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Abstract

This thesis develops models and associated Bayesian inference methods for flexible univariate
and multivariate conditional density estimation. The models are flexible in the sense that they
can capture widely differing shapes of the data. The estimation methods are specifically designed
to achieve flexibility while still avoiding overfitting. The models are flexible both for a given
covariate value, but also across covariate space. A key contribution of this thesis is that it pro-
vides general approaches of density estimation with highly efficient Markov chain Monte Carlo
methods. The methods are illustrated on several challenging non-linear and non-normal datasets.

In the first paper, a general model is proposed for flexibly estimating the density of a contin-
uous response variable conditional on a possibly high-dimensional set of covariates. The model
is a finite mixture of asymmetric student-t densities with covariate-dependent mixture weights.
The four parameters of the components, the mean, degrees of freedom, scale and skewness, are
all modeled as functions of the covariates. The second paper explores how well a smooth mix-
ture of symmetric components can capture skewed data. Simulations and applications on real data
show that including covariate-dependent skewness in the components can lead to substantially im-
proved performance on skewed data, often using a much smaller number of components. We also
introduce smooth mixtures of gamma and log-normal components to model positively-valued re-
sponse variables. In the third paper we propose a multivariate Gaussian surface regression model
that combines both additive splines and interactive splines, and a highly efficient MCMC algo-
rithm that updates all the multi-dimensional knot locations jointly. We use shrinkage priors to
avoid overfitting with different estimated shrinkage factors for the additive and surface part of the
model, and also different shrinkage parameters for the different response variables. In the last pa-
per we present a general Bayesian approach for directly modeling dependencies between variables
as function of explanatory variables in a flexible copula context. In particular, the Joe-Clayton cop-
ula is extended to have covariate-dependent tail dependence and correlations. Posterior inference
is carried out using a novel and efficient simulation method. The appendix of the thesis documents
the computational implementation details.
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ulas; Markov chain Monte Carlo.
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1. Introduction and background

1.1 Motivating flexible Bayesian modeling

Statistical methods have been developed rapidly in the past twenty years. One driving factor of
this development is that more and more complicated high-dimensional data require sophisticated
data analysis methods. A noticeably successful case is the machine learning field which is now
wildly used in industry. Another reason are the dramatic advancements in the statistical com-
putational environment. Computationally expensive methods that in the past couldonly be run
on expensive super computers are now possible to run on a standard PC. This has created an
enormous momentum for Bayesian analysis where complex models are typically analyzed with
modern computer-intensive simulation methods.

Traditional linear models with Gaussian assumptions are challenged by the new large compli-
cated datasets, which have in turn generated interest in new approaches with flexible model with
less restrictive assumptions. Moreover, research has shifted the attention from merely modeling
the mean and variance of the data to sophisticated modeling of skewness, tail-dependence and out-
liers. However such work demands efficient inference tools. The development of highly efficient
Markov chain Monte Carlo (MCMC) methods has reduced the barrier. Moreover, the Bayesian
approach provides a natural way for prediction, model comparison and evaluation of complicated
models, and has the additional advantage of being intimately connected with decision making.

1.2 Bayesian inference

In Bayesian statistics, inference of an unknown quantity θ combines data information y with prior
beliefs about θ via Bayes’ formula

p(θ |y) =
p(y|θ)p(θ)

∫

p(y|θ)p(θ)dθ

where p(y|θ) is the likelihood function and p(θ) is the prior knowledge of θ and
∫

p(y|θ)p(θ)dθ
is also know as the marginal likelihood or prior predictive distribution. In many simple statistical
models with vague priors, Bayesian inference draws similar conclusions to those obtained from a
traditional frequentist approach, see e.g. Gelman et al. (2004). The Bayesian approach is however
more easily to extended to more complicated models using MCMC simulation techniques.

In all but the most simplistic models, the posterior distribution is analytically intractable and
Markov chain Monte Carlo (MCMC) algorithms are used for sampling the posterior distribution
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p(θ |y). The Metropolis-Hastings algorithm draws from the Bayesian posterior distribution of
θ by generating random draws from a proposal distribution and accepts each draw with a cer-
tain probability. The efficiency of Metropolis-Hastings algorithm depends how well the proposal
distribution approximates the true posterior. The Gibbs sampler is a special case of Metropolis-
Hastings algorithm in which the proposal draws are simulated from the full conditional posterior
and are accepted with probability one. When drawing from the posterior in complicated models
one usually needs to mix different algorithms. Metropolis-Hastings within Gibbs is one of such
combinations where the subsets of the posterior parameter vector θ are sampled using the Gibbs
sampler with each parameter subset drawn via Metropolis-Hastings algorithm.

1.3 Density estimation

In statistics, density estimation is the procedure of estimating an unknown density p(y) from ob-
served data. The very early stage of density estimation techniques traces back to the usage of
histograms, later followed by kernel density estimation in which the shape of the data is approx-
imated through a kernel function with a smoothing parameter (bandwidth), see e.g. Silverman
(1986). However due to the difficulty in specifying the bandwidth in kernel density estimation,
mixture models have become a popular alternative approach, see Frühwirth-Schnatter (2006) for
a textbook treatment. The mixture densities are usually written as

p(y|θ) =
K

∑
k=1

ωk pk(y|θk),

where ∑
K
k=1 ωk = 1 for non-negative mixture weights ωk and pk(x|θk) are the component densities.

When n < ∞, the mixture is said to be finite. If K = ∞, it is called an infinite mixture, the Dirichlet
process mixture being the most prominent example, see e.g. Hjort et al. (2010).

One important property is that the moments of the mixture density are easily obtained through
the moments of its mixture components. If the m:th central moment exists for all of its component
densities, the m:th central moment for the finite mixture density exists and is of the form

E((y−µ)m|θ) =
K

∑
k=1

m

∑
i=1

ωk

(

m

i

)

E((y−µk)
i|θi)

where µk is the mean of k:th density component. Mixture densities can be used to capture data
characteristics such as multi-modality, fat tails, and skewness. Zeevi (1997) uses mixture densities
to approximate complicated densities. See Figure 1.1 for an example with a mixture of normal
densities. For other properties of mixtures, see Frühwirth-Schnatter (2006).

1.3.1 Conditional density estimation

The conditional density estimation concentrates on modeling the relationship between a response
y and set of covariates x through a conditional density function p(y|x). In the simplest case, the
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Figure 1.1: Using mixture of normal densities (thin lines) to mimic a flexible density (bold line)

Gaussian linear regression y = x′β +ε with ε ∼ N(0,σ2) is trivially equivalent to modeling p(y|x)
by a Gaussian density with mean function µ = x′β and constant variance σ2.

Mixtures of conditional densities is the obvious extension of mixture models to the conditional
density estimation problem:

p(y|x) =
K

∑
k=1

ωk pk(y|x)

where pi(y|x) is the conditional density in i:th mixture component. A simple case is the mixture of
homoscedastic Gaussian regression models with constant mixture weights. The limitation of this
model is that it restricts the shape of the distribution to be the same for all x. A smooth mixture is
a finite mixture density with weights that are smooth functions of the covariates

ωk(x) =
exp(x′γk)

∑
K
i=1 exp(x′γi)

.

This model allows the density shape to be different for different x values. Villani et al. (2009)
propose the mixture of heteroscedastic Gaussian model with smooth weight functions. Norets
(2010) shows that large classes of conditional densities can be approximated in the Kullback-
Leibler distance by finite smooth mixtures of normal regressions.

In conditional density estimation, an important focus is modeling the regression mean E(y|x).
A spline is a popular approach for nonlinear regression that models the mean as a linear combina-
tion of a set of nonlinear basis functions of the original regressors,

y = f (x)+ ε = x′β +∑
k

i=1
x(ξi)

′βi + ε
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where k is number of basis functions x(ξ ) used and ξi is the location of i:th basis function, often
referred to as a knot. Each basis function is defined by a knot ξi in covariates space and the
knots determine the points of flexibility of the fitted regression function. In the case with multiple
covariates x1, ...,xq it is common to assume additivity

y =
q

∑
j=1

f j(x j)+ ε,

where f j(x j) are spline functions. The more general surface model does not assume additivity and
uses a multi-dimensional basis function with interactions among the covariates. It is possible to
have both additive and interactive splines in the regression.

1.3.2 Multivariate density estimation

The multivariate density estimation and conditional density estimation are analogues of their uni-
variate cases except that the densities p(YYY ) and p(YYY |XXX) are multivariate. Therefore, kernel density
estimators can be naturally extended to the multivariate case with a multivariate bandwidth matrix,
but optimizing the bandwidth matrix is much more difficult. Alternatively, one may use mixture of
multivariate densities. Smooth mixture of multivariate regression models and multivariate splines
are extensions of conditional density estimation from univariate case to multivariate case. In ad-
dition to the methods mentioned above, copula is a more general choice for multivariate density
estimation because of its unique feature that a copula function separates the multivariate depen-
dence from its marginal functions, and it is possible to use both continuous and discrete marginal
models.

1.3.3 Copula density estimation

In the multivariate density estimation, research diverts into different directions. One of them is
to explore the multivariate dependence using copulas (Sklar, 1959). Let F(y1, ...,yM) be a multi-
dimensional distribution function with marginal distribution functions F1(y1), · · · ,FM(yM). Then
there exists a function C such that

F(y1, ...,yM) =C(F1(y1), ...,FM(yM))

=C

(

∫ y1

−∞
f1(z1)dz1, ...,

∫ yM

−∞
fM(zM)dzM

)

=C(u1, ...,uM)

where C(·) is the copula function and f (·) is the density of the marginal distribution F(·). Further-
more, if Fi(yi) are all continuous for i∈ {1, ...,M}, then C is unique. The derivative c(u1, ...,uM) =
∂ MC(u1, ...,uM)/(∂u1...∂uM) is the copula density that corresponds to the multivariate density
function.

A nice feature of the copula construction is that it separates the marginal distributions f1(y1), ..., fM(yM)
from the dependence structure given by the copula function. For instance, the Gaussian copula
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which is obtained from a Gaussian density function can be combined with non-Gaussian, or even
discrete, marginal distributions, see e.g. Pitt et al. (2006). In addition, a richer class of multivariate
distributions via copula is possible to construct through methods like Laplace transform, mixtures
of conditional distributions, and convolution etc, with appealing properties.

The dependence properties of copulas have been theoretically studied by Joe (1997) and others.
Given a bivariate distribution function F(y1,y2) and its copula function C(u1,u2), the correlation
between two marginal densities can be measured by Kendall’s τ

τ = 4
∫ ∫

F(y1,y2)dF(y1,y2)−1 = 4
∫ ∫

C(u1,u2)dC(u1,u2)−1.

Unlike Pearson’s correlation that can only measure linear dependence, Kendall’s τ is a rank cor-
relation that is invariant with respect to strictly increasing transformations, i.e. the marginal den-
sities do not affect the Kendall’s τ if they are strictly continuous. This property makes Kendall’s
τ a more desirable measure of association for multivariate non-Gaussian distributions. The same
property holds for Spearman’s ρ . See Joe (1997) for other characteristics of Kendall’s τ for dif-
ferent copula densities. For example, for copulas generated via the Laplace transform, which are
also known as Archimedean copulas, Kendall’s τ can be written as

τ = 1−4
∫ ∞

0
s(φ ′(s))2ds

where φ ′(s) is the first order derivative of the Laplace transform φ(s).
In addition to correlation, dependence in the tail is also important in many applications. Tail-

dependence measures the extent to which several variables simultaneously take on extreme values.
The lower tail-dependence λL and the upper tail-dependence λU can be defined in terms of copulas
in the bivariate case

λL = lim
u→0+

Pr(X1 < F−1
1 (u)|X2 < F−1

2 (u)) = lim
u→0+

C(u,u)

u
,

λU = lim
u→1−

Pr(X1 > F−1
1 (u)|X2 > F−1

2 (u)) = lim
u→1−

1−C(u,u)

1−u
.

Not all multivariate copulas generate tail-dependence. The Gaussian copula, for example, has
no tail-dependence and the student’s t copula generates a rather restrictive tail-dependence as a
results of only having a single degrees of freedom parameter for all the modeled variables. In the
bivariate copula family, the Joe-Clayton copula has explicit parameters for the lower and upper
tail-dependence.

A copula function satisfies the inequalities L ≤C(u1, ...,uM) ≤U where L = ∑
M
i=1 ui −M +1

is Fréchet–Hoeffding lower bound and U = min{u1, ...,uM} is Fréchet–Hoeffding upper bound.
Note that U is also a copula but L is a copula if M = 2. Furthermore, in the bivariate case, if the
copula is close to the upper bound, it shows strong positive dependence and if the copula is close
to the lower bound, it shows strong negative dependence (Nelsen, 2006).

The conditional density estimation of p(YYY |XXX) in terms of a copula is expressed as

5



p(YYY |XXX) = c(u1|x1, ...,uM|xM)×
M

∏
i=1

pi(yi|xi)

where pi(yi|xi) is the conditional density in i:th marginal model with covariate vector xi. The
inference for a copula model is similar to the inference methods used for other multivariate models.
In particular, the likelihood for copula is written as

n

∏
j=1

c(u j1, ...,u jM)×
M

∏
i=1

Li

where Li is the likelihood in i:th marginal model.

1.4 Regularization

Variable selection is a technique that is commonly used in regression models. Historically the
purposes for using variable selection are to select meaningful covariates that contributes to the
model, inhibit ill-behaved design matrices, and to prevent model over-fitting. Methods like back-
ward and forward selections are standard routines in most statistical software packages. However
the drawbacks are obvious in those techniques, e.g. the selection depends heavily on the starting
points, which becomes more problematic with high dimensional data with many covariates.

Most current methods rely on Bayesian variable selection via MCMC, as introduced by Smith
& Kohn (1996); George & McCulloch (1997). A standard Bayesian variable selection approach
is to augment the regression model with a variable selection indicator I for each covariate

I j =

{

1 if β j 6= 0

0 if β j = 0,

where β j is the jth covariate in the model. More informally, this can be expressed as

I j =

{

1 if the variable jenters the model

0 otherwise.

Variable selection is then obtained by sampling the posterior distribution of all regression coeffi-
cient jointly with the variable selection indicators, thereby yielding the marginal posterior proba-
bility of variable inclusion p(I |Data). More recent improved algorithms include (Brown et al.,
1998) for large covariate sets and the adaptive scheme for Bayesian variable selection in (Nott
& Kohn, 2005). See O’Hara & Sillanpää (2009) for a review of Bayesian variable selection ap-
proaches.

For the purpose of overcoming problems with overfitting, shrinkage estimation can also be
used as an alternative, or even complementary, approach to variable selection. A shrinkage esti-
mator shrinks the regression coefficients towards zero rather than eliminating the covariate com-
pletely. One way to select a proper value of the shrinkage is by cross-validation, which is costly
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with big data and complicated models. In the Bayesian approach, the shrinkage parameter is usu-
ally automatically estimated together with other parameters in the posterior inference. The lasso

(least absolute shrinkage and selection operator) (Tibshirani, 1996) approach can be viewed as
shrinkage estimator with a Laplace prior (Park & Casella, 2008). Lasso can be shown to perform
both shrinkage and variable selection at the same time.

1.5 Bayesian predictive inference and model comparison

Two types of prediction are commonly used in predictive inference. Let Yb be the testing dataset
for evaluating the predictions, and Y−b the training dataset used for estimation. The prediction of
Yb given Y−b is called in-sample prediction if Yb ∈ Y−b and out-of-sample prediction if Yb /∈ Y−b .
Assuming that the data observations are independent conditional on the model parameters θ , the
predictive density can be written

p(Yb|Y−b) =
∫ n

∏
j=1

p(Yj,b|θ)p(θ |Y−b)dθ

where p(θ |Y−b) is the posterior based on the training dataset Y−b and ∏
n
j=1 p(Yj,b|θ) is the like-

lihood for the observations conditional on the model parameters. The predictive density can be
viewed as a weighted average of the likelihood with p(θ |Y−b) as the weight function. In time
series, the predictive distribution for predicting p period ahead is written differently due the de-
pendence of time,

p(Y(T+1):(T+p)|Y1:T ) =
p

∏
i=1

∫

p(YT+i|θ ,Y1:(T+i−1))p(θ |Y1:(T+i−1))dθ .

Bayesian model comparison have historically been based on the marginal likelihood. It is well-
known, however,that the marginal likelihood is very sensitive to the specification of prior. This
sensitivity is apparent already from its definition since the marginal likelihood is the expected
likelihood where the expectation is taken with respect to the prior. Due to this prior sensitivity, it
is becoming more common to have model comparisons based on the log predictive density score
(LPDS)

LPDS =
1

B
∑

B

i=1
log p(Ybi

|Y−bi
)

in which the dataset are partitioned into B subsets, Yb1 , ...,YbB
. The LPDS sacrifices a part of the

data, uses that data to train the prior into a more robust posterior, and then uses that posterior to
integrate out the model parameters. In cross-sectional data, the data can be partitioned randomly
or with a systematic pattern. In time series it is more common to use the past data as the training
data and predict the future.
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2. Summary of papers

Paper I: Flexible modeling of conditional distributions using smooth
mixtures of asymmetric student t densities

In this paper we propose a general model for flexibly estimating the density of a continuous re-
sponse variable conditional on a possibly high-dimensional set of covariates.

The paper introduces a new model class with mixtures of flexible asymmetric student t densi-
ties (split-t)with covariate-dependent mixture weights, also referred to as a smooth mixture. The
properties of the split-t are studied. The four parameters of the mixture components - the mean,
degrees of freedom, scale and skewness -are all modeled as functions of covariates. The modeling
philosophy is the complex-and-few approach where enough flexibility is used within the mixture
components, so that the number of components can be kept to a minimum.

Inference is Bayesian and the computation is carried out using Markov chain Monte Carlo
simulation. We use a tailored Metropolis-Hastings-within-Gibbs algorithm for sampling the pos-
terior distribution of the parameters. The number of components in the mixture model are selected
via a Bayesian version of out-of-sample cross-validation. To enable model parsimony, a variable
selection prior is used in each set of covariates and among the covariates in the mixing weights.
We use variable-dimension finite-step Newton proposals in the Metropolis-Hastings algorithm to
update coefficients and variable selection indicators efficiently.

