniform selection probabilities.

With an additional (standardized) auxiliary variable X2, representing the
number of prosecutions, we have the situation in Figure 4. As before, the
donor pool is unbalanced.

With exact conditioning on categorical variables, as in adjustment cells
imputation, all units within the donor pool (including the donee) are ex-
changeable. It is therefore motivated to use uniform donor selection prob-
abilities under such a model. But in our example in Figures 3 and 4, the
auxiliaries are enumerable but viewed as continuous. The closest donors
should thus provide a better match to the donee.

The donors’ different distances to the donee can be reflected by assigning
higher selection probabilities to closer donors than to more distant ones. This
would be fulfilled by using a Gaussian kernel function (Conti, Marella and
Scanu, 2008), meaning that all possible values are given a nonzero donor
selection probability. This might be reasonable in some situations, but as
pointed out, we believe that estimates should be local.
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Figure 5: One auxiliary and Epanechnikov selection probabilities.

Figure 6: Two auxiliaries and Epanechnikov selection probabilities.
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An Epanechnikov (1969) function would give higher selection probability
the closer a potential donor is to the donee, and at the same time only allow
local potential donors. The risk of imputing (extreme) outliers in the interior
of the data is thereby avoided. This function possesses optimal properties
in terms of being able to minimize mean squared error (Silverman, 1986).
Using Epanechnikov selection probabilities without changing the number of
donors in our example, the probability mass is shifted from the boundary to
the center and the donor pool is expected to be less unbalanced, see Figures
5 and 6.

Figure 7: Two auxiliaries, Epanechnikov selection probabilities and reorientation
of the donor pool

The large area in the upper right corner of the spherical donor pool in
Figure 6 without any potential donors suggests that the donee is located at
the boundary of the data. In this case it may be possible to reduce the bias
by shifting the donor selection probabilities away from this area, as in Figure
7 where the donor pool is reoriented along the boundary.

A third kernel feature is inspired by Rice (1984), who used a linear com-
bination of two kernel estimators with different bandwidths to reduce bias at
the boundary. This may thus be viewed as tightening the bandwidth such
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that the donor pool is shrunk at the boundary. In Figures 8 and 9 this is
achieved by allowing fewer potential donors, compared to the normal case
with the donee in the interior of the convex hull of the data.

Figure 8: One auxiliary, Epanechnikov selection probabilities and shrinkage of the
donor pool.
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Figure 9: Two auxiliaries, Epanechnikov selection probabilities and reorientation
and shrinkage of the donor pool.

In comparison to Figures 5 and 7 several effects are seen here. Not only are
the most distant donors, which match the donee the least and thus contribute
most bias, removed. The selection probabilities of the most distant donors
in this new pool are also reduced, while those with best matches gain larger
selection probabilities. As expected, the bias is also reduced. However, in a
repeated sampling sense the donor pool variance is also increased (Schenker
and Taylor, 1996).

Given enough data and a reasonable degree of smoothing, the estimate
in Equation (2) should be able to capture the essence of f(X). But even for
a relationship which globally appears to be far from linear, if studied more
locally around a point Xi, modelling f(Xi) as linear will often be a good
approximation. By imagining ourselves as looking through a magnifying
glass, the much smaller proportion of data that we will be able to spot should
for the sake of efficiency make such a conclusion easier to embrace.

Actually, Equation (2) may be interpreted as the estimate of the param-
eter αj which minimizes the local constant polynomial fit (Fan and Gijbels,
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1996)
n∑

i=1


Yi −

J∑

j=0

αj(Xi −X)j




2

K (Xi −X,H). (3)

for J = 0. If our inspection supports an approximately local linear rela-
tionship, it can be obtained by solving Equation (3) for J = 1. In the
imputation context the result translates to having the donee value X being
perfectly balanced to the donor pool estimate f(X). Local polynomials are
also known to resolve the issue of boundary bias (Simonoff, 1996) and possess
good asymptotic properties (Cheng, Fan and Marron, 1993).

However, the resulting selection probabilites may become very unevenly
distributed or even negative. This may occur with donees that are located at
the boundary of the range of the potential donors. Linearized selection prob-
abilities that are constrained to be non-negative can e.g. be found by calibra-
tion weighting (Särndal, 2007), normally applied on global design weights, or
asymptotic equivalents to kernel weights (Aerts, Claeskens, Hens and Molen-
berghs, 2002) obtained by the b-bootstrap (Hall and Presnell, 1999).