The model is applied to analyze the distribution of daily stock market returns of the S&P500
index conditional on nine covariates including the historical returns and volatility measures such
as a geometrically decaying average of past absolute returns. The out-of-sample evaluation shows
that mixtures of few asymmetric student t densities outperforms widely used GARCH models and
other recently proposed mixture models during the recent financial crisis. We also investigated
estimation stability over different subsamples for the popular Value-at-Risk measure.

Paper II: Modeling conditional densities using finite smooth mix-
tures

In this paper we explore the flexibility of modeling conditional densities using finite smooth mix-
tures, with particular emphasis on skewed data. We explore how well a smooth mixture of sym-
metric components can capture skewed data. Simulations and applications on real data show that
including covariate-dependent skewness in the components can lead to substantially improved
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performance on skewed data, often using a much smaller number of components. Furthermore,
variable selection is effective in removing unnecessary covariates in the skewness, which means
that there is little loss in allowing for skewness in the components when the data are actually
symmetric. We also explore the use of splines in the mixture components and demonstrate the
efficiency of variable selection in smooth mixtures on a well known environmental data set from
the nonparametric regression literature.

In the simulation study, we analyze the relative performance of smooth mixtures adaptive
Gaussian densities and split-t densities by comparing the estimated conditional densities q(y|x)
with the true data-generating densities p(y|x) using estimates of both the Kullback-Leibler diver-
gence and the L2 distance. We find that smooth mixtures with a few complex components can
greatly outperform smooth mixtures with many simpler components. Moreover, variable selec-
tion is effective in down-weighting unnecessary aspects of the components and makes the results
robust to mis-specification of the number of components, even when the components are complex.

We also introduce smooth mixtures of gamma and log-normal components to model positively-
valued response variables where the parameters are reparametrized in terms of mean and variance.
This reparametrization makes the prior specification easier for practitioners. A large set of model
with gamma and log-normal components are compared on a dataset of electricity expenditures in
1602 Australian households.

Paper III: Efficient Bayesian multivariate surface regression

In this paper we further investigate nonparametric modeling for multivariate conditional density
estimation using a Gaussian multivariate regression with a mean surface modeled flexibly using a
spline surface.

Methods for choosing a fixed set of knot locations in additive spline models are fairly well
established in the statistical literature. While most of these methods are in principle directly
extendable to non-additive surface models, they are less likely to be successful in that setting
because of the curse of dimensionality, especially when there are more than a couple of covariates.

We propose a regression model for a multivariate Gaussian response that combines both ad-
ditive splines and interactive splines, and a highly efficient MCMC algorithm that updates all the
knot locations jointly. We use shrinkage priors to avoid overfitting with different estimated shrink-
age factors for the additive and surface part of the model, and also different shrinkage parameters
for the different response variables. This makes it possible for the model to adapt to varying
degrees of nonlinearity in different parts of the data in a parsimonious way.

We compare the performance of the traditional fixed knots approach to our approach with
freely estimated knot locations using simulated data with different number of covariates and for
varying degrees of nonlinearity in the true surface. We use shrinkage priors with estimated shrink-
age both for the fixed and free knot models, but no variable selection.

We also compare three types of MCMC updates of the knots: i) one-knot-at-a-time updates
using a random walk Metropolis proposal with tuned variance, ii) one-knot-at-a-time updates with
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the tailored Metropolis-Hastings step, and iii) full block updating of all knots using the tailored
Metropolis-Hastings step. The massive efficiency and speed gains from updating all the blocks
jointly using a tailored proposal when our algorithm is used comparing to other algorithms.

Moreover, the sensitivity study of the posterior inferences with respect to variations in the
prior shows the free knots model is also more robust in the sense that it performs consistently well
across different datasets.

Our surface model is illustrated in a finance application where a firms leverage is modeled as a
function of the proportion of fixed assets, the firm’s market value in relation to its book value, firm
sales and profits. It is shown that our approach is computationally efficient, and that allowing for
freely estimated knot locations can offer a substantial improvement in out-of-sample predictive
performance.

Paper IV: Modeling covariate-contingent correlation and tail-dependence
with copulas

In this paper we propose a general approach for modeling a covariate-dependent copula. The
copula parameters as well as the parameters in the marginal models are linked to covariates. Our
method allows for variable selection among the covariates in the marginal models and in the copula
parameters. Posterior inference is carried out using an efficient MCMC simulation method.

We first introduce the reparametrized Joe-Clayton copula where the correlation and lower
tail-dependence parameters are used as explicit copula parameters. Our parameterization reduces
the effort for specifying the prior information in our Bayesian approach. Most importantly, this
parameterization make it possible to directly link correlations and tail-dependence to covariates
via separate link functions. We also study some new properties for this copula.

We describe the prior specification for the model in details and we also consider a special
situation where the model parameters are variationally dependent of each other. Our solution
involves introducing a conditional link function, which is demonstrated in our application to make
the MCMC algorithm more robust and gives higher acceptance probability in Metropolis- Hastings
algorithm.

We illustrate our covariate-dependent copula model with daily returns from the S&P100 and
S&P600 daily stock market indices during the period from September 15, 1995 to January 16,
2013. In the marginal models, we use an asymmetric student’s t density in all margins with all
four parameters in the model linked to covariates. The use of covariates in the correlation and
lower-tail dependence parameters in the copula is shown to improve out-of-sample predictive
performance. Moreover, variable selection also enhances the model’s predictive performance, and
provides interesting insights into which covariates are associated with lower-tail dependence and
correlation between the variables.
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FLEXIBLE MODELING OF CONDITIONAL DISTRIBUTIONS

USING SMOOTH MIXTURES OF ASYMMETRIC STUDENT T DENSITIES

FENG LI, MATTIAS VILLANI, AND ROBERT KOHN

ABSTRACT. A general model is proposed for flexibly estimating the density of a continuous re-

sponse variable conditional on a possibly high-dimensional set of covariates. The model is a finite

mixture of asymmetric student-t densities with covariate-dependent mixture weights. The four pa-

rameters of the components, the mean, degrees of freedom, scale and skewness, are all modeled as

functions of the covariates. Inference is Bayesian and the computation is carried out using Markov

chain Monte Carlo simulation. To enable model parsimony, a variable selection prior is used in each

set of covariates and among the covariates in the mixing weights. The model is used to analyze the

distribution of daily stock market returns, and shown to more accurately forecast the distribution of

returns than other widely used models for financial data.

KEYWORDS: Bayesian inference, Markov Chain Monte Carlo, Mixture of Experts, Variable selec-

tion, Volatility modeling.

1. INTRODUCTION

This paper is concerned with estimating the conditional predictive distribution p(y|x), where y

is a univariate continuous response variable and x is a possibly high-dimensional vector of covari-

ates. Our approach is an exercise in nonparametric regression density estimation since p(y|x) is

modeled flexibly both for any given x but also across different covariate values.

Villani et al. (2009) propose the smooth adaptive Gaussian mixture (SAGM) model as flexible

model for regression density estimation. Their model is a finite mixture of Gaussian densities with

the mixing probabilities, the component means and component variances modeled as functions of

the covariates x, with Bayesian variable selection in all three sets of covariates. See Frühwirth-

Schnatter (2006) for a comprehensive introduction to mixture models.

Villani et al. (2009) argue in favor of a complex-and-few modeling philosophy where enough

flexibility is used within the mixture components, so that the number of components can be kept

to a minimum; see also Wood et al. (2002). This is in sharp contrast to the simple-and-many

approach used in the machine learning literature (in particular the mixture-of-experts model in-

troduced in Jacobs et al. (1991), and Jordan & Jacobs (1994)) where the components are often

linear homoscedastic regressions, or even constant functions. Villani et al. (2009) show that a
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single complex component can often give a better and numerically more stable fit in substantially

less computing time than a model with many simpler components. Moreover, simulations and

real applications in Villani et al. (2009) show that a simple-and-many approach can fail to fit het-

eroscedastic data even with a very large number of components, especially in situations with more

than one or two covariates. Having heteroscedastic components in the mixture is therefore crucial

for accurately modeling heteroscedastic data.

In one of their applications, Villani et al. (2009) model the distribution of daily stock market

returns as a function of lagged returns and smooth measures of recent volatility. The best model

uses one component to fit the strong heteroscedasticity in the data and the other two or three

components to capture the additional kurtosis and/or skewness. The current paper continues the

complex-and-few approach and extends the SAGM model by generalizing the Gaussian compo-

nents to asymmetric student-t densities, thereby making it possible to capture skewness and excess

kurtosis within the components. Each component density has four parameters: location, scale, de-

grees of freedom and skewness, and each of these four parameters are modeled as function of

covariates. This makes it possible to have, e.g. the degrees of freedom smoothly varying over

covariate space in a way dictated by the data. An efficient Markov chain Monte Carlo (MCMC)

simulation method is proposed that allows for Bayesian variable selection in all four parameters

of the asymmetric t density, and in the mixture weights. The variable selection makes it pos-

sible to handle a large number of covariates. Reducing the number of effective parameters by

variable selection mitigates problems with over-fitting and is also beneficial for the convergence

of the MCMC algorithm. The methodology is applied to model the distribution of daily returns

from the S&P500 stock market index. It is shown that a smooth mixture of asymmetric student

t components outperforms SAGM and other commonly used models for financial data in an out-

of-sample evaluation of the predictive density during the financial turmoil in the end of year 2008

and beginning of 2009.

2. THE MODEL AND PRIOR

2.1. Smooth mixtures. Our model is a finite mixture density with weights that are smooth func-

tions of the covariates,

p(y|x) =
K

∑
k=1

ωk(x)pk(y|x), (1)

where pk(y|x) is the kth component density with weight ωk(x). The component densities are

asymmetric student t densities described in detail in the next section. The weights are modeled by

a multinomial logit function

ωk(x) =
exp(x′γk)

∑
K
r=1 exp(x′γr)

, (2)

with γ1 = 0 for identification. The covariates in the components can in general be different from

the covariates in the mixture weights. Jiang (1999); Jiang & Tanner (1999) show that smooth

mixtures with sufficiently many (generalized) linear regression components can approximate any

density in the exponential family with arbitrary smooth mean functions. See also Zeevi (1997) for

approximation of densities with mixture models.
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To simplify the MCMC simulation, we express the mixture model in terms of latent variables

as in Diebolt & Robert (1994) and Escobar & West (1995). Let s1, ...,sn be unobserved indicator

variables for the observations in the sample such that si = k means that the ith observation belongs

to the kth component, pk(y|x). The model in (1) and (2) can then be written as

Pr(si = k|xi,γ) = ωk(xi)

yi|(si = k,xi)∼ pk(yi|xi).

Conditional on s = (s1, ...,sn)
′, the mixture model decomposes into K separate component models

p1(y|x), ..., pK(y|x), with each data observation being allocated to one and only one component.

2.2. The component models. The component densities in SAGM are Gaussian with both the

mean and variance functions of covariates. Our article extends this model so that the component

densities belong to an asymmetric student t family. More specifically, the component models are

split-t densities (Geweke, 1989; Hansen, 1994) according to the following definition.

Definition 1. The random variable y follows a split-t distribution with ν > 0 degrees of freedom,

y ∼ t(µ,φ ,λ ,ν), if its density function is of the form

c ·κ(µ,φ ,ν)I(y ≤ µ)+ c ·κ(µ,λφ ,ν)I(y > µ),

where

κ(µ,φ ,ν) =





ν

ν + (y−µ)2

φ 2





(ν+1)/2

,

is the kernel of a student t density with variance φ 2ν/(ν−2) and c= 2[(1+λ )φ
√

νBeta(ν
2
, 1

2
)]−1

is the normalization constant.

The location parameter µ is the mode, φ > 0 is the scale parameter, and λ > 0 is the skewness

parameter. When λ < 1 the distribution is skewed to the left, when λ > 1 it is skewed to the right,

and when λ = 1 it reduces to the usual symmetric student-t density (Figure 1, left). The skewness

of split-t can approach infinity as ν approaches 3 and when ν approaches infinity, the maximum

skewness approaches 1 (Figure 1, right). The split-t distribution reduces to the two-piece normal

distribution in Gibbons (1973) and John (1982) as ν → ∞. The split-t density has the advantage

that its interpretation is simple since it is equal to the well-known symmetric student t density on

either side of the mode, but any other asymmetric t density can equally well be used in our MCMC

methodology, see Section 3.1.

The next lemma gives the first four central moments of the split-t density. We use the following

definition of skewness and excess kurtosis

S(y) =
E [y−E(y)]3

V (y)3/2

K(y) =
E [y−E(y)]4

V (y)2
−3,

where V (y) denotes the variance. The following lemma, which can be proved by straightforward

algebra, gives some basic properties of the split-t distribution.
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Lemma 2. If y ∼ t(µ,φ ,λ ,ν) then

E(y) = µ +h

V (y) =
1+λ 3

1+λ

ν

ν −2
φ 2 −h2

E [y−E(y)]3 = 2h3 +2hφ 2
(

λ 2 +1
) ν

ν −3
−3hφ 2 λ 3 +1

λ +1

ν

ν −2

E [y−E(y)]4 =
3ν2φ 4

(

1+λ 5
)

(1+λ )(ν −2)(ν −4)
−3h4 +

6h2
(

1+λ 3
)

νφ 2

(1+λ )(ν −2)

−
8h2

(

λ 2 +1
)

νφ 2

ν −3
,

where

h =
2
√

νφ (λ −1)

(ν −1)Beta
(

ν
2
, 1

2

) ,

and moment of order r exists exists if ν > r.

The CDF of a split-t distribution is of the form

1

1+λ
+

a ·Sign(y−µ)

1+λ

[

1−
Beta

(

t; ν
2
, 1

2

)

Beta
(

ν
2
, 1

2

)

]

where

t =
νa2φ 2

νa2φ 2 +(y−µ)2
,

and a = λ if y > µ and a = 1 otherwise, and Beta(t;ν/2,1/2) is the incomplete beta function

(Abramowitz & Stegun, 1972).

Each of the four parameters µ,φ ,λ and ν are connected to covariates as

µ = βµ0 + x′tβµ

lnφ = βφ0 + x′tβφ

lnλ = βλ0 + x′tβλ

lnν = βν0 + x′tβν

(3)

but any smooth link function can equally well be used in the MCMC methodology. Additional

flexibility can be obtained by letting a subset of the covariates be a non-linear basis expansions,

e.g. additive splines or splines surfaces (Ruppert et al., 2003) as in Villani et al. (2009), but this

is not pursued here. A strength of our approach is that the four regression coefficient vectors: βµ ,

βφ , βν and βλ are all treated in a unified way in the MCMC algorithm. Whenever we refer to a

regression coefficient vector without subscript, β , the argument applies to any of the regression

coefficient vector of the split-t parameters in (3).

This split-t model will often be flexible enough to fit the data, but there are datasets that require

a smooth mixture model, for example when the data are multimodal for some covariates values.

A second example occurs when the wrong link function is used in one of the split-t parameters,
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FIGURE 1. Graphical display of the split-t densities. The left-hand side are the

split-t densities with location parameter µ = 0 and skewness parameter λ = 1.8.

The right-hand side is the maximum skewness of the split-t as a function of degrees

of freedom.

where the mixture can then correct for this erroneous choice. A third example is when there are

outliers in the data that cannot be accommodated by a student t density.

A smooth mixture of split-t densities is a model with a large number of parameters, however,

and is therefore likely to over-fit the data unless model complexity is controlled effectively. We

use Bayesian variable selection in all four split-t parameters, and in the mixing function. This can

lead to important simplifications of the split-t components. Not only does this control complexity

for a given number of components, but it also simplifies the existing components if an additional

component is added to the model (the LIDAR example in Villani & Kohn (2007) illustrates this

well). Increasing the number of components can therefore in principle even reduce the number of

effective parameters in the model.

A more extreme, but often empirically relevant, simplification of the model is to assume that

one or more split-t parameters are common to the components, that is, only the intercepts in

(3) are allowed to be different across components. The unrestricted model where the regression

coefficients are allowed to differ across components is said to have separate components.

2.3. The prior. Although the MCMC methodology (see Section 3.2) allows any prior distribu-

tion, we shall now present an easily specified prior that depends only on a few hyper-parameters.

First, we standardize the covariates by subtracting the mean and dividing by the standard deviation.

This allows us to assume prior independence between the intercept and the remaining regression

coefficients, and the intercepts have the interpretation of being the (possibly transformed) split-t

parameters at the mean of the original covariates. Since there can be a large number of covari-

ates in the model, our strategy is to incorporate available prior information via the intercepts, and

to treat the remaining regression coefficients more informally. Assuming a normal prior for µ
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implies a normal prior on βµ0. The other three split-t parameters φ , λ and ν are assumed to fol-

low independent log-normal priors with means m∗ and s∗, where m∗ and s∗ are different for the

different split-t parameters. This translates into a normal prior on the intercept with mean

m0 = lnm∗−
1

2
ln

[

(

s∗

m∗

)2

+1

]

and variance

s2
0 = ln

[

(

s∗

m∗

)2

+1

]

.

The regression coefficients βµ , βφ , βν and βλ are assumed to be independent a priori. We allow

for Bayesian variable selection by augmenting each parameter vector β by a vector of binary

covariate selection indicators I = (i1, ..., ip) such that β j = 0 if i j = 0. Let βI denote the subset

of β selected by I . We assume the following prior for each β vector

βI |I ∼ N(0,τ2
β I)

and βI c |I c is identically zero, where I c is the complement of I . Alternatively, one can use

a g-prior (Zellner, 1986) β ∼ N
[

0,τ2
β (X

′X)−1
]

and then condition on the restrictions imposed

by I ; Denison et al. (2002, p. 80-81) discusses the advantages and disadvantages of these two

different priors. The g-prior is less appealing in a mixture context since (X ′X)−1 may be a bad

representation of the covariance between parameters in the smaller components, see Villani et al.

(2009) for a discussion, and we will therefore use the identity matrix here. We use τβ = 10 as

the default value in our application in Section 4. Given that the covariates have been standardized

to zero mean and unit variance, and that the variance of y is roughly one in our empirical exam-

ple, these priors are vague. We investigate the sensitivity of the posterior inferences and model

comparison with respect to τβ in Section 4.

The variable selection indicators are assumed to be independent Bernoulli with probability ωβ

a priori, but more complicated distributions are easily accommodated, see e.g. the extension in

Villani et al. (2009) for splines in a mixture context or a prior which is uniform on the variable

selection indicators for a given model size in Denison et al. (2002). It is also possible to estimate

ωβ as proposed in Kohn et al. (2001) with an extra Gibbs sampling step. Note that ωβ may be

different for each split-t parameter. Our default prior has ωβ = 0.5.

The prior on the mixing function decomposes as

p(γ,Z ,s) = p(s|γ,Z )p(γ|Z )p(Z ),

where Z is the p× (K − 1) matrix with variable selection indicators for the p covariates in the

mixing function (recall that γ1 = 0 for identification). The variable indicators in Z are assumed

to be iid Bernoulli(ωγ). Let γZ be the prior on γ = (γ ′2, ...,γ
′
m)

′ of the form

γZ |Z ∼ N(0,τ2
γ I),

and γZ c = 0 with probability one. We use τ2
γ = 10 as default value. Finally, p(s|γ,Z ) is given

by the multinomial logit model in (2). To reduce the number of parameters and to speed up the

MCMC algorithm we restrict the columns of Z to be identical, i.e. make the assumption that a
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covariate is either present in the mixing function in all components, or does not appear at all, but

the extension to general Z is straightforward, see Villani et al. (2009).

3. INFERENCE METHODOLOGY

3.1. The general MCMC scheme. We use MCMC methods to sample from the joint posterior

distribution, and draw the parameters and variable selection indicators in blocks. Villani et al.

(2009) experimented with several different algorithms in a related setting and the algorithm out-

lined below is similar to their preferred algorithm. The details of the algorithm are given in

Appendix A. The method used to select the number of components is discussed in Section 3.3.

The algorithm is a Metropolis-within-Gibbs sampler that draws parameters using the following

six blocks:

(1) {(β
(k)
µ ,I

(k)
µ )}k=1,...,K

(2) {(β
(k)
φ ,I

(k)
φ )}k=1,...,K

(3) {(β
(k)
λ

,I
(k)

λ
)}k=1,...,K

(4) {(β
(k)
ν ,I

(k)
ν )}k=1,...,K

(5) s = (s1, ...,sn)
(6) γ and IZ

The parameters in the different components are independent conditional on s. This means that

each of the first four blocks split up into K independent updating steps. Each updating step in

the first four blocks is sampled using highly efficient tailored MH proposals following a general

approach described in the next section. The latent component indicators in s are independent

conditional on the model parameters and are drawn jointly from their full conditional posterior.

Conditional on s, Step 6 is a multinomial logistic regression with variable selection, and γ and IZ

are drawn jointly using a generalization of the method used to draw blocks 1-4, see Villani et al.

(2009) for details.

Mixture models have well-known identification problems, the most serious one being the so-

called label switching problem, which means that the likelihood is invariant with respect to per-

mutations of the components in the mixture, see e.g. Celeux et al. (2000), Jasra et al. (2005) and

Frühwirth-Schnatter (2006). The aim of our article is to estimate the predictive density, so that

label switching is neither a numerical nor conceptual problem (Geweke, 2007). If an interpre-

tation of the mixture components is required, then it is necessary to impose some identification

restrictions on some of the model parameters, e.g. an ordering constraint (Jasra et al., 2005).

The number of components is assumed known in our MCMC scheme. A Bayesian analysis

via mixture models with an unknown number of components is possible using, e.g. Dirichlet

process mixtures (Escobar & West, 1995), reversible jump MCMC (Richardson & Green, 1997)

and birth-and-death MCMC (Stephens, 2000). However, one major drawback is that the posterior

distribution of the number of components for a given data set typically depends heavily on the

priors. In order to avoid that, we instead compare and select models based on the out-of-sample

LPDS (see details in Section 3.3). Our complex-and-few approach is also helpful in this aspect as

it keeps the number of components to a minimum (see Section 4).
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3.2. Updating (β , I ) using variable-dimension finite-step Newton proposals. Nott & Leonte

(2004) extend the method which was introduced by Gamerman (1997) for generating MH pro-

posals in a generalized linear model (GLM) to the variable selection case. Villani et al. (2009)

extend the algorithm to a general setting not restricted to the exponential family. We first treat the

problem without variable selection. The algorithm in Villani et al. (2009) only requires that the

posterior density can be written as

p(β |y) ∝ p(y|β )p(β ) =
n

∏
i=1

p(yi|ϕi)p(β ), (4)

where ϕi = x′iβ and xi is a covariate vector for the ith observation. Note that p(β |y) may be a

conditional posterior density and the algorithm can then be used as a step in a Metropolis-within-

Gibbs algorithm. The full conditional posteriors for blocks 1-4 in Section 3.1 are clearly all of

the form in (4). Newton’s method can be used to iterate R steps from the current point βc in the

MCMC sampling toward the mode of p(β |y), to obtain β̂ and the Hessian at β̂ . Note that β̂ may

not be the mode but is typically close to it already after a few Newton iterations, so setting R = 1,2
or 3 is usually sufficient. This makes the algorithm fast, especially when the gradient and Hessian

are available in closed form, which is the case here, see Appendix A.

Having obtained good approximations of the posterior mode and covariance matrix from the

Newton iterations, the proposal βp is now drawn from the multivariate t-distribution with g > 2

degrees of freedom:

βp|βc ∼ t



β̂ ,−

(

∂ 2 ln p(β |y)

∂β∂β ′

)−1
∣

∣

∣

∣

∣

β=β̂

,g



 ,

where the second argument of the density is the covariance matrix.

In the variable selection case we propose β and I simultaneously using the decomposition

g(βp,Ip|βc,Ic) = g1(βp|Ip,βc)g2(Ip|βc,Ic),

where g2 is the proposal distribution for I and g1 is the proposal density for β conditional on Ip.

The Metropolis-Hasting acceptance probability is

a[(βc,Ic)→ (βp,Ip)] = min

(

1,
p(y|βp,Ip)p(βp|Ip)p(Ip)g1(βc|Ic,βp)g2(Ic|βp,Ip)

p(y|βc,Ic)p(βc|Ic)p(Ic)g1(βp|Ip,βc)g2(Ip|βc,Ic)

)

.

The proposal density at the current point g1(βc|Ic,βp) is a multivariate t-density with mode ˜β

and covariance matrix equal to the negative inverse Hessian evaluated at ˜β , where ˜β is the point

obtained by iterating R steps with the Newton algorithm, this time starting from βp. A simple

way to propose Ip is to randomly select a small subset of Ic and then always propose a change

of the selected indicators. This proposal can be refined in many ways, using, e.g. the adaptive

scheme in Nott & Kohn (2005), where the history of I -draws is used to adaptively build up

a proposal for each indicator. It is important to note that βc and βp may now be of different

dimensions, so the original Newton iterations no longer apply. We will instead generate βp using

the following generalization of Newton’s method. The idea is that when the parameter vector β
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changes dimensions, the dimension of the functionals ϕc = x′βc and ϕp = x′βp stay the same, and

the two functionals are expected to be quite close. A generalized Newton update is

βr+1 = A−1
r (Brβr − sr), (r = 0, ...,R−1), (5)

where β0 = βc, and the dimension of βr+1 equals the dimension of βp, and

sr = X ′
r+1d +

∂ ln p(β )

∂β

Ar = X ′
r+1DXr+1 +

∂ 2 ln p(β )

∂β∂β ′

Br = X ′
r+1DXr +

∂ 2 ln p(β )

∂β∂β ′
,

(6)

where d is an n-dimensional vector with gradients ∂ ln p(yi|ϕi)/∂ϕi for each observation currently

allocated to the component being updated. Similarly, D is a diagonal matrix with Hessian elements

∂ 2 ln p(yi|ϕi)

∂ϕi∂ϕ ′
i

,

Xr is the matrix with the covariates that have non-zero coefficients in βr, and all expressions

are evaluated at β = βr. For the prior gradient this means that ∂ ln p(β )/∂β is evaluated at βr,

including all zero parameters, and that the sub-vector conformable with βr+1 is extracted from

the result. The same applies to the prior Hessian (which does not depend on β however, if the

prior is Gaussian). Note that we only need to compute the scalar derivatives ∂ ln p(yi|φi)/∂φi and

∂ 2 ln p(yi|φi)/∂φ 2
i .

After the first Newton iteration the parameter vector no longer changes dimension, and the

generalized Newton algorithm in (5) reduces to the original Newton algorithm. Once the simulta-

neous update of the (β ,I )-pair is completed, we make a final update of the non-zero parameters

in β , conditional on the previously accepted I , using the fixed dimension Newton algorithm.

This additional step is needed if we choose the simple proposal of I where we always propose a

change of (a subset of) I . Since β and I are proposed jointly this means that the posterior of β
would be updated very infrequently when the posterior of I is very precise (since most draws of

I will then be rejected). Other ways to propose I may not benefit from this additional step, e.g.

the adaptive scheme in Nott & Kohn (2005). The proposal density g1(βp|Ip,βc) is again taken to

be the multivariate t-density in exactly the same way as in the case without covariate selection.

When a parameter is restricted to be proportional across components (i.e. only the intercept

differs between components), the common regression vector β appears in all K components. The

updating step for the common β is of the same form as above, but d and D now contain the

gradients and Hessians for all n observations, where each observation’s gradient and Hessian is

with respect to the component density that the observation is currently allocated to.

3.3. Model comparison. The key quantity in Bayesian model comparison is the marginal likeli-

hood. The marginal likelihood is sensitive to the choice of prior, however, and this is especially

true when the prior is not very informative, see e.g. Kass (1993) for a general discussion and
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Richardson & Green (1997) in the context of density estimation. By sacrificing a subset of the

observations to update/train the vague prior we remove much of the dependence on the prior, and

obtain a better assessment of the predictive performance that can be expected for future observa-

tions. To deal with the arbitrary choice of which observations to use for estimation and model

evaluation, one can use B-fold cross-validation of the log predictive density score (LPDS):

B−1
B

∑
b=1

ln p(ỹb|ỹ−b,x),

where ỹb is an nb-dimensional vector containing the nb observations in the bth test sample and ỹ−b

denotes the remaining observations used for estimation. If we assume that the observations are

independent conditional on θ , then

p(ỹb|ỹ−b,x) =
∫

∏
i∈Tb

p(yi|θ ,xi)p(θ |ỹ−b)dθ ,

where Tb is the index set for the observations in ỹb, and the LPDS is easily computed by averaging

∏i∈Tb
p(yi|θ ,xi) over the posterior draws from p(θ |ỹ−b). This requires sampling from each of the

B posteriors p(θ |ỹ−b) for b = 1, ...,B, but these MCMC runs can all be run in isolation from each

other and are therefore ideal for parallel computing on widely available multi-core processors.

Cross-validation is less appealing in a time series setting, and a more natural approach is to use

the most recent observations in a single test sample. Moreover, for time series data it is typically

false that the observations are independent conditional on the model parameters, so that the above

estimation approach cannot be used. An MCMC estimate of the LPDS of a time series can instead

be based on the decomposition

p(yT+1, ..,yT+T ∗ |y1, ..,yT ) = p(yT+1|y1, ..,yT ) · · · p(yT+T ∗ |y1, ..,yT+T ∗−1),

with each term in the decomposition

p(yt |y1, ..,yt−1) =
∫

p(yt |y1, ..,yt−1,θ)p(θ |y1, ..,yt−1)dθ ,

estimated from a posterior sample of θ ’s based on data up to time t −1. The problem is that this

requires T ∗−T complete runs with the MCMC algorithm, one for each term in the decomposition,

which is typically very time-consuming (although computer parallelism can again be exploited).

In situations where T is fairly large compared to T ∗, we can approximate the LPDS by computing

each term p(yt |y1, ..,yt−1) using the same posterior sample based on data up to time T . We eval-

uate the accuracy of this approximation in the empirical application in the next section. Villani

et al. (2009) show that the Bayes factor is roughly B times more discriminatory than the LPDS.

Therefore one can transform a difference in LPDS between two competing models into a Bayes

factor and then use the Jeffreys rule .

Jeffreys (1961) and Kass & Raftery (1995) provide simple rules for interpreting the size of a

Bayes factor between two models. A difference in LPDS between models can be seen as log

Bayes factor evaluated on the observations in the test sample. Since only a subset of the data is

used to evaluate the LPDS, the LPDS has less discriminatory power than the Bayes factor, but the

LPDS has the advantage of being substantially less sensitive to the prior. If the scale of evidence

in Kass & Raftery (1995, p. 777) is applied to the LPDS, then a difference in LPDS between two
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TABLE 1. The prior mean and standard deviation of the split-t parameters for the

S&P500 stock return data. The prior mean of φ is a function of the prior mean of

ν such that the variance of returns is unity as in Villani et al. (2009).

µ φ ν λ

m∗ 0 [(m∗
ν −2)/m∗

ν ]
1/2 10 1

s∗ 10 1 7 1

models between 3 and 5 is considered strong evidence in favor of one model, and a difference of

more than five LPDS points is very strong evidence.

4. MODELING THE DISTRIBUTION OF DAILY STOCK MARKET RETURNS

4.1. S&P500 data and priors. Modeling the volatility/variability in financial data has been an

highly active research area since the seminal paper by Engle (1982) introduced the ARCH model

(see, e.g. Baillie (2006) for a survey of the field), and there are large financial markets for

volatility-based instruments. Financial data, such as stock market returns, are typically heavy

tailed and subject to volatility clustering, i.e. a time-varying variance that evolves in a very persis-

tent fashion. We here model the entire distribution of daily returns from the S&P500 stock market

index, p(yt |xt), where yt = 100ln(pt/pt−1) is the daily return at time t, pt is the closing S&P500

index on day t, and xt contains the covariate observations at time t. By focusing on the whole

distribution of returns we are able to compute, e.g. the posterior distribution of the Value-at-Risk

(VaR), i.e. the 1% quantile of the return distribution, which is of fundamental interest to financial

analysts, see Villani et al. (2009) for an example based on the S&P500 datasets.

We estimate the models using data from 4646 trading days between Jan 1, 1990 and May 29,

2008. The models are then evaluated out-of-sample on the subsequent 199 trading days from May

30, 2008 to March 13, 2009. The data are plotted in the upper left sub-graph of Figure 2, with

the evaluation period marked out in red. To make the results comparable to Geweke and Keane

(2007) and Villani et al. (2009), we standardize the covariates to lie in the interval [−1,1], rather

than making them mean zero with unit variance.

Table 1 displays the prior hyper-parameters for the split-t parameters. The prior on ν and λ are

fairly vague and and the prior on µ and φ have been chosen to match the mean and variance in

Villani et al. (2009) as closely as possible. See Section 4.3 for a sensitivity analysis with respect

to these prior hyper-parameters.

4.2. Models. Geweke & Keane (2007) show that a smooth mixture of homoscedastic Gaussian

regressions (the so-called smoothly mixing regression, SMR) with two covariates outperforms

the typically hard-to-beat t-GARCH(1,1) model (Bollerslev, 1987) in an out-of-sample evaluation

based on the LPDS (see Section 3.3). The two covariates are the return yesterday yt−1 (LastDay)
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FIGURE 2. Graphical display of the S&P500 data from January 1, 1990 to May

29, 2008 (blue lines and circles) and May 30, 2008 to March 13, 2009 (red lines

and crosses). The subgraph in the upper left position is a time series plot of Return,

the other subgraphs are scatter plots of Return against a covariate.
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and CloseAbs95, a geometrically decaying average of past absolute returns

(1−ρ)
∞

∑
s=0

ρs |yt−2−s| ,

where ρ = 0.95 is the discount factor. Following Geweke & Keane (2007) we assume the mean

of each component to be constant since the level of the stock market returns are not expected to

be predictable.

Villani et al. (2009) demonstrate that the SAGM model with its heteroscedastic components

outperforms the SMR in Geweke & Keane (2007). Villani et al. (2009) also introduce seven

additional covariates and show that they substantially improve the out-of-sample performance of

the SAGM. We will concentrate on this nine-variable model. The seven additional covariates are:

LastWeek and LastMonth, a moving average of the returns from the previous five and 20 trading

days, respectively. The variable CloseAbs80, the same variable as CloseAbs95 but with ρ = 0.80,

is also added to the covariate set, and so is the square root of (1−ρ)∑
∞
s=0 ρsy2

t−2−s, for ρ = 0.80

and 0.95 (CloseSqr80 and CloseSqr95). Finally, Villani et al. (2009) include a measure of volatility

that has been popular in the finance literature: (1−ρ)∑ ∞
s=0ρs(ln p

(h)
t−1−s − ln p

(l)
t−1−s), where p

(h)
t

and p
(l)
t are the highest and lowest values of the S&P500 index at day t. This measure has been

shown both theoretically and empirically to carry more information on the volatility than changes

in closing quotes (Alizadeh et al., 2002). We consider both ρ = 0.8 (MaxMin80) and ρ = 0.95

(MaxMin95). As in Villani et al. (2009), all variables except LastDay, LastWeek and LastMonth
enter the model in logarithmic form.

4.3. Results . We generated 30,000 draws from the posterior, and used the last 25,000 draws for

inference. This is more than sufficient for convergence of the parameter estimates, the posterior in-

clusion probabilities and the LPDS; see also Villani et al. (2009) for details regarding convergence

in the SAGM model. Three Newton steps were used for all parameters, but experiments with a

single Newton step gave essentially the same numerical efficiency. The numerical efficiency of

the algorithm is documented in some detail below.

Table 2 presents the LPDS evaluated on the 199 trading days from May 30, 2008 to March 13,

2009, a period covering the financial crisis with an unprecedented volatility. Figure 2 shows that

prediction in the evaluation period is a tough test of the models because it extrapolates outside the

sample used for estimation. The posterior distributions of the models are not updated during the

evaluation period (see Section 3.3). With the exception of some of the more poorly fitting models,

this approximation of the LPDS is quite accurate. This is documented in Villani et al. (2009) and

additional evidence on this issue is provided below.

We observe from Table 2 that the SMR model does poorly, even with a large number of compo-

nents, and is outperformed by the GARCH(1,1) and t-GARCH(1,1) models. A smooth mixture

of homoscedastic components can generate some heteroscedasticity in-sample, but is likely to fail

in extrapolating heteroscedastic data outside the estimation sample. The subsequent rows of Table

2 present that adding covariate-dependent skewness and/or student t components (with degrees of

freedom a function of covariates) to the SMR improves the LPDS substantially when the number

of mixture components is small, but the SMR performs better in its standard form with Gaussian
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TABLE 2. Evaluating the out-of-sample log predictive density score (LPDS) on

the 199 daily returns in the period May 30, 2008 - March 13, 2009†.

Model K = 1 K = 2 K = 3 K = 4 K = 5 Max n.s.e.