Figure 10: One auxiliary, Lagrange-adjusted Epanechnikov selection probabilities
and shrinkage of the donor pool.
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Figure 11: Two auxiliaries, Lagrange-adjusted Epanechnikov selection probabilities
and reorientation and shrinkage of the donor pool.

In our example, the selection probabilities are derived from the restricted
Lagrange function which is used in the four papers of this thesis. The re-
strictions on the selection probabilities are that they may not be negative
and that they may have a maximum value.

In Figures 10 and 11 bias is now totally eliminated. This would not have
been possible had the donee been lying at the utmost border of the convex
hull of the data. Here seems to be the limit to what real donor imputation
methods can achieve, since the estimate of f(X) will always be biased away
from the boundary towards the interior of the data.
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3 Simulations

A summary of the simulations in the included papers is given in Table 2.

Table 2: Simulation setups of the included articles. In Paper IV, ’Con.’ cover both
continuous and enumerable variables, and ’Cat.’ are binary variables. CC stands
for complete cases, SI and MI for single and multiple imputation.

Paper I Paper II Paper III Paper IV

Estimators mean mean mean
mean, regr.

coef.
Pop.origin generated generated generated SOU(1971)
Pop.size N=1600 N=1600 N=1600 N=3650

Sample
SRS, n=

100,400,900
SRS,

n=400
SRS,

n=400
STSRS,

nh=100, h=4
Imp. var.
(Con+Cat)

separately
(2+0)

separately
(3+0)

separately
(3+0)

simultaneously
(1+0 or 2+1)

Aux. var.
(Con+Cat)

(1+0) (1+0) (2+0) (2+2 or 1+1)

Nonresponse item=unit item=unit item=unit item and unit
Kernel
features

E, L, S
combined

U, ELS
E, L, R, S
combined

E, L, R, S
combined

#donors k ∝ √
nr n

4/(4+q)
r n

4/(4+q)
r n

4/(4+q)
r

Additional
features

nonsampled
imputed

canonical
kernel

decide pool
in 5 ways

restrictions,
external units

Comparison
methods

CC, 10 SI,
13 MI

fixed,
adaptive

CC, 5 MI CC

Since the incorporation of several kernel features in an imputation method
is relatively novel, the simulations in all four papers have estimations of a
population mean in focus. Population means are often the main target, or
are almost always at least one of the targets, of estimation in the survey
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context. The same argument also holds, though slightly more weakly, for the
extension to regression coefficients in Paper IV.

In order to have full control of the data generating processes, all data in
Papers I-III are generated under known models, but then a real dataset is
used in Paper IV. For the same reason of control, the missing data mecha-
nisms are also generated under known models in all four papers.

The sample size is chosen to represent a significant proportion (25 %)
of the population size, except in Paper I where different sample sizes are
examined specifically, and in Paper IV, where the overall sampling rate is 11
% and the sample is stratified into four equal size strata.

In Papers I-III with generated datasets, several study variables are im-
puted separately. Since the auxiliary variables are completely observed while
there is only one variable with missing values, this may be viewed either
as item or unit nonresponse. In Paper IV we distinguish between item and
unit nonresponse, and impute both jointly. In addition to imputation of the
missing units, in Paper I we compare to a ’mass imputation’ approach and
also impute all nonsampled values.

The study variables are always derived as functions of the auxiliary vari-
ables plus a residual noise from a normal distribution. Both parts contribute
a significant portion to the total variance. All the generated auxiliaries are
uniformly distributed, except in Paper II, where we also use one auxiliary
each from a normal and a gamma distribution. The uniform auxiliaries pro-
vides simple and basic distributions with clearly defined and indicated bound-
aries of the data. The possible conclusions are of course constrained, but the
simulations with the non-uniform auxiliaries in Paper II does not contradict
that the results would be generally viable, even though the sometimes am-
bigous results in Paper IV may indicate that this needs further investigation.

An issue we do not discuss in detail is the choice of distance measure.
Because of the way that data is generated in Paper I-III with only one or
two auxiliary variables, this should not have any significant effect on these
results. Possibly, the impact could be larger in Paper IV.