SMR −1044.78 −638.89 −505.74 −487.11 −489.19 0.98(3)
+ Skew −540.91 −525.07 −513.85 −506.68 −506.13 0.82(2)
+ DF −544.00 −518.71 −498.93 −500.14 −494.29 0.89(1)
+ Skew + DF −530.86 −504.63 −498.03 −498.83 −496.87 0.88(5)

SAGM Common −477.73 −473.10 −473.12 −470.30 −472.86 0.26(2)
+ Skew −474.18 −467.29 −468.75 −467.93 −467.22 0.35(4)
+ DF −474.74 −472.92 −470.51 −469.40 −468.87 0.34(4)
+ Skew + DF −472.37 −468.92 −469.30 −466.21 −465.86 0.53(4)

SAGM Separate −469.21 −469.50 −470.53 −471.02 0.49(3)
+ Skew −468.48 −466.93 −467.48 −468.02 0.58(4)
+ DF −469.08 −469.24 −462.03 −467.78 0.72(5)
+ Skew + DF −466.84 −462.56 −462.47 −474.58 0.74(5)

GARCH(1,1) −479.03

t-GARCH(1,1) −477.39

†The posterior distribution is computed using data until May 29, 2008, and not updated thereafter, except for the two

GARCH models which are based on continuously updated maximum likelihood estimates. The LPDS of the best

model for a given number of components is in bold font. The last column gives the maximal numerical standard error

of the LPDS for each model with the number of components for which the maximum was obtained in parenthesis.

The notation for the models is such that e.g. + Skew means that covariate-dependent skewness is added to the model.

components when K is large. This reinforces the conclusion stressed in Villani et al. (2009) that

having heteroscedastic components is crucial for modeling heteroscedastic data.

Table 2 also presents that SAGM is on par with the popular t-GARCH(1,1) already with a single

component, outperforms it when K ≥ 2, and is more than 7 LPDS units better than t-GARCH(1,1)

at its maximum when K = 4. This is a substantial increase in LPDS since we are only using 199

observation in the evaluation sample (see Section 3.3 for a more detailed discussion).

To ensure that our shortcut of keeping the posterior distribution fixed as we go through the

evaluation sample does not invalidate the conclusions from the LPDS, we re-computed the LPDS

for the SMR and the SAGM with a common variance function, this time updating the posterior at

every tenth observation. The results are given in Table 3. A comparison of Table 2 and 3 shows

that there are fairly large differences for the most poorly fitting versions of SMR, but that the

LPDS values for SAGM do not change much when the posterior is updated more frequently.
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TABLE 3. Evaluating the out-of-sample log predictive density score (LPDS) on

the 199 daily returns in the period May 30, 2008 - March 13, 2009‡.

Model K = 1 K = 2 K = 3 K = 4 K = 5

SMR −982.02 −597.47 −498.87 −484.42 −495.66

SAGM −477.50 −472.94 −471.28 −471.53 −469.72

‡The posterior distribution is updated every 10th observation throughout the evaluation sample.

Table 2 presents that for the one component models, adding either covariate-dependent skew-

ness or degrees of freedom to the SAGM model increases the LPDS by roughly three points, and

adding them both increases the LPDS by a further two points. The split-t with covariate-dependent

scale, skewness and degrees of freedom is the best one-component model, and its performance is

close to that of the best SAGM model with four components. The one-component split-t (SAGM

+ Skew + DF) is similar to the ARCD model of Hansen (1994) which he uses to model the condi-

tional density of the U.S. Dollar / Swiss Franc exchange rate.

If we restrict the scale, skewness and degrees of freedom to be common across components (up

to a proportionality constant) we see that adding components to the split-t model improves its fore-

casting performance. However, we can get an even better LPDS by using separate components.

Note that adding components in this case introduces as much as 41 new parameters to the model

for every newly added component, and still we do not seem to over-fit even when the number

of components is fairly large. This is because of the self-adjustment mechanism emphasized in

Villani et al. (2009): when an additional component is added to the mixture, the variable selection

simplifies not only the new component but also the already existing components. The number of

effective parameter can therefore even decrease as components are added. But there is a limit to

what variable selection can do (see also Figure 4 below), and there are clear signs of over-fitting

when K = 5. Also, the MCMC algorithm struggles when we use K ≥ 4 separate components in the

split-t model, with lower acceptable probabilities and higher risk of getting stuck in a local mode.

Moreover, the split-t model with separate components has one dominant component which is very

similar to the one-component model, except for the five-component model which seems to pick

up a more complicated structure. We will describe the estimation results for the one-component

model in detail below.

Our way to assess the quality of the predictive densities in an absolute sense is to investigate

the normalized residuals from the model. A normalized residual is defined as Φ−1 [F(yt)] , where

F(·) is the cumulative predictive distribution, where the parameter have been integrated out with

respect to the posterior distribution based on the estimation sample, so the residuals in Figure 3 are

therefore out-of-sample. If the model is correct, the normalized residuals should be iid N(0,1), see

e.g. Berkowitz (2001). It is clear from Figure 3 that even the SMR with largest LPDS produces

much to large residuals during the most volatile period, and so does the GARCH(1,1) and t-

GARCH(1, 1). As indicated in the graph, 19.5% of the normalized residuals from the SMR(4) lie

outside a 95% probability interval according to the N(0,1) reference distribution. The SAGM(1)

does better than the SMR, but this model also generates to many outliers: 3.5% of the residuals
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FIGURE 3. Plot of the 199 normalized residuals in the evaluation sample over time

(solid lines). The dotted lines are the 99% probability intervals under the N(0,1)
reference distribution. Each sub-graph displays the percentage of normalized resid-

uals outside the 95% and 99% probability intervals of the N(0,1) reference distri-

bution.
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TABLE 4. Posterior summary of the one-component split-t modelℵ.

Parameters Mean Stdev Post.Incl. IF

Location µ

Const 0.084 0.019 – 9.919

Scale φ

Const 0.402 0.035 – 7.125

LastDay -0.190 0.120 0.036 0.903

LastWeek -0.738 0.193 0.985 18.519

LastMonth -0.444 0.086 0.999 4.133

CloseAbs95 0.194 0.233 0.035 1.445

CloseSqr95 0.107 0.226 0.023 2.715

MaxMin95 1.124 0.086 1.000 6.012

CloseAbs80 0.097 0.153 0.013 –

CloseSqr80 0.143 0.143 0.021 –

MaxMin80 -0.022 0.200 0.017 –

Degrees of freedom ν

Const 2.482 0.238 – 5.708

LastDay 0.504 0.997 0.112 2.899

LastWeek -2.158 0.926 0.638 5.463

LastMonth 0.307 0.833 0.089 5.560

CloseAbs95 0.718 1.437 0.229 3.020

CloseSqr95 1.350 1.280 0.279 2.758

MaxMin95 1.130 1.488 0.222 6.564

CloseAbs80 0.035 1.205 0.101 2.789

CloseSqr80 0.363 1.211 0.112 3.330

MaxMin80 -1.672 1.172 0.254 4.178

Skewness λ

Const -0.104 0.033 – 10.423

LastDay -0.159 0.140 0.027 1.170

LastWeek -0.341 0.170 0.135 8.909

LastMonth -0.076 0.112 0.016 –

CloseAbs95 -0.021 0.096 0.008 –

CloseSqr95 -0.003 0.108 0.006 –

MaxMin95 0.016 0.075 0.008 –

CloseAbs80 0.060 0.115 0.009 –

CloseSqr80 0.059 0.111 0.010 –

MaxMin80 0.093 0.096 0.013 –

ℵThe posterior mean, standard deviation and inefficiency factors (IF) are computed conditional on a covariate being

in the model. The IFs are not computed for parameters with posterior probabilities smaller than 0.02.
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are outside the 99% reference interval. The remaining four models in Figure 3 have rather similar

seemingly homoscedastic and independent residuals, and they all have close to the right coverage.

The one-component split-t model is doing remarkably well during this very difficult time period.

We now take a more detailed look at the inferences from the one-component split-t model.

Table 4 presents summaries of the posterior distribution. The results from the variable selection

among the covariates in the scale parameter is very similar to the results for the variance function

in Villani et al. (2009): the covariates MaxMin95, LastWeek and LastMonth have a posterior

inclusion probability close to one, and all other covariates are essentially excluded. There is

support for some small skewness in the model, but no covariates enter λ . The degrees of freedom

at the posterior mean is exp(2.482) = 11.96, (assuming all other covariates at their mean) which

is not very heavy tailed, but LastWeek enters the model with probability 0.638 and with a large

negative coefficient, so the degrees of freedom is very small for the largest values of LastWeek
(recall that LastWeek∈ [−1,1]). The last column of Table 4 gives the inefficiency factor (IF) for

all parameters with inclusion probabilities larger than 0.02. It is clear that the MCMC algorithm is

very efficient, almost all parameters have IFs smaller than 10. The MH acceptance probabilities for

the regression coefficients in µ , φ , ν and λ are as high as 95%, 81%, 75% and 94%, respectively.

To explore the sensitivity to variations in the rather arbitrarily set prior parameter τ2
β (see Section

2.3), we compute the LPDS for the one-component split-t model using τ2
β = 1, 10 and 100 (the

default), obtaining an LPDS of −472.89, −472.61 and −472.37, respectively. Since the LPDS is

based on the posterior distribution from a large sample (unlike the marginal likelihood which is

based on the prior), this insensitivity to the prior is reassuring but not surprising. We also compare

the posterior inference on the regression coefficients for the same three values of τ2
β . The posterior

means and standard deviations are very insensitive to changes in τ2
β while the posterior inclusion

probabilities generally decrease with τ2
β , but not to the extent of overturning the results about the

importance of individual covariates. The effect of the prior on the inclusion probabilities is smaller

for the covariates that almost certainly enter the model. As an example, the posterior inclusion

probabilities for LastDay in φ is 0.290, 0.110 and 0.036 for τ2
β = 1, 10 and 100, respectively,

while for MaxMin95 they are 1.000, 0.999 and 1.000 for the same three priors. Interestingly, the

only significant covariate in the degrees of freedom function, LastWeek, has posterior inclusion

probabilities of 0.66, 0.76 and 0.64 in ν for the three different values of τ2
β .

The LPDS is also fairly insensitive to the prior on the intercepts in Table 1. As an example

the LPDS for the split-t model with two separate components changes from −466.84 to −466.86,

−466.63 and −468.40 when we double the prior standard deviation of the intercept in φ , ν and

λ , respectively.

Figure 4 presents box plots of the posterior distribution of the number of included parameters,

i.e. p(∑K
k=1(∑

Q
q=1 ∑

P
p=1 Ikqp +∑Imix)), where Ikqp is the Bayesian variable selection indicator

for the pth variable in the qth parameter in the kth component density and ∑Imix is the sum

of variable selection indicators in the mixing function. Figure 4 shows that the SMR(4) has 26

effective parameters on average, while SAGM(1), which performs better than any SMR model, has

only five effective parameters on average. Moreover, the one-component split-t model contains

only four more effective parameters than SAGM(1), but the split-t model has much high LPDS.
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Figure 4 (bottom right) also shows that the proportion of posterior included parameters to potential

parameters is close to 0.5 in the SAGM and split-t models with a large number of components.

This result is in part a reflection of our choice of a Bernoulli(0.5) prior for the variable selection

indicators. This prior implies that the prior on the number of effective parameters is a binomial

distribution with mean N/2 and standard deviation
√

N/4, where N is the number of potential

parameters in the model. For models with large N the prior is therefore fairly tightly centered

on a large number of effective parameters. Other priors on the variable selection indicators are

straightforward to implement, however, e.g. the uniform prior in Denison et al. (2002) or the

hierarchical prior in Kohn et al. (2001).

To investigate the stability of the predictive densities for different sets of sample sizes we esti-

mate the one-component split-t model using five samples with an increasing number of observa-

tions. The samples consist of the first 1000, 2000, 3000, 4000 trading days and then finally using

the full sample between Jan 1, 1990 and Mar 13, 2009. Figure 5 displays the conditional predictive

densities for the three sets of covariates values present on the 4648th, 4725th, and 4753th trading

day where MaxMin95 is 0.2503, 0.9043, and 1.737, respectively (hence representing states of low,

medium and high volatility). Figure 5 shows that the 1% quantiles (VaR) of the return distribution

do not change significantly over five estimation samples.

Finally, Figure 6 presents some posterior moments, such as the standard deviation and skew-

ness, for the one-component split-t model over the latter part of the sample (including the evalua-

tion sample). The model is estimated on all available data up to March 13, 2009. Figure 6 shows

that the median of the degrees of freedom actually increased during the most volatile part of the

financial crisis (but at the same time the scale parameter rose dramatically to bring about a very

large boost in standard deviation of returns), but, during some spells, the posterior distribution of

ν also has a long left tail with substantial probability mass on very small values of ν .

5. CONCLUSIONS

A general model is presented for estimating the distribution of a continuous variable conditional

on a set of covariates. The model is a mixture of asymmetric student t densities with the mixture

weights and all four component parameters, location, scale, degrees of freedom and skewness,

being functions of covariates. We take a Bayesian approach to inference and estimate the model by

an efficient MCMC simulation method. Bayesian variable selection is carried out to obtain model

parsimony and guard against over-fitting. The model is applied to analyze the distribution of daily

stock market returns conditional on nine covariates and outperforms widely used GARCH models

and other recently proposed mixture models in an out-of-sample evaluation of returns during the

recent financial crisis.
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FIGURE 4. The posterior distribution of the number of included parameters. On

first five subplots, the horizontal axis measures the number of components (with

the number of potential parameters in parentheses) and the vertical axis is the total

number of effective parameters in the model. All models are estimated using the

S&P 500 data up to Mar 13, 2009. The right-bottom subplot is the posterior mean

of the proportion of effective parameters in each model.
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FIGURE 5. Investigating estimation stability over different subsamples. The sub-

graphs show predictive densities for different sets values on the covariates (low,

medium and high volatility). The model is estimated on the first 1000, 2000, 3000,

4000 trading days starting from Jan 1, 1990 and the full sample between Jan 1,

1990 and Mar 13, 2009 using the one-component split-t model.

APPENDIX A. MCMC IMPLEMENTATION

To implement the MCMC algorithm we need the gradient and Hessian matrix of the conditional

posteriors for each of the four split-t parameters. Since the priors on the regression coefficients in

each split-t parameter is a multivariate normal density, the prior gradient and Hessian matrix are

∂ ln p(β )

∂β
=−Σ−1

β (β −µβ ) and
∂ 2 ln p(β )

∂β∂β ′
=−Σ−1

β .

To derive the gradient and Hessian matrix with respect to the likelihood, we write the likelihood

as

p(y|x,µ,φ ,ν ,λ ) = ∏
S1

t(y|µ,φ ,ν)∏
S2

t(y|µ,λφ ,ν),

where t(y|µ,φ ,ν) denotes the student-t density

Γ(ν+1
2
)

√
νπΓ(ν

2
)





ν

ν + (y−µ)2

φ 2





(ν+1)/2

.

S1 is the set of observations such that y ≤ µ and S2 denotes the observations y > µ . It is conve-

nient to define the indicator function

Iµ =

{

1 if y > µ

0 if y ≤ µ
,

and a = λ Iµ .

The following subsections present the gradient and the Hessian for each split-t parameter.

Gradient and Hessian wrt µ
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FIGURE 6. Time series plot of the posterior median and 95% probability intervals

for some moments of the return distribution. The time series of returns and two of

the key covariates are also plotted. The posterior distribution is based on the full

sample up to March 13, 2009. The distribution of the standard deviation and the

skewness are conditioned on ν > 2 and ν > 3, respectively.

∂

∂ µ
ln p(y|µ,ν ,φ ,λ ) =

(1+ν)(y−µ)

νa2φ 2 +(y−µ)2

∂ 2

∂ µ2
ln p(y|µ,ν ,φ ,λ ) =

(1+ν)
[

(y−µ)2 −a2φ 2ν
]

[

(y−µ)2 +a2φ 2ν
]2

.

Gradient and Hessian wrt φ
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∂

∂φ
ln p(y|µ,ν ,φ ,λ ) =

ν
[

(y−µ)2 −a2φ 2
]

φ
[

(y−µ)2 +νa2φ 2
]

∂ 2

∂φ 2
ln p(y|µ,ν ,φ ,λ ) =

ν
[

φ 4a4ν − (y−µ)4 − (1+3ν)(y−µ)2 φ 2a2
]

[

φ (y−µ)2 +φ 3a2ν
]2

.

Gradient and Hessian wrt ν

∂

∂ν
ln p(y|µ,ν ,φ ,λ ) =

(y−µ)2 −φ 2a2

2
[

(y−µ)2 +νφ 2a2
] +

1

2
ln





ν

ν + (y−µ)2

φ 2a2





+
1

2

[

ψ

(

ν +1

2

)

−ψ
(ν

2

)

]

∂ 2

∂ν2
ln p(y|µ,ν ,φ ,λ ) =

(y−µ)4 +νφ 4a4

2ν
(

(y−µ)2 +νφ 2a2
)2

+
1

4

[

ψ1

(

ν +1

2

)

−ψ1

(ν

2

)

]

where ψ(·) is the digamma function and ψ1(·) is the trigamma function.

Gradient and Hessian wrt λ

∂

∂λ
ln p(y|µ,ν ,φ ,λ ) =−

1

1+λ
+

(1+ν)(y−µ)2
Iµ

(y−µ)2 λ +νφ 2λ 3

∂ 2

∂λ 2
ln p(y|µ,ν ,φ ,λ ) =

1

(1+λ )2
−

(1+ν)(y−µ)2
[

(y−µ)2 +3νφ 2λ 2
]

Iµ

[

(y−µ)2 λ +νφ 2λ 3
]2

.

Let l(·) denote a link function of any parameter in the split-t model, e.g. the function linking the

degrees of freedom with the covariates as l(ν) = x′βν , so ν = l−1(x′βν). Using gradient, Hessian

and (4), it is straightforward to link the derivatives of posterior density β with any of the split-t

parameters (l−1(x′β )) by applying the chain rule

∂ ln(y|µ,ν ,φ ,λ )

∂β
=

∂ ln(y|µ,ν ,φ ,λ )

∂ l−1(x′β )

∂ l−1(x′β )

∂β

∂ 2 ln(y|µ,ν ,φ ,λ )

∂β∂β ′
=

∂ ln(y|µ,ν ,φ ,λ )

∂ l−1(x′β )

∂ 2l−1(x′β )

∂β∂β ′
+

∂ 2 ln(y|µ,ν ,φ ,λ )

∂ 2l−1(x′β )

∂ l−1(x′β )

∂β

∂ l−1(x′β )

∂β ′
.
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MODELING CONDITIONAL DENSITIES USING FINITE SMOOTH MIXTURES
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ABSTRACT. Smooth mixtures, i.e. mixture models with covariate-dependent mixing weights, are

very useful flexible models for conditional densities. Previous work shows that using too simple

mixture components for modeling heteroscedastic and/or heavy tailed data can give a poor fit, even

with a large number of components. This paper explores how well a smooth mixture of symmetric

components can capture skewed data. Simulations and applications on real data show that including

covariate-dependent skewness in the components can lead to substantially improved performance

on skewed data, often using a much smaller number of components. Furthermore, variable selection

is effective in removing unnecessary covariates in the skewness, which means that there is little loss

in allowing for skewness in the components when the data are actually symmetric. We also intro-

duce smooth mixtures of gamma and log-normal components to model positively-valued response

variables.

KEYWORDS: Bayesian inference, Markov chain Monte Carlo, Mixture of Experts, Variable selec-

tion.

1. INTRODUCTION

Finite smooth mixtures, or mixtures of experts (ME) as they are known in the machine learning

literature, are increasingly popular in the statistical literature since their introduction in Jacobs

et al. (1991). A smooth mixture is a mixture of regression models where the mixing probabili-

ties are functions of the covariates, leading to a partitioned covariate space with stochastic (soft)

boundaries. The first applications of smooth mixtures focused on flexible modeling of the mean

function E(y|x), but more recent works explore their potential for nonparametric modeling of con-

ditional densities p(y|x). A smooth mixture models p(y|x) non-parametrically for any given x, but

is also flexible across different covariate values.

Smooth mixtures are capable of approximating a large class of conditional distributions. For

example, Jiang (1999); Jiang & Tanner (1999) show that smooth mixtures with sufficiently many

(generalized) linear regression mixture components can approximate any density in the exponen-

tial family with arbitrary smooth mean function. More recently, Norets (2010) proves results for a

mixture of Gaussian components under fairly general regularity conditions. See also Zeevi (1997)

for additional results along these lines.
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Like any mixture model, a smooth mixture may have a fairly complex multimodal likelihood

surface. The choice of estimation method is therefore a key ingredient for successfully imple-

menting smooth mixture models. Jordan & Jacobs (1994) employ the expectation maximization

(EM) algorithm for the ME model, and similar optimization algorithms are popular in the machine

learning field. Some recent approaches to smooth mixtures are Bayesian, with the computation

implemented by Markov Chain Monte Carlo (MCMC) methods. The first Bayesian paper on

smooth mixtures is Peng et al. (1996) who use the random walk Metropolis algorithm to sample

from the posterior. More sophisticated algorithms are proposed by Wood et al. (2002), Geweke &

Keane (2007) and Villani et al. (2009).

The initial work on smooth mixtures in the machine learning literature advocated what may

be called a simple-and-many approach with very simple mixture components (constants or linear

homoscedastic regressions), but many of them. This practice is partly because estimating compli-

cated component models was somewhat difficult in the pre and early days of MCMC, but proba-

bly also reflects an underlying divide-and-conquer philosophy in the machine learning literature.

More recent implementations of smooth mixtures with access to MCMC technology successively

introduce more flexibility within the components. This complex-and-few strategy tries to model

nonlinearities and non-Gaussian features within the components and relies less on the mixture to

generate the required flexibility, i.e. mixtures are used only when needed. For example, Wood

et al. (2002) and Geweke & Keane (2007) use basis expansion methods (splines and polynomi-

als) to allow for nonparametric component regressions. Further progress is made in Villani et al.

(2009) who propose the Smooth Adaptive Gaussian Mixture (SAGM) model as a flexible model

for regression density estimation. Their model is a finite mixture of Gaussian densities with the

mixing probabilities, the component means and component variances modeled as (spline) func-

tions of the covariates. Li et al. (2010) extend this model to asymmetric student’s t components

with the location, scale, skewness and degrees of freedom all modeled as functions of covari-

ates. Villani et al. (2009) and Li et al. (2010) show that a single complex component can often

give a better and numerically more stable fit in substantially less computing time than a model

with many simpler components. As an example, simulations and real applications in Villani et al.

(2009) show that a mixture of homoscedastic regressions can fail to fit heteroscedastic data even

with a very large number of components. Having heteroscedastic components in the mixture is

therefore crucial for accurately modeling heteroscedastic data. The empirical stock returns exam-

ple in Li et al. (2010) shows that including heavy-tailed components in the mixture can improve

on the SAGM model when modeling heteroscedastic heavy-tailed distributions. This finding is

backed up by the theoretical results in Norets (2010).

This chapter further explores the simple-and-many vs complex-and-few issue by modeling re-

gression data with a skewed response variable. A simulation study shows that it may be difficult to

model a skewed conditional density by a smooth mixture of heteroscedastic Gaussian components

(like SAGM). Introducing skewness within the components can improve the fit substantially.

We use the efficient Markov chain Monte Carlo (MCMC) method in Villani et al. (2009) to

simulate draws from the posterior distribution in smooth mixture models; see Section 3.1. This

algorithm allows for Bayesian variable selection in all parameters of the density, and in the mixture

weights. Variable selection mitigates problems with over-fitting, which is particularly important

in models with complex mixture components. The automatic pruning effect achieved by variable

42



FINITE SMOOTH MIXTURES

selection in a mixture context is illustrated in Section 4.2 on the LIDAR data. Reducing the

number of effective parameters by variable selection also helps the MCMC algorithm to converge

faster and mix better.

Section 4.3 uses smooth mixtures of Gaussians and split-t components to model the electricity

expenditure of households. To take into account that expenditures are positive, and more gener-

ally to handle positive dependent variables, we also introduce two smooth mixtures for strictly

positively valued data: a smooth mixture of gamma densities and smooth mixture of log normal

densities. In both cases we use an interpretable re-parametrized density where the mean and the

(log) variance are modeled as functions of the covariates.

2. THE MODEL AND PRIOR

2.1. Smooth mixtures. Our model for the conditional density p(y|x) is a finite mixture density

with weights that are smooth functions of the covariates,

p(y|x) =
K

∑
k=1

ωk(x)pk(y|x), (1)

where pk(y|x) is the kth component density with weight ωk(x). The next subsection discusses

specific component densities pk(y|x). The weights are modeled by a multinomial logit function

ωk(x) =
exp(x′γk)

∑
K
r=1 exp(x′γr)

, (2)

with γ1 = 0 for identification. The covariates in the components can in general be different from

the covariates in the mixture weights.

To simplify the MCMC simulation, we express the mixture model in terms of latent variables

as in Diebolt & Robert (1994) and Escobar & West (1995). Let s1, ...,sn be unobserved indicator

variables for the observations in the sample such that si = k means that the ith observation belongs

to the kth component, pk(y|x). The model in (1) and (2) can then be written as

Pr(si = k|xi,γ) = ωk(xi)

yi|(si = k,xi)∼ pk(yi|xi).

Conditional on s = (s1, ...,sn)
′, the mixture model decomposes into K separate component models

p1(y|x), ..., pK(y|x), with each data observation being allocated to one and only one component.

2.2. The component models. The component densities in SAGM (Villani et al., 2009) are Gauss-

ian with both the mean and variance functions of covariates,

y|x,s = k ∼ N
[

µk(x),σ
2
k (x)

]

,

where

µk(x) = βµ0,k + x′βµ,k lnσ2
k (x) = βσ0,k + x′βσ ,k (3)

Note that each mixture components has its own set of parameters. We will suppress the compo-

nent subscript k in the remainder of this section, but, unless stated otherwise, all parameters are

component-specific. SAGM uses a linear link function for the mean and log link for the variance,

but any smooth link function can equally well be used in our MCMC methodology. Additional
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flexibility can be obtained by letting a subset of the covariates be a non-linear basis expansions,

e.g. additive splines or splines surfaces (Ruppert et al., 2003) as in Villani et al. (2009); see also

the LIDAR example in Section 4.2.

SAGM is in principle capable of capturing heavy-tailed and skewed data. In line with the

complex-and-few approach it may be better however to use mixture components that allow for

skewness and excess kurtosis. Li et al. (2010) extend the SAGM model to components that are

split-t densities according to the following definition.

Definition 1 (Split-t distribution). The random variable y follows a split-t distribution with ν > 0

degrees of freedom, if its density function is of the form

p(y; µ,φ ,λ ,ν) = c ·κ(y; µ,φ ,ν)1y≤µ + c ·κ(y; µ,λφ ,ν)1y>µ ,

where

κ(y; µ,φ ,ν) =

[

1+

(

y−ν

φ

)2

ν−1

]− ν+1
2

,

is the kernel of a student’s t density with variance φ 2ν/(ν−2) and c= 2[(1+λ )φ
√

νBeta(ν/2,1/2)]−1

is the normalization constant.

The location parameter µ is the mode, φ > 0 is the scale parameter, and λ > 0 is the skewness

parameter. When λ < 1 the distribution is skewed to the left, when λ > 1 it is skewed to the

right, and when λ = 1 it reduces to the usual symmetric student’s t density. The split-t distribution

reduces to the split-normal distribution in Gibbons (1973) and John (1982) as ν → ∞. Any other

asymmetric t density can equally well be used in our MCMC methodology, see Section 3.1.

Each of the four parameters µ,φ ,λ and ν are connected to covariates as

µ = βµ0
+ x′βµ , lnφ = βφ0

+ x′βφ ,
lnν = βν0

+ x′βν , lnλ = βλ0
+ x′βλ ,

(4)

but, as mentioned above, any smooth link function can equally well be used in the MCMC method-

ology.

Section 4.3 applies smooth mixtures in a situation where the response is non-negative. Natural

mixture components are then Gamma and log-normal densities. The Gamma components are of

the form

y|s,x ∼ Gamma

(

µ2

σ2
,
σ2

µ

)

,

where

ln µ(x) = βµ0
+ x′βµ lnσ2(x) = βσ0

+ x′βσ , (5)

where we have again suppressed the component labels. Note that we use an interpretable parametriza-

tion of the Gamma distribution where µ and σ2 are the mean and variance, respectively.

Similarly, the log-normal components are of the form

y|s,x ∼ LogN

(

ln µ −
1

2
ln

(

1+
σ2

µ2

)

,

√

ln

(

1+
σ2

µ2

)

)

,
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where

ln µ(x) = βµ0
+ x′βµ , lnσ2(x) = βσ0

+ x′βσ . (6)

Again, the two parameters, µ and σ2, are the mean and variance.

A smooth mixture of complex densities is a model with a large number of parameters, however,

and is therefore likely to over-fit the data unless model complexity is controlled effectively. We

use Bayesian variable selection on all the component’s parameters, and in the mixing function.

This can lead to important simplifications of the mixture components. Not only does this control

complexity for a given number of components, but it also simplifies the existing components if an

additional component is added to the model (the LIDAR example in 4.2 illustrates this well). In-

creasing the number of components can therefore in principle even reduce the number of effective

parameters in the model. It may nevertheless be useful to put additional structure on the mixture

components before estimation. One particularly important restriction is that one or more com-

ponent parameters are common to all components. A component parameter (e.g. ν in the split-t

model in 4) is said to be common to the components when only the intercepts in (4) are allowed

to be different across components. The unrestricted model is said to have separate components.

The regression coefficient vectors, e.g. βµ , βφ , βν and βλ in the split-t model, are all treated

in a unified way in the MCMC algorithm. Whenever we refer to a regression coefficient vector

without subscript, β , the argument applies to any of the regression coefficient vector of the split-t

parameters in (4).

2.3. The prior. We now describe an easily specified prior for smooth mixtures, proposed by

Villani et al. (2010) that builds on Ntzoufras (2003) and depends only on a few hyper-parameters.

Since there can be a large number of covariates in the model, the strategy in Villani et al. (2010)

is to incorporate available prior information via the intercepts, and to use a unit-information prior

that automatically takes the model geometry and link function into account.

We standardize the covariates to have zero mean and unit variance, and assume prior indepen-

dence between the intercept and the remaining regression coefficients. The intercepts then have

the interpretation of being the (possibly transformed) density parameters at the mean of the origi-

nal covariates. The strategy in Villani et al. (2010) is to specify priors directly on the parameters

of the mixture component, e.g. the degrees of freedom ν in the split-t components, and then back

out the implied on the intercept βν0
. For example, a normal prior for a parameter with identity link

(e.g. µ in the split-t model) trivially implies a normal prior on βµ0; a log-normal prior with mean

m∗ and variance s∗2 for a parameter with log link (e.g. φ in the split-t model) implies a normal

prior N(m0,s
2
0) for βφ0

where

m0 = lnm∗−
1

2
ln

[

(

s∗

m∗

)2

+1

]

and s2
0 = ln

[

(

s∗

m∗

)2

+1

]

.

The regression coefficients vectors are assumed to be independent a priori. We allow for

Bayesian variable selection by augmenting each parameter vector β by a vector of binary co-

variate selection indicators I = (i1, ..., ip) such that β j = 0 if i j = 0. Let βI denote the sub-

set of β selected by I . In a Gaussian linear regression one can use a g-prior (Zellner, 1986)

β ∼ N[0,τ2
β (X

′X)−1] on the full β and then condition on the restrictions imposed by I . Setting
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τ2 = n, where n is the number of observations, gives the unit-information prior, i.e. a prior that

carries information equivalent to a single observation from the model. More generally, the unit

information prior is β ∼ N[0,τ2
β I −1(β )] where

I (β ) =−E

[

∂ 2 ln p(β |y)

∂β∂β ′

∣

∣

∣

∣

β=β̄

]

and β̄ = (β0,0, ...,0)
′

is the prior mean of β . When the analytical form of the expected Hessian

matrix is not available in closed form, we simulate replicated data sets from a model with param-

eter vector β0, and approximate the expected Hessian by the average Hessian over the simulated

data sets.

The variable selection indicators are assumed to be independent Bernoulli variables with prob-

ability πβ a priori, but more complicated distributions are easily accommodated, see e.g. the

extension in Villani et al. (2009) for splines in a mixture context, or a prior which is uniform on

the variable selection indicators for a given model size in Denison et al. (2002). It is also possible

to estimate πβ as proposed in Kohn et al. (2001) with an extra Gibbs sampling step. Note also

that πβ may be different for each parameter in the mixture components. Our default prior has

πβ = 0.5.

The prior on the mixing function decomposes as

p(γ,Z ,s) = p(s|γ,Z )p(γ|Z )p(Z ),

where Z is the p× (K − 1) matrix with variable selection indicators for the p covariates in the

mixing function (recall that γ1 = 0 for identification). The variable indicators in Z are assumed

to be iid Bernoulli(ωγ). Let γZ be the prior on γ = (γ ′2, ...,γ
′
m)

′ of the form

γZ |Z ∼ N(0,τ2
γ I),

and γZ c = 0 with probability one. We use τ2
γ = 10 as the default value. Finally, p(s|γ,Z ) is given

by the multinomial logit model in (2). To reduce the number of parameters and to speed up the

MCMC algorithm we restrict the columns of Z to be identical, i.e. we make the assumption that

a covariate is either present in the mixing function in all components, or does not appear at all, but

the extension to general Z is straightforward; see Villani et al. (2009).

3. INFERENCE METHODOLOGY

3.1. The general MCMC scheme. We use MCMC methods to sample from the joint posterior

distribution, and draw the parameters and variable selection indicators in blocks. The algorithm

below is the preferred algorithm from the experiments in Villani et al. (2009). The number of

components is determined by a Bayesian version of cross-validation discussed in Section 3.3.

The MCMC algorithm is very general, but for conciseness we describe it for the smooth mixture

of split-t components. The algorithm is a Metropolis-within-Gibbs sampler that draws parameters

using the following six blocks:

(1) {(β
(k)
µ ,I

(k)
µ )}k=1,...,K

(2) {(β
(k)
φ ,I

(k)
φ )}k=1,...,K

(3) {(β
(k)
λ

,I
(k)

λ
)}k=1,...,K

(4) {(β
(k)
ν ,I

(k)
ν )}k=1,...,K
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(5) s = (s1, ...,sn) (6) γ and IZ.

The parameters in the different components are independent conditional on s. This means that

each of the first four blocks split up into K independent updating steps. Each updating step in

the first four blocks is sampled using highly efficient tailored MH proposals following a general

approach described in the next subsection. The latent component indicators in s are independent

conditional on the model parameters and are drawn jointly from their full conditional posterior.

Conditional on s, Step 6 is a multinomial logistic regression with variable selection, and γ and IZ

are drawn jointly using a generalization of the method used to draw blocks 1-4; see Villani et al.

(2009) for details.

It is well known that the likelihood function in mixture models is invariant with respect to

permutations of the components, see e.g. Celeux et al. (2000), Jasra et al. (2005) and Frühwirth-

Schnatter (2006). The aim here is to estimate the predictive density, so label switching is neither

a numerical nor a conceptual problem (Geweke, 2007). If an interpretation of the mixture com-

ponents is required, then it is necessary to impose some identification restrictions on some of the

model parameters, e.g. an ordering constraint (Jasra et al., 2005). Restricting some parameters to

be common across components is clearly also helpful for identification.

3.2. Updating β and I using variable-dimension finite-step Newton proposals. Nott & Leonte

(2004) extend the method which was introduced by Gamerman (1997) for generating MH propos-

als in a generalized linear model (GLM) to the variable selection case. Villani et al. (2009) extend

the algorithm to a general setting not restricted to the exponential family. We first treat the problem

without variable selection. The algorithm in Villani et al. (2009) only requires that the posterior

density can be written as

p(β |y) ∝ p(y|β )p(β ) =
n

∏
i=1

p(yi|ϕi)p(β ), (7)

where ϕi = x′iβ and xi is a covariate vector for the ith observation. Note that p(β |y) may be a

conditional posterior density and the algorithm can then be used as a step in a Metropolis-within-

Gibbs algorithm. The full conditional posteriors for blocks 1–4 in Section 3.1 are clearly all of

the form in (7). Newton’s method can be used to iterate R steps from the current point βc in the

MCMC sampling toward the mode of p(β |y), to obtain β̂ and the Hessian at β̂ . Note that β̂ may

not be the mode but is typically close to it already after a few Newton iterations, so setting R = 1,2
or 3 is usually sufficient. This makes the algorithm fast, especially when the gradient and Hessian

are available in closed form, which is the case here, see Appendix A.