One study variable is always chosen such that a parametric linear regres-
sion imputation model would be suitable, while the second (in Papers I-III)
and third (in Papers II and III) study variables are constructed so that a
parametric linear regression imputation model would not be tenable. In all
cases, the missing data mechanism is designed such that a mean estimate
based on the complete case is biased.
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The study variables could in principle be at any measurement level,
though for simplicity in the generated datasets in Papers I-III they are only
continuous. In Paper IV the enumerable variables are treated as continu-
ous, and no kernel features are applied on the binary auxiliaries. One of the
binary variables are also used for estimation of the regression coefficients.

The kernel features are applied to continuous variables. As described
in Section 2, the origin of all the four features are from kernel estimation.
We summarize their univariate effect (from Papers I, II and IV) on bias
in comparison to the basic case with uniform (U) selection probabilities as
follows, when estimating a mean using a nearest neighbour approach:

• Epanechnikov selection probabilities (E) effectively reduced bias in
principle in all studied situations.

• Lagrange calibration of selection probabilities (L) effectively reduced
bias in principle in all studied situations.

• Reorientation of the donor pool for boundary donees (R) slightly re-
duced bias except with a large donor pool in Paper II.

• Shrinkage of the donor pool for boundary donees (S) slightly reduced
bias except with a small donor pool in Paper II.

The four features generally contributed in error reduction, mainly through
an additative reduction of bias. But a trade-off is also seen between bias
and variance. These results are all in line with general results from kernel
estimation. More details on the interactions between the features are given
in Paper I (with one auxiliary and three features) and in Paper III (with two
auxiliaries and four features), where all possible combinations of the features
are presented.

The number of potential donors plays a crucial rule. In Paper I with only
one auxiliary variable, we essentially ignore this and rely on an automatic
rule-of-thumb which only takes account of the number of eligible potential
donors. In Paper II-IV we use a more general rule which accounts for the
number of eligible donors and the number of auxiliary variables. In order to
exploratively study the effect of using different donor pool sizes, we also com-
pare a range of these. The four automatized ways of deciding the donor pool
size in Paper III might have been more competitive to the nearest neighbour
approach had the auxiliaries been non-uniform, as in Paper II. In addition,
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in Paper II we compare with fixed and adaptive approaches of selecting the
donor pool. Canonical kernels where used to neutralise the difference in
variance due to choice of kernel.

The criterion to make use of all available information is discussed in more
detail in Paper IV. Specifically, the simulations are used to show the effect of
restricting the imputations to comply with known quantities, and the effect
of using external units in a cold deck manner.

The comparison methods in Paper I are selected as those readily available
in the Packages section on cran.r-project.org in the R program (R Develop-
ment Core Team, 2011). This does of course not give a complete coverage
of all possible imputation methods, but should at least cover a large share
of those that are readily available to users of statistics. In Paper III we are
more restrictive and mainly select a smaller set of comparison methods along
those that performed well in Paper I.
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4 Concluding remarks and future research

The kernel features behave largely in accordance with general results from
kernel estimation. This is also true for the strong dependence on the donor
pool size. Even though some features do not contribute in all situations, the
combination of features generally contributes more to bias reduction com-
pared to when used separately. Though the kernel features seemed to ease
up the reliance on donor pool size, we stress that it is always important to
explore this effect, and to make statements conditional on the chosen degree
of smoothing.

The simulations show that our imputation method performs almost as
well as competing methods when the study variable is a linear function of
the auxiliaries, and better when the study variable is a nonlinear function of
the auxiliaries. Our method seems to benefit a lot from increasing the sample
size. Since we generally used a rather modest sample size of 400 units with
on average 50% response rate, this seems beneficial for applications to larger
datasets.

Various topics would be interesting to pursue in future research. Two
possible tracks, or presumably a compromise between them, is to develop
the handling om non-continuous auxiliary variables in line with the proposed
methods, or to incorporate already existing methods. A more practical long-
term goal is to set up a R package to make the methods available to a wider
public. It would then be beneficial to develop the handling of deciding the
degree of smoothing, which has not been the main focus of this thesis. Also,
we would like to increase the degree of automatization for selection algorithms
and methods. Another area of great interest, which has not been discussed
to a great extent in this thesis, is the choice of distance function. It may have
a large impact when there is access to several auxiliaries of different types,
or if we would be utilizing e.g. the response propensity, or samples based on
unequal probability designs.
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