Having obtained good approximations of the posterior mode and covariance matrix from the

Newton iterations, the proposal βp is now drawn from the multivariate t-distribution with g > 2

degrees of freedom:

βp|βc ∼ t



β̂ ,−

(

∂ 2 ln p(β |y)

∂β∂β ′

)−1
∣

∣

∣

∣

∣

β=β̂

,g



 ,

where the second argument of the density is the covariance matrix.
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In the variable selection case we propose β and I simultaneously using the decomposition

g(βp,Ip|βc,Ic) = g1(βp|Ip,βc)g2(Ip|βc,Ic),

where g2 is the proposal distribution for I and g1 is the proposal density for β conditional on Ip.

The Metropolis-Hasting acceptance probability is

a[(βc,Ic)→ (βp,Ip)] = min

(

1,
p(y|βp,Ip)p(βp|Ip)p(Ip)g1(βc|Ic,βp)g2(Ic|βp,Ip)

p(y|βc,Ic)p(βc|Ic)p(Ic)g1(βp|Ip,βc)g2(Ip|βc,Ic)

)

.

The proposal density at the current point g1(βc|Ic,βp) is a multivariate t-density with mode ˜β

and covariance matrix equal to the negative inverse Hessian evaluated at ˜β , where ˜β is the point

obtained by iterating R steps with the Newton algorithm, this time starting from βp. A simple way

to propose Ip is to randomly select a small subset of Ic and then always propose a change of

the selected indicators. It is important to note that βc and βp may now be of different dimensions,

so the original Newton iterations no longer apply. We will instead generate βp using the follow-

ing generalization of Newton’s method. The idea is that when the parameter vector β changes

dimensions, the dimension of the functionals ϕc = x′βc and ϕp = x′βp stay the same, and the two

functionals are expected to be quite close. A generalized Newton update is

βr+1 = A−1
r (Brβr − sr), (r = 0, ...,R−1), (8)

where β0 = βc, and the dimension of βr+1 equals the dimension of βp, and

sr = X ′
r+1d +

∂ ln p(β )

∂β

Ar = X ′
r+1DXr+1 +

∂ 2 ln p(β )

∂β∂β ′

Br = X ′
r+1DXr +

∂ 2 ln p(β )

∂β∂β ′
,

(9)

where d is an n-dimensional vector with gradients ∂ ln p(yi|ϕi)/∂ϕi for each observation currently

allocated to the component being updated. Similarly, D is a diagonal matrix with Hessian elements

∂ 2 ln p(yi|ϕi)

∂ϕi∂ϕ ′
i

,

Xr is the matrix with the covariates that have non-zero coefficients in βr, and all expressions

are evaluated at β = βr. For the prior gradient this means that ∂ ln p(β )/∂β is evaluated at βr,

including all zero parameters, and that the sub-vector conformable with βr+1 is extracted from

the result. The same applies to the prior Hessian (which does not depend on β however, if the

prior is Gaussian). Note that we only need to compute the scalar derivatives ∂ ln p(yi|φi)/∂φi and

∂ 2 ln p(yi|φi)/∂φ 2
i .
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3.3. Model comparison. The number of components is assumed known in our MCMC scheme

above. A Bayesian analysis via mixture models with an unknown number of components is pos-

sible using e.g., Dirichlet process mixtures (Escobar & West, 1995), reversible jump MCMC

(Richardson & Green, 1997) and birth-and-death MCMC (Stephens, 2000). The fundamental

quantity determining the posterior distribution of the number of components is the marginal like-

lihood of the models with different number of components. It is well-known, however, that the

marginal likelihood is sensitive to the choice of prior, and this is especially true when the prior

is not very informative, see e.g. Kass (1993) for a general discussion and Richardson & Green

(1997) in the context of density estimation.

Following Geweke & Keane (2007) and Villani et al. (2009), we therefore compare and select

models based on the out-of-sample Log Predictive Density Score (LPDS). By sacrificing a subset

of the observations to update/train the vague prior we remove much of the dependence on the

prior, and obtain a better assessment of the predictive performance that can be expected for future

observations. To deal with the arbitrary choice of which observations to use for estimation and

model evaluation, we use B-fold cross-validation of the log predictive density score (LPDS):

1

B

B

∑
b=1

ln p(ỹb|ỹ−b,x),

where ỹb is an nb-dimensional vector containing the nb observations in the bth test sample and ỹ−b

denotes the remaining observations used for estimation. If we assume that the observations are

independent conditional on θ , then

p(ỹb|ỹ−b,x) =
∫

∏
i∈Tb

p(yi|θ ,xi)p(θ |ỹ−b)dθ ,

where Tb is the index set for the observations in ỹb, and the LPDS is easily computed by averaging

∏i∈Tb
p(yi|θ ,xi) over the posterior draws from p(θ |ỹ−b). This requires sampling from each of the

B posteriors p(θ |ỹ−b) for b = 1, ...,B, but these MCMC runs can all be run in isolation from each

other and are therefore ideal for straight-forward parallel computing on widely available multi-

core processors. Cross-validation is less appealing in a time series setting since it is typically false

that the observations are independent conditional on the model parameters for time series data. A

more natural approach is to use the most recent observations in a single test sample, see Villani

et al. (2009).

4. APPLICATIONS

4.1. A small simulation study. The simulation study in Villani et al. (2009) explores the out-

of-sample performance of a smooth mixture of homoscedastic Gaussian components for het-

eroscedastic data. The study shows that a smooth mixture of heteroscedastic regressions is likely

to be a much more effective way of modelling heteroscedastic data. This section uses simulations

to explore how different smooth mixture models cope with skewed and heavy-tailed data. We

generate data from the following models:

(1) A one-component normal with mean µ = 0 and variance φ 2 = 1 at x = x̄.
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(2) A split-normal with mean µ = 0, variance φ 2 = 0.52 and skewness parameter λ = 5 at

x = x̄.

(3) A student-t with mean µ = 0, variance φ 2 = 1 and ν = 5 degrees of freedom at x = x̄.

(4) A split-t with mean µ = 0, variance φ 2 = 1, ν = 5 degrees of freedom, and skewness

parameter λ = 5 at x = x̄.

Each of the parameters µ , φ , ν and λ are connected to four covariates (drawn independently

from the N(0,1) distribution) as in (4). Two of the covariates have non-zero coefficients in the

data generating process, the other two have zero coefficients. The number of observations in each

simulated data set is 1000. We generate 30 data sets for each model and analyze them with both

SAGM and a smooth mixture of split-t components using 1-5 mixture components. The priors for

the parameters in the estimated models are set as in Table 1.

TABLE 1. Priors in the simulation study

µ φ ν λ

Mean 0 1 10 1

Std 10 1 7 0.8

We analyze the relative performance of SAGM and split-t by comparing the estimated condi-

tional densities q(y|x) with the true data-generating densities p(y|x) using estimates of both the

Kullback–Leibler divergence and the L2 distance, defined respectively as

DKL(p,q) =
n

∑
i=1

p(yi|xi) ln
p(yi|xi)

q(yi|xi)
,

DL2 (p,q) = 100 ·

(

n

∑
i=1

(q(yi|xi)− p(yi|xi))
2

)
1
2

,

where {yi,xi}
n
i=1 is the estimation data.

Table 2 shows that when the true data is normal (DGP 1), both SAGM and Split-t do well with

a single component. The extra coefficients in the degrees of freedom and skewness in the split-t

are effectively removed by variable selection. SAGM improves a bit when components are added,

while the split-t gets slightly worse.

When the DGP also exhibits skewness (DGP 2), SAGM(1) performs much worse than split-

t(1). SAGM clearly improves with more components, but the fit of SAGM(5) is still much worse

than the one-component split-t. Note how variable selection makes the performance of the split-t

deteriorate only very slowly as we add unnecessary components.

The same story as in the skewed data situation holds when the data are heavy tailed (DGP 3),

and when the data are both skewed and heavy tailed (DGP 4).

In conclusion, smooth mixtures with a few complex components can greatly outperform smooth

mixtures with many simpler components. Moreover, variable selection is effective in down-

weighting unnecessary aspects of the components and makes the results robust to mis-specification

of the number of components, even when the components are complex.
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TABLE 2. Kullback–Leibler and L2 distance between estimated models and the

true DGPs

Split-t SAGM

K 1 2 3 4 5 1 2 3 4 5

DGP 1 - Normal

DKL 1.06 1.40 1.54 1.79 2.19 1.31 1.03 0.90 0.95 1.05

DL2 1.73 2.64 3.18 6.11 8.33 2.21 1.52 1.34 1.46 1.71

DGP 2 - Split-normal

DKL 3.67 3.67 4.76 4.74 5.57 51.05 14.16 7.30 7.33 8.01

DL2 6.05 6.82 9.51 9.55 13.11 106.13 31.49 16.46 16.20 17.59

DGP 3 - Student-t

DKL 1.12 1.72 1.79 2.05 2.20 13.30 1.94 1.78 2.16 2.65

DL2 2.14 4.82 4.70 5.72 5.42 35.79 4.33 3.91 4.70 6.61

DGP 4 - Split-t

DKL 3.99 3.24 4.24 4.66 5.67 75.80 21.02 8.89 7.35 7.36

DL2 9.02 8.22 11.78 13.13 16.90 199.99 59.54 27.06 22.43 22.63

4.2. LIDAR data . Our first real data set comes from a technique that uses laser-emitted light

to detect chemical compounds in the atmosphere (LIDAR, LIght Detection And Ranging). The

response variable (logratio) consists of 221 observations on the log ratio of recieved light from

two laser sources: one at the resonance frequency of the target compound, and the other from

a frequency off this target frequency. The predictor is the distance travelled before the light is

reflected back to its source (range). The original data comes from Holst et al. (1996) and has been

analyzed by for example Ruppert et al. (2003) and Leslie et al. (2007). Our aim is to model the

predictive density p(logratio | range).
Leslie et al. (2007) show that a Gaussian model with nonparametric mean and variance can cap-

ture this data set quite well. We will initially use the SAGM model in Villani et al. (2009) with the

mean, variance and mixing functions all modelled nonparametrically by thin plate splines (Green

& Silverman, 1994). Ten equidistant knots in each component are used for each of these three

aspects of the model. We use a version of SAGM where the variance functions of the components

are proportional to each other, i.e. only the intercepts in the variance functions are allowed to be

different across components. The more general model with completely separate variance func-

tions gives essentially the same LPDS, and the posterior distributions of the component variance

functions (identified by order-restrictions) are largely over-lapping. We use the variable selec-

tion prior in Villani et al. (2009) where the variable selection indicator for a knot κ in the kth
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mixture component is distributed as Bernoulli
[

πβ ·ωk(κ)
]

. This has the desirable effect of down-

weighting knots in regions where the corresponding mixture component has small probability. We

compare our results to the smoothly mixing regression (SMR) in Geweke & Keane (2007) which

is a special case of SAGM where the components’ variance functions are independent of the co-

variates and any heteroscedasticity is generated solely by the mixture. We use a prior with m∗ = 0

and s∗2 = 10 in the mean function, and m∗ = 1 and s∗2 = 1 in the variance function (see Section

2.3). Given the scale of the data, these priors are fairly non-informative. As documented in Villani

et al. (2009) and Li et al. (2010), the estimated conditional density and the LPDS are robust to

variations in the prior.

TABLE 3. Log predictive density score (LPDS) over the five cross-validation sam-

ples for the LIDAR data.

Linear components Thin plate components

K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

SMR 26.564 59.137 63.162 48.399 61.571 62.985

SAGM 30.719 61.217 64.223 64.267 64.311 64.313

Table 3 displays the five-fold cross-validated LPDS for the SMR and SAGM models, both

when the components are linear in covariates and when they are modelled by thin plate splines.

The three SAGM models with splines have roughly the same LPDS. The SMR model needs three

components to come close the LPDS of the SAGM(1) model with splines, and even then does not

quite reach it. All the knots in the variance function of the SAGM models have posterior inclusion

probabilities smaller than 0.1, suggesting strongly that the (log) variance function is linear in

range. Figure 1 plots the LIDAR data and the 68% and 95% Highest Posterior Density (HPD)

regions in the predictive distribution p(logratio | range) from the SMR(3) and the SAGM models

with 1, 2 and 3 components. Perhaps the most interesting result in Table 3 and Figure 1 is that

SAGM models with more than one component do not seem to overfit. This is quite remarkable

since the one-component model fit the data well, and additional components should therefore be

a source of over-fitting. This is due to the self-adjusting mechanism provided by the variable/knot

selection prior where the already present components automatically becomes simpler (more linear)

as more components are added to the model. The estimation results for the SAGM(3) model with

spline components (not shown) reveals that the SAGM(3) model with spline components is in fact

reduced to essentially a model with linear components. Figure 1 also shows that the fit of the

SAGM(3) models with linear components (bottom row, second column) and spline components

(second row, second column) are strikingly similar. The same holds for the LPDS in Table 3.

Finally, Figure 1 also displays the fit of the split-t model with one component. The estimation

results for this model shows that only two knots are really active in the mean function, all of

the knots in the scale, degrees of freedom and skewness have posterior probabilities smaller than

0.3. The degrees of freedom are roughly 43 for the smallest values of range and then decreases

smoothly toward 7 when range is 720. The skewness parameter λ is roughly 0.5 for all values
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of range, a sizeable skewness which is also visible in Figure 1. The LPDS of the one-component

split-t model is 64.014, which is only slightly worse than SAGM(1).
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FIGURE 1. Assessing the in-sample fit of the smooth mixture models for the LI-

DAR data. The figure displays the actual data overlayed on HPD predictive regions.

The solid line is the predictive mean.

4.3. Electricity expenditure data. Our second example uses a data set with electricity expendi-

tures in 1602 households from South Australia (Bartels et al., 1996). Leslie et al. (2007) analyze
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this data set and conclude that a heteroscedastic regression with errors following a Dirichlet pro-

cess mixture fits the data well. They also document that the response variable is quite skewed.

We consider both in-sample and out-of-sample performance of smooth mixture models, using the

data set in Leslie et al. (2007) without interactions. The thirteen covariates used in our application

are defined in Table 4

Following Leslie et al. (2007), we mean correct the covariates, but keep their original scale.

TABLE 4. The electricity bills regressors (subsets)

Variable name Description

log(rooms) log of the number of rooms in the house

log(income) log of the annual pretax household income in Australian dollars

log(people) log of the number of usual residents in the house

mhtgel indicator for electric main heating

sheonly indicator for electric secondary heating only

whtgel indicator for peak electric water heating

cookel indicator for electric cooking only

poolfilt indicator for pool filter

airrev indicator for reverse cycle air conditioning

aircond indicator for air conditioning

mwave indicator for microwave

dish indicator for dishwasher

dryer indicator for dryer

The prior means of µ and φ are set equal to the median and the standard deviation of the

response variable, respectively. This data snooping is innocent as we set the standard deviation of

µ and φ to 100, so the prior is largely non-informative. The prior mean and standard deviation of

the skewness parameter, λ are both set to unity. This means that we are centering the prior on a

symmetric model, but allowing for substantial skewness a priori. The prior mean of the degrees

of freedom is set to 10 with a standard deviation of 7, which is wide enough to include both the

Cauchy and essentially the Gaussian distributions. Since the data sample is fairly large, and we

base model choice on the LPDS, the results are insensitive to the exact choice of priors.

We first explore the out-of-sample performance of several smooth mixture models using five-

fold cross-validation of the LPDS. The five subsamples are chosen by sampling systematically

from the data set. Table 5 displays the results for a handful of models. Every model is estimated

both under the assumption of separate parameters and when all parameters except the intercepts

are common across components; see Section 2.2.

Looking first at the LPDS of the one-component models, it is clear that data are skewed (the

skewed models are all doing better than SAGM), but the type of the skewness is clearly important

(gamma is doing a lot better than split-normal and log-normal). The best one-component model

is gamma model, which indicates the presence of heavy-tails in additional to skewness.

The best model overall is the split-t model with three separate components, closely followed

by the gamma model also with two separate components. It seems that this particular data set has
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TABLE 5. Log predictive density score (LPDS) from fivefold cross-validation of

the electricity expenditure data.

Model K = 1 K = 2 K = 3

SMR separate −2,086 −2,027 −2,020

common – −2,030 −2,020

SAGM separate −2,040 −2,022 −2,024

common – −2,022 −2,017

Split-normal separate −2,014 −2,012 −2,015

common – −2,064 −2,251

Student’s t separate −2,025 −2,014 −2,014

common – −2,029 −2,022

Split-t separate −2,034 −2,006 −1,996

common – −2,073 −2,041

Gamma separate −2,007 −2,002 −2,003

common – −2,008 −2,009

Log-normal separate −2,011 −2,006 −2,009

common – −2,007 −2,010

The numerical standard errors of the LPDS are smaller than one for all models.

a combination of skewness and heavy-tailedness which is better modeled by a mixture than by a

single skewed and heavy-tailed component.

One way to check the in-sample fit of the models on the full data set is look at the normalized

residuals. We define the normalized residual as Φ−1[F(yi)], where F(·) is the distribution function

from the model. If the model is correctly specified, the normalized residuals should be an iid

N(0,1) sample. Figure 2 displays QQ-plots for the models with one to three components. The

QQ-plots should be close to the 45 degree line if the model is correctly specified. It is clear from

the first row of Figure 2 that a model with one component has to be skewed in order to fit the data.

As expected, most of the models provide a better fit as we add components, the main exception

being the split-t which deteriorates as we go from one to two components. This may be due to

the MCMC algorithm getting stuck in a local mode, but several MCMC runs gave very similar

results.

Table 6 presents estimation results from the one-component split-t model. We choose to present

results for this model as it is easy to interpret and requires no additional identifying restrictions.

Table 6 shows that many of the covariates, including log(room) and log(people), are important in

the mean function. log(income) gives a relatively low posterior inclusion probability in the mean

function, but is an important covariate in the scale, φ . The covariate sheonly is the only impor-

tant variable in the degrees of freedom function, but at least seven covariates are very important

determinants of the skewness parameter.

Figure 3 depicts the conditional predictive densities p(y|x) from three of the models: split-

t(1) (the most feature-rich one-component model), student-t(2) (the best mixture of symmetric
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FIGURE 2. Quantiles plots of the normalized residuals resulting from SAGM and

split-normal (first column); student’s t and split-t (second column); gamma and

log-normal (third column) with one to three separate components respectively. If

the model is correct, the normalized residuals should be on the dotted reference

line.

densities model with a minimal number of components) and Gamma(1) (the most efficient model

with a minimum number of potential parameters). The predictive densities are displayed for three
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TABLE 6. Posterior means and inclusion probabilities in the one-component split-t

model for the electricity expenditure data.

Variable βµ Iµ βφ Iφ βν Iν βλ Iλ

Intercept 256.62 – 3.82 – 2.83 – 1.34 –

log(rooms) 49.47 0.90 −0.65 0.43 −0.05 0.04 0.97 1.00

log(income) 2.71 0.48 −0.36 1.00 −0.05 0.02 0.55 1.00

log(people) 40.62 1.00 −0.20 0.22 0.06 0.03 0.34 1.00

mhtgel 27.28 1.00 0.07 0.12 −0.18 0.03 0.13 0.15

sheonly 10.11 0.72 0.01 0.04 2.10 0.99 0.04 0.05

whtgel 17.74 0.68 −0.23 0.18 0.33 0.04 0.82 0.99

cookel 27.80 0.99 −0.19 0.14 0.01 0.04 0.39 1.00

poolfilt −6.50 0.50 −0.11 0.23 1.62 0.07 0.32 0.76

airrev 14.06 0.91 0.06 0.07 −0.03 0.03 0.12 0.16

aircond 5.58 0.46 0.03 0.11 0.01 0.03 0.29 0.96

mwave 8.08 0.75 −0.38 0.49 −0.39 0.05 0.43 0.49

dish 12.96 0.66 0.08 0.05 1.16 0.04 0.11 0.07

dryer 19.64 0.99 0.06 0.12 −0.29 0.05 0.20 0.90

different conditioning values of the most important covariates: log(rooms), log(income), sheonly
and whtgel. All other covariates except the one indicated below the horizontal axis are fixed at

their sample means. It is clear from Figure 3 that the predictive densities are very skewed, but

also that the different models tend to produce very different types of skewness. The predictive

densities from the 2-component student-t model are unimodal except for median and high values

of whtgel where the two components are clearly visible.

5. CONCLUSIONS

We have presented a general model class for estimating the distribution of a continuous variable

conditional on a set of covariates. The models are finite smooth mixtures of component densities

where the mixture weights and all component parameters are functions of covariates. The infer-

ence methodology is a fully unified Bayesian approach based on a general and efficient MCMC

algorithm. Easily specified priors are used and Bayesian variable selection is carried out to obtain

model parsimony and guard against over-fitting. We use the log predictive density score to de-

termine the number of mixture components. Simulation and real examples show that using fairly

complex components in the mixture is a wise strategy and that variable selection is an efficient

approach to guard against over-fitting.
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FIGURE 3. Conditional predictive densities for different values of the most impor-

tant covariates. All other covariates are held fixed at their mean.

APPENDIX A. IMPLEMENTATION DETAILS FOR THE GAMMA AND LOG-NORMAL MODELS

The general MCMC algorithm documented in Section 3 only requires the gradient and Hessian

matrix of the conditional posteriors for each of the parameters in the components densities. The
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gradient and Hessian for the split-t model is documented in Li et al. (2010). We now present the

gradient and Hessian for the gamma model and log-normal model for completeness.

(1) Gradient and Hessian wrt µ and φ for the gamma density.
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where ψ(·) and ψ1(·) are the digamma function and trigamma function respectively.

(2) Gradient and Hessian wrt µ and φ for the log-normal density.

It is convenient to define h = log(y/µ) and l = log
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)

.
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EFFICIENT BAYESIAN MULTIVARIATE SURFACE REGRESSION

FENG LI AND MATTIAS VILLANI

ABSTRACT. Methods for choosing a fixed set of knot locations in additive spline models are fairly
well established in the statistical literature. The curse of dimensionality makes it non-trivial to ex-
tend these methods to non-additive surface models, especially when there are more than a couple of
covariates. We propose a multivariate Gaussian surface regression model that combines both addi-
tive splines and interactive splines, and a highly efficient MCMC algorithm that updates all the knot
locations jointly. We use shrinkage priors to avoid overfitting with different estimated shrinkage
factors for the additive and surface part of the model, and also different shrinkage parameters for
the different response variables. Simulated data and an application to firm leverage data show that
the approach is computationally efficient, and that allowing for freely estimated knot locations can
offer a substantial improvement in out-of-sample predictive performance.

KEYWORDS: Bayesian inference, free knots, Markov chain Monte Carlo, surface regression, splines.

1. INTRODUCTION

Flexible modeling of the regression function E(y|x) has been an active research field for decades,
see e.g. Ruppert et al. (2003) for a recent textbook introduction and further references. Inten-
sive research was initially devoted to kernel regression methods (Nadaraya, 1964; Watson, 1964;
Gasser, 1979), and later followed by a large literature on spline regression modeling. A spline
is a linear regression on a set of nonlinear basis functions of the original regressors. Each basis
function is defined from a knot in regressor space and the knots determine the points of flexibility
of the fitted regression function. This gives rise to a locally adaptable model with continuity at the
knots.

The most widely used models assume additivity in the regressors, i.e. E(y|x1, ...,xq)=∑
q
j=1 f j(x j),

where f j(x j) is a spline function for the jth regressor (Hastie & Tibshirani, 1986). Assuming ad-
ditivity is clearly a very convenient simplification, but it is also somewhat unnatural to make such
a strong assumption in an otherwise very flexible model. This has motivated research on surface
models with interactions between regressors. One line of research extends the additive models by
including higher-order interactions of the spline basis functions, see e.g. the structured ANOVA
approach or the tensor product basis in Hastie et al. (2009). The multivariate adaptive regression
splines introduced in Friedman (1991) is a version of the tensor product spline with interactions
sequentially entering the model using a greedy algorithm. Regression trees (Breiman et al., 1984)

Li (corresponding author): Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden. E-
mail: feng.li@stat.su.se. Villani: Division of Statistics, Department of Computer and Information Science,
Linköping University, SE-581 83 Linköping, Sweden. E-mail: mattias.villani@liu.se.

This is the reprint of the original article.

63



FENG LI AND MATTIAS VILLANI

is another popular class of models, with the BART model in Chipman et al. (2010) as its most
prominent Bayesian member. Our paper follows a recent strand of literature that models surfaces
using radial basis functions splines, see e.g. Buhmann (2003). A radial basis function is defined
in R

q and has a value that depends only on the distance from a covariate vector (x) to its q-
dimensional knot (ξ), e.g. the cubic radial basis ‖x−ξ‖3, where x= (x1, ...,xq)

′, ξ = (ξ1, ...,ξq)
′

and ‖·‖ is the Euclidean norm. The model is again linear in the basis expanded space.
The basic challenge in spline regression is the choice of knot locations. This problem is clearly

much harder for a general surface than it is for additive models since any manageable set of q-
dimensional knots are necessarily sparse in R

q when q is moderate or large, a manifestation of
the curse of dimensionality. Most of the algorithms in the literature use a fixed set of knot lo-
cations, and the most prominent ones place the knots at the centroids from a clustering of the
regressor observations. The response variables are not used in the clustering. To prevent over-
fitting, Bayesian variable selection methods are used to automatically remove or downweight the
influence of the knots using Markov chain Monte Carlo (MCMC) techniques (Smith & Kohn,
1996). The reversible jump MCMC (RJMCMC) in for example Denison et al. (2002) treats the
number of knots as unknown subject to an upper bound, but the location of the knots are still fixed
throughout the analysis.

Using a fixed set of knot locations is impractical when estimating a surface with more than a
few regressors. An algorithm that can move the knots rapidly over the regressor space is expected
to be a clear improvement. All previous attempts have focused on efficient selection of fixed
knots, and have paid little attention to moving the knots. The otherwise very elaborate RJMCMC
approaches in Dimatteo et al. (2001), Denison et al. (1998), Gulam Razul et al. (2003) and Holmes
& Mallick (2003) all include a very simple MCMC update where a single knot is re-located using
a Metropolis random walk step with a proposal variance that is the same for all knots. There are
typically strong dependencies between the knots, and local one-knot-at-a-time moves will lead to
slow convergence of the algorithm and inability to escape from local modes, see Section 5.4 for
some evidence.

The main contribution in this paper is a highly efficient MCMC algorithm for the Gaussian
multivariate surface regression where the locations of all knots are updated jointly. Our joint
updates of the knot locations are documented to dramatically increase the number of efficient
MCMC draws for a fixed computing time. Rapid mixing of the knot locations is obtained from the
following two features of our algorithm. First, the knots are simulated from a marginal posterior
where the high-dimensional regression coefficients have been integrated out analytically. Second,
the proposal distribution of the knots is tailored to the posterior distribution using the posterior
gradient, which we derive in compact analytical form and evaluate efficiently by a careful use of
sparsity.

Even a highly efficient MCMC algorithm is likely to have problems exploring the joint posterior
of many surface knots in a high-dimensional covariate space. To deal with this, our model is
decomposed into three parts: i) the original covariates entering in linear form, ii) additive spline
basis functions and iii) radial basis functions for capturing the remaining part of the surface and
interactions. The idea is to let the additive part of the model capture the bulk of the nonlinearities
so that the radial basis functions can focus exclusively on modeling the interactions. This way
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we can keep the number of knots in the interaction part of the model to a minimum, which is
beneficial for MCMC convergence.

We use separate shrinkage priors for the three parts of the model. Moreover, we also allow
for separate shrinkage parameters in each response equation. The shrinkage factors are treated as
unknowns and estimated using a tailored joint MCMC updating step. This gives us an extremely
flexible yet potentially parsimonious model where we can shrink out e.g. the surface part of the
model in a subset of the response equations.

Our MCMC scheme is designed for a fixed number of knots, and we select the number of knots
by Bayesian cross-validation of the log predictive score using parallel computing, see Section 3.3.
This has the disadvantage of not accounting for the uncertainty regarding the number of knots as is
done in RJMCMC schemes, but brings the advantages that the model choice is substantially more
robust to variations in the prior, and that it is much easier to design an efficient MCMC algorithm.
See Section 3.3 for a discussion.

We illustrate our algorithm on simulated and real data, and compare the predictive performance
of the models using Bayesian cross-validation techniques. We find that the free knots model
constantly outperforms the model with fixed knots. Additionally, we find it is easier to obtain
better fitting result by combining additive knots and surface knots in the model.

2. BAYESIAN MULTIVARIATE SURFACE REGRESSION

2.1. The model. Our proposed model is a Gaussian multivariate regression with three sets of
covariates:

Y =XoBo +Xa(ξa)Ba +Xs(ξs)Bs +E, (1)

where Y (n× p) contains n observations on p response variables, and the rows of E are error
vectors assumed to be independent and identically distributed (iid) as Np(0,Σ). The matrix
Xo(n× qo) contains the original regressors (first column is a vector of ones for the intercept)
and Bo holds the corresponding regression coefficients. The qa columns of the matrix Xa(ξa) are
additive splines functions of the covariates in Xo. Our notation makes it clear that Xa depends
on the knots ξa. Note that the knots in the additive part of the model are scalars, and that our
model allows for unequal number of knots in the different covariates. Finally, Xs(ξs) contains the
surface, or interaction, part of the model. The knots in ξs are qo-dimensional vectors. Note how
this decomposition makes it possible for the additive part of the model to capture the main part of
the nonlinearities so that the number of knots in Xs is kept to a minimum. We will refer to the
three different parts of the model as the linear component, the additive component and the surface

component, respectively. We will refer to ξa and ξs as the additive and surface knots, respectively.
Likewise, Ba and Bs are the additive and surface coefficients.

Denison et al. (2002) surveys the most commonly used spline bases. We use thin-plate splines
for illustration, but our approach can be used with any basis with trivial changes, see Section 3
and Appendix A for computational details. The thin-plate spline basis in the surface case is of the
form

xs j(ξs j) = ‖xo −ξs j‖
2 ln‖xo −ξs j‖, j = 1, ...,qs, (2)
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where xo is one of the original data points and ξs j is the jth qo-dimensional surface knot. The
univariate thin-plate basis used in the additive part is a special case of the multivariate thin-plate
in (2) where both the data point and the knot are one-dimensional.

For notational convenience, we sometimes write model (1) in compact form

Y =XB+E,

where X = [Xo,Xa,Xs] is the n× q design matrix (q = qo + qa + qs) and B = [B
′

o,B
′

a,B
′

s]
′
.

Define also bi = vecBi as the vectorization of the coefficients matrix Bi, and b= [b
′

o,b
′

a,b
′

s]
′
.

For a given set of fixed knot locations, the model in (1) is linear in the regression coefficients
B. As explained in the Introduction, the great challenge with spline models is the choice of knot
locations, especially in the surface case. We will treat the knot locations in ξa and ξs as unknown
parameters to be estimated and updated jointly in the MCMC. This is in principle straightforward
from a Bayesian point of view, but great care is needed in the actual implementation of the poste-
rior computations. We propose an efficient MCMC scheme for sampling from the joint posterior
of the all knot locations and the regression coefficients, see Section 3 for details.

The model is clearly highly (over)parametrized and in need of some regularization of the pa-
rameters. The two main regularization techniques in Bayesian analysis are shrinkage priors and
variable (knot) selection priors. Variable selection can in principle be incorporated in the analysis,
but would be computationally demanding since the number of gradient evaluations needed in our
MCMC algorithm would increase dramatically. This is important since evaluating the gradient
with respect to the knots is time-consuming as the knot locations enter the likelihood in a very
complicated nonlinear way; see Section 3.2 for details. Moreover, part of the attraction of vari-
able selection is that they also provide interpretable measures of variable importance; this is much
less interesting here since the covariates correspond to knot locations, which are not interesting in
themselves. We have therefore chosen to achieving parsimony with shrinkage priors that pull the
regression coefficients towards zero (or any other reference point if so desired), see Section 2.2
for details.

Allowing the knots to move freely in covariate space introduces a knot switching problem sim-
ilar to the well-known label switching problem in mixture models. The likelihood is invariant to
a switch of two knot locations and their regression coefficients. This lack of identification is not
important if our aim is to model the regression surface E(y|x), without regard to the posterior of
the individual knot locations (Geweke, 2007). Also, the MCMC draws of the knot locations can
also be used to construct heat maps in covariate space to represent the density of knots in a certain
regions, see Section 5. Such heat maps are clearly also immune to the knot switching problem.

2.2. The prior. We now introduce an easily specified shrinkage prior for the three sets of regres-
sion coefficients Bo, Ba and Bs and the covariance matrix Σ, conditional on the knots. The prior
for b and Σ are set as

vecBi|Σ, λi ∼ N
(

µi, Λ
1/2
i ΣΛ

1/2
i ⊗P−1

i

)

, i ∈ {o,a,s},

Σ∼ IW(n0S0, n0) ,

with prior independence between the Bi conditionally on Σ and λi. The prior mean of vecBi

is µi, which we set to zero in our shrinkage prior. Λi = diag(λi) = diag(λi,1, ...,λi,p), Pi is a
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positive definite symmetric matrix. IW( · ) denotes the inverse Wishart distribution, with location
matrix S0 and degrees of freedom n0. Pi is typically either the identity matrix or Pi =X ′

iXi. The
latter choice has been termed a g-prior by Zellner (1986) and has the advantage of automatically
adjusting for the different scales of the covariates. Setting λi = n makes the information content
of the prior equivalent to a single data point and is usually called the unit information prior. The
choice of Pi = Iqi

can prevent the design matrix from falling into singularity problem when some
of the basis functions are highly correlated, which can easily happen with many spline knots. See
also the discussion in Denison et al. (2002). Our default choice is therefore Po =X ′

oXo, Pa = Iqa

and Ps = Iqs
. Other shrinkage priors on the regression coefficients can be used in our approach,

for example the Laplace distribution leading to the popular Lasso (Tibshirani, 1996), but they
will typically not allow us to integrate out the regression coefficients analytically, see Section 3.1.
The optimal choice of shrinkage prior depends on the unknown data generating model (a normal
prior is better when all coefficients have roughly the same magnitude; Lasso is better when many
coefficients are close to zero, but some are really large etc).

We also estimate the shrinkage parameters, λo, λa and λs via a Bayesian approach. Note that
our prior constructions for B allow for separate shrinkage of the linear, additive and surface com-
ponents. This gives us automatic regularization/shrinkage of the regression coefficients and helps
to avoid problems with overfitting. Our MCMC scheme in Section 3 allows for a user-specified
prior on λi j, for i ∈ {o,a,s} and j = 1,2, ..., p of essentially any functional form. However the
default prior of λi j in this paper follows a log normal distribution with mean of n/2 and standard
deviation of n/2 in order to ensure that both tight and flat shrinkages are attainable within one
standard deviation in the prior. For computational convenience, we use a log link for λi j and make
inference on log(λi j). As a result the preceding prior on λi j yields a normal prior for log(λi j) with
mean [log(n)−3/2 · log(2)] and variance log(2).

We use the same number of additive knots for each covariate in the simulations and the appli-
cation in Section 4 and 5, but it should be clear that our approach also permits unequal number of
knots in the different covariates. There is no particular requirements for the prior on the knots, but
a vague prior should permit the knots to move freely in covariate space. Our default prior assumes
independent knot locations following a normal distribution. The mean of the knots comes from
the centers of a k-means clustering of the covariates. In the additive case, the prior variance of all
the knots in the kth covariate is c2(a′a)−1, where a is the kth column of Xo. Similarly, the prior
covariance matrix of a surface knot is c2(X ′

oXo)
−1. We use c2 = n as the default setting.

The hyperparameter S0 in the IW prior for Σ should in principle be chosen subjectively, but in
our application we set it equal to the estimated error covariance matrix from the fitted linear model
Ŷ =XoB̂o, for simplicity. This is not a crucial choice since we use a relatively small degrees of
freedom (n0). We use n0 = 10 as our default choice.

For notational convenience and further computational implementation, we write the prior for the
regression coefficients in condensed form as b|Σ,λ ∼ N(µ∗,Σb) where λ = (λ′

o,λ
′
a,λ

′
s)
′, µ∗ =

(µ′
o,µ

′
a,µ

′
s)
′, Σb = (Λ1/2ΣKΛ

1/2)>P−1, Λ = diag(λ), ΣK is a three-block diagonal matrix
with Σ on each block, P = diag(Po,Pa,Ps) is a block diagonal matrix and A>C denotes the
Khatri-Rao product (Khatri & Rao, 1968) which is Kronecker product of the corresponding blocks
of matrices A and C. It will also be convenient to define β = vecB. Note that b and β contain
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the same elements with two different stacking orders. As a result, β|Σ,λ ∼ N
(

µ,Σβ

)

where µ

and Σβ essentially have the same entries as µ∗ and Σb have, respectively (Appendix A.3).

3. THE POSTERIOR INFERENCE

3.1. The posterior. The posterior distribution can be decomposed as

p(B,Σ,ξ,λ|Y ,X) = p(B|ξ,λ,Σ,Y ,X)p(ξ,λ,Σ|Y ,X),

where
vecB|ξ,λ,Σ,Y ,X ∼ N(β̃, Σβ̃),

Σ
β̃
= [Σ−1 ⊗X ′X+Σ−1

β
]−1 , β̃ = vecB̃ =Σ

β̃
[vec(X ′Y Σ−1)+Σ−1

β
µ] (Zellner, 1971), and

p(ξ,λ,Σ|Y ,X) = c× p(ξ,λ)×|Σβ|
−1/2|Σ|−(n+n0+p+1)/2|Σ

β̃
|−1/2

× exp

{

−
1

2

[

trΣ−1
(

n0S0 +nS̃
)

+
(

β̃−µ
)′
Σ−1

β

(

β̃−µ
)

]} (3)

where we allow for separate shrinkage parameters for the linear, additive and surface parts of the
model, and separate shrinkage parameters for the p responses within each of the three model parts.
The shrinkage parameters are treated as unknowns and estimated, so that, for example, the surface
part can be shrunk towards zero if this agrees with the data. S̃ = (Y −XB̃)′(Y −XB̃)/n,
c= 2−(n0+n+q)p/2π−p(n+q)/2Γ−1

p (n0/2)|n0S0|
n0/2, Γp(a) = π p(p−1)/4 ∏

p
j=1 Γ [a+(1− j)/2] is the

multivariate gamma function. It is important to note that it is in general not possible to integrate
out Σ analytically in our model. This is a consequence of using different shrinkage factors for
the different responses and on the original, additive and surface parts of the model (the prior
covariance matrix of B does not have a Kronecker structure). Only in the special case with a
univariate response (p = 1) can we integrate out Σ analytically, since Σ is then a scalar. To obtain
a uniform treatment of the models and their gradients, we have chosen to not integrate out Σ even
for the case p = 1. The next subsection proposes an MCMC algorithm for sampling from the joint
posterior distribution of all parameters.

3.2. The MCMC algorithm. Our approach is to sample from p(ξ,λ,Σ|Y ,X) using a three-
block Gibbs sampling algorithm with Metropolis-Hastings (MH) updating steps. Draws from
p(B|ξ,λ,Σ,Y ,X) can subsequently be obtained by direct simulation. The updating steps of the
Gibbs sampling algorithm are:

(1) Simulate Σ from p(Σ|ξ,λ,Y ,X).
(2) Simulate ξ from p(ξ|λ,Σ,Y ,X).
(3) Simulate λ from p(λ|ξ,Σ,Y ,X).

In the special case when p = 1

Σ|ξ,λ,Y ,X ∼ IW
(

n0S0 +nS̃+∑i∈{o,a,s}
Λ

−1/2
i (B̃i −Mi)

′Pi(B̃i −Mi)Λ
−1/2
i , n0 +n

)

(4)

where Mi and B̃i are the prior and posterior mean of Bi, respectively, and the IW density reduces
to a scaled χ2 distribution. When p > 1, p(Σ|ξ,λ,Y ,X) is no longer IW, but the distribution in
(4) is an excellent approximation and can be used as a very efficient MH proposal density.
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The conditional posterior distributions for ξ and λ in Steps (2) and (3) above are highly non-
standard and we update these parameters using Metropolis-Hastings steps with a tailored proposal,
which we now describe for a general parameter vector θ with posterior p(θ|Y ), which could
be a conditional posterior in a Metropolis-within-Gibbs algorithm (e.g. p(ξ|λ,Σ,Y ,X)). This
method was originally proposed by Gamerman (1997) and later extended by Nott & Leonte (2004)
and Villani et al. (2012). All of these three articles are confined to a generalized linear model
(GLM) or GLM-like context where the parameters enter the likelihood function through a scalar-
valued link function. A contribution of our paper is to show that the algorithm can be extended
to models with a less regular structure and that it retains its efficiency even when the parameters
are high-dimensional and enter the model in a highly nonlinear way. The way the knot locations
and the shrinkage parameters are buried deep in the marginal posterior (see Equation 3.1 above)
makes the necessary gradients (see below) much more involved and numerically challenging (see
Appendix A).

At any given MCMC iteration we use Newton’s method to iterate R steps from the current point
θc in the MCMC sampling towards the mode of p(θ|Y ), to obtain θ̂ and the Hessian at θ̂. Note
that θ̂ may not be the mode but is typically close to it already after a few Newton iterations since
the previously accepted θ is used as the initial value; setting R = 1,2 or 3 is therefore usually
sufficient. This makes the algorithm very fast. Having obtained good approximations of the
posterior mode and covariance matrix from the Newton iterations, the proposal θp is now drawn
from the multivariate t-distribution with ν > 2 degrees of freedom:

θp|θc ∼ t

[

θ̂, −

(

∂ 2 ln p(θ|Y )

∂θ∂θ′

)−1
∣

∣

∣

∣

∣

θ=θ̂

, ν

]

,

where the second argument of the density is the covariance matrix and θ̂ is the terminal point of
the R Newton steps. The Metropolis-Hastings acceptance probability is

a(θc → θp) = min

[

1,
p(Y |θp)p(θp)g(θc|θp)

p(Y |θc)p(θc)g(θp|θc)

]

.

The proposal density at the current point g(θc|θp) is a multivariate t-density with mode θ̃ and co-

variance matrix equal to the negative inverse Hessian evaluated at θ̃, where θ̃ is the point obtained
by iterating R steps with the Newton algorithm, this time starting from θp. The need to iterate
backwards from θp is clearly important to fulfill the reversibility of the Metropolis-Hastings algo-
rithm. When the number of parameters in θ is large one can successively apply the algorithm to
smaller blocks of parameters in θ.

The tailored proposal distribution turns out to be hugely beneficial for MCMC efficiency, see
Section 5.4 for some evidence, but a naive implementation can easily make the gradient and Hes-
sian evaluations an insurmountable bottleneck in the computations, and a source of numerical
instability. We have found the outer product of gradients approximation of the Hessian to work
very well, so all we need to implement efficiently are the gradient vector of p(ξ|λ,Σ,Y ,X) and
p(λ|ξ,Σ,Y ,X). Appendix A gives compact analytical expression for these two gradient vec-
tors, and shows how to exploit sparsity to obtain fast and stable gradient evaluations. Our gradient
evaluations can easily be orders of magnitudes faster than state-of-the-art numerical derivatives,
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and substantially more stable numerically. For example, already in a relatively small-dimensional
model in Section 5 with only four covariates, 20 surface knots and 4 additive knots, the analytical
gradient for the knot parameters are more than 40 times faster compared to a numerical gradient
with a tolerance of 10−3. Since the gradient evaluations accounts for 70-90% of total computing
time, this is clearly an important advantage.

3.3. Model comparison. The number of knots is determined via the D-fold out-of-sample log
predictive density score (LPDS), defined as

1

D
∑

D

d=1
ln p(Ỹd|Ỹ−d,X),

where Ỹd is an (nd × p)-dimensional matrix containing the nd observations in the dth testing
sample and Ỹ−d denotes the training observations used for estimation. If we assume that the
observations are independent conditional on θ, then

p(Ỹd|Ỹ−d,X) =
∫

∏i∈τd
p(yi|θ,xi)p(θ|Ỹ−d)dθ,

where τd is the index set for the observations in Ỹd , and the LPDS is easily computed by averaging
∏i∈τd

p(yi|θ,xi) over the posterior draws from p(θ|Ỹ−d). This requires sampling from each of

the D posteriors p(θ|Ỹ−d) for d = 1, ...,D, but these MCMC runs can all be run in isolation
from each other and are therefore ideal for straightforward parallel computing on widely available
multi-core processors. The main advantage for choosing LPDS instead of the marginal likelihood
(which underlies the inference from RJMCMC) is that the LPDS is not nearly as sensitive to the
choice of prior as the marginal likelihood, see e.g. Kass (1993) and Richardson & Green (1997) for
a general discussion. The reason is that the LPDS uses the training data, Ỹ−d , to update the prior
before evaluating the test data. The marginal likelihood can also lead to poor predictive inference
when the true data generating process is not included in the class of compared models, see e.g.
Geweke & Amisano (2011) for an illuminating perspective. The main disadvantage of using the
LPDS for selecting the number of knots is that, unlike the marginal likelihood and RJMCMC,
there is no rigorous way of including the uncertainty regarding the number of knots in the final
inferences. The dataset is systematically partitioned into five folds in our firm leverage application
in Section 5.

4. SIMULATIONS

We compare the performance of the traditional fixed knots approach to our approach with freely
estimated knot locations using simulated data with different number of covariates and for varying
degrees of nonlinearity in the true surface. We use shrinkage priors with estimated shrinkage both
for the fixed and free knot models, but no variable selection.

4.1. Simulation setup. We consider data generating processes (DGP) with both univariate (p =
1) and bivariate (p = 2) responses, and datasets with qo = 10 regressors and two sample sizes,
n = 200 and n = 1000. We first generate the covariate matrix Xo from a mixture of multivariate
normals with five components. The weight for the rth mixture component is ur/∑

5
l=1 ul , where

u1, ...,u5 are independent U(0,1) variables. The mean of each component is a draw from U(−1,1)
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and the components’ variances are all 0.1. We randomly select five observations without replace-
ment from Xo as the true surface knots ξs, and then create the basis expanded design matrix X

using the thin-plate radial basis surface spline, see Section 2.1. The coefficients matrix B is gener-
ated by repeating the sequence {−1,1}. The error term E is from multivariate normal distribution
with mean zero, variance 0.1 and covariance 0.1. The average signal-to-noise ratio in the DGP is
roughly three times larger than that in the real data used in Section 5.

Following Wood et al. (2002), we measure the degrees of nonlinearity (DNL) in the DGP by the
distance between the true surface f (·) and the plane ĝ(·) fitted by ordinary least squares without
any knots in the model, i.e.

DNL =
√

n−1 ∑
n

i=1
[ f (xi)− ĝ(xi)]2. (5)

A larger DNL indicates a DGP with stronger nonlinearity.
We generate 100 datasets and for each dataset we fit the fixed knots model with 5, 10, 15, 20,

25 and 50 surface knots, and also the free knots model with 5, 10, and 15 surface knots. All fitted
models have only linear and surface components. The knot locations are determined by k-means
clustering. We compare the models with respect to the mean squared loss

Loss( f̃qs
) =

1

n∗
∑

n∗

i=1
[ f (xi)− f̃qs

(xi)]
2 (6)

where f (·) is the true surface and f̃qs
(·) is the posterior mean surface of a given model with qs

surface knots. The Loss in (6) is evaluated over a new sample of n∗ covariate vectors, and it
therefore measures out-of-sample performance of the posterior mean surface. We will here set
n∗ = n. Note that the shrinkages and the covariance matrix of the error terms are also estimated in
both the fixed and free knots models.

4.2. Results. We present the results for p = 2 and n = 200. The results for p = 1 and n ∈
{200,1000}, and p = 2 and n = 1000 are qualitatively similar and are available upon request.
Appendix C documents the results for p = 2 and n = 1000 for a few different model configura-
tions. Figure 1 displays boxplots for the log ratio of the mean squared loss in (6). The columns
of the figure represents varying degrees of nonlinearity in the generated datasets according to the
estimated DNL measure in equation (5). Each boxplot shows the relative performance of a fixed
knots model with a certain number of knots compared to the free knots model with 5 (top row), 10
(middle row) and 15 (bottom row) surface knots, respectively. The short summary of Figure 1 is
that the free knots model outperforms the fixed knots model in the large majority of the datasets.
This is particularly true when the data are strongly nonlinear. The performance of the fixed knots
model improves somewhat when we add more knots, but the improvement is not dramatic. Having
more fixed knots clearly improves the chances of having knots close to the true ones, but more
knots also increase the risk of overfitting.

The aggregate results in Figure 1 do not clearly show how strikingly different the fixed and free
knots models can perform on a given dataset. We will now show that models with free rather
than fixed knots are much more robust across different datasets. Figure 2 displays the Euclidean
distance of the multivariate out-of-sample predictive residuals

√
ε̃′ε̃ for a few selected datasets

as a function of the distance between the covariate vector and the sample mean of the covariates.
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FIGURE 1. Boxplot of the log loss ratio comparing the performance of the fixed
knots model with the free knots model for the DGP with p = 2 and n = 200. The
three columns of the figure correspond to different degrees of nonlinearity of the
realized datasets, as measured by estimated DNL in (5).

The normed residuals depicted in the leftmost column are from datasets chosen with respect to
the ranking of the out-of-sample performance of the fixed knots model. For example, the upper
left subplot shows the predictive residuals of both the model with 15 fixed knots (vertical bars
above the zero line) and the model with 5 free knots (vertical bars below the zero line) on one
of the datasets where the fixed knot models outperform the free knots model by largest margin
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TABLE 1. Computing times (in minutes) for 5,000 iterations with a single dataset
of 10 covariates.

n = 200 n = 1000

No. of free surface knots p = 1 p = 2 p = 1 p = 2

2 9 9 16 17
5 13 14 23 26

10 17 18 42 45
15 24 27 61 75

(3rd best Loss in favor of fixed knots model). It is seen from this subplot that even in this very
favorably situation for the fixed knots model, the free knots model is not generating much larger
predictive residuals. Moving down to the last row in the left hand column of Figure 2, we see
the performance of the two models when the fixed knots model performs very poorly (3rd worse
Loss with respect to the fixed knots model). On this particular dataset, the free knots model does
well while the fixed knots model is a complete disaster (note the different scales on the vertical
axes of the subplots). The column to the right in Figure 2 shows the same analysis, but this time
the datasets are chosen with respect to the ranking of the Loss of the free knots model. Overall,
Figure 2 clearly illustrates the superior robustness of models with free knots: the free knots model
never does much worse than the fixed knots model, but using fixed rather than free knots can lead
to a dramatically inferior predictive performance on individual datasets.

4.3. Computing time. The program is written in native R code and all the simulations were
performed on a Linux desktop with 2.8 GHz CPU and 4 GB RAM on single instance (without
parallel computing). Table 1 shows the computing time in minutes for a single dataset. In general
the computing time increases as the size of the design matrix increases, but it increases only
marginally as we go from p = 1 to p = 2.

5. APPLICATION TO FIRM CAPITAL STRUCTURE DATA

5.1. The data. We illustrate our surface model in a finance application where a firm’s leverage
(fraction of external financing) is modeled as a function of the proportion of fixed assets, the firm’s
market value in relation to its book value, firm sales and profits. We use a similar data to the one
in Rajan & Zingales (1995) which covers 4,405 American non-financial firms with positive sales
in 1992 and complete data records. See Table 2 for a definition of the variables in our dataset.

Figure 3 plots the response variable leverage in both original scale and logit scale (ln[y/(1−y)])
against each of the four covariates. The relationships between leverage and the covariates are
clearly highly nonlinear even when the logit transformation is used. There are also outliers which
can be seen from the subplots with respect to covariates Market2Book and Profit. Strong nonlin-
earities seem to be a quite general feature of balance sheet data, but only a handful articles have
suggested using nonlinear/nonparametric models, see e.g. Bastos & Ramalho (2010), Giordani
et al. (in press) and Villani et al. (2012).
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FIGURE 2. Plotting the norm of the predictive multivariate residuals as a function
of the distance between the covariate vector and its sample mean. The results are
for the DGP with p = 2 and n = 200. The lines in each subplot are the normed
residuals from the model with 15 fixed surface knots (vertical bars above the zero
line), and the model with 5 free knots (vertical bars below the zero line). The
column to the left shows the results for three datasets chosen when performance
is ranked according to the fixed knots model, and the right column displays the
results for three datasets chosen when performance is ranked according to the free
knots model.
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TABLE 2. Definitions of the variables in the firm capital structure data.

Variable name Definition

Leverage total debt
total debt + book value of equity

Tang tangible assets
book value of total assets

Market2Book book value of total assets - book value of equity + market value of equity
book value of total assets

LogSale log of total sales

Profit earnings before interest, taxes, depreciation, and amortization
book value of total assets
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FIGURE 3. Scatter plots of the firm leverage data with leverage (Y ) on both origi-
nal scale (top subplots) and logit transformed scale (bottom subplots) against each
of the four covariates.

5.2. Models with only surface or additive components. We first fit models that either have
only a surface component or only an additive component (both types of models also have a linear
component). Note that the shrinkage parameters are also estimated in all cases. All four covariates
are used in the estimation procedure and we use the logit transformation of the leverage, and
standardize each covariate to have zero mean and unit variance.
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FIGURE 4. LPDS for the firm leverage data with surface component model (left)
and additive component model (right). Note that the number of knots in additive
model is the number of spline basis functions on each covariate.

Figure 4 depicts the LPDS for the surface component model and the additive component model
for both the case of fixed and free knots. The LPDS generally improves as the number of knots
increases for both the fixed and free knots models, but seems to eventually level off at large number
of knots. The free knots model always outperforms the fixed knots model when only a surface
component is used (left subplot). For example, the model with 12 free surface knots is roughly
32 LPDS units better than the fixed knots model with the same number of knots. This is a quite
impressive improvement in out-of-sample performance considering that the fixed knot locations
are chosen with state-of-the-art clustering methods for knot selection. The ability to move the
knots clearly also helps to keep the number of knots to a minimum; it takes for example more than
30 fixed surface knots to obtain the same LPDS as a model with 12 free surface knots.

Turning to the strictly additive models in right subplot of Figure 4 we see that the additive
models are in general inferior to the models with only surface knots, and that the differences in
LPDS between the fixed and free knots approaches are much smaller here, at least for eight knots
or more. The improvement in LPDS levels off at roughly 16 knots. It is important to note that the
horizontal axis in Figure 4 displays the number of additive knots in each covariate, and the fact
that we do not overfit bear testimony to the effectiveness of the shrinkage priors.

5.3. Models with both additive and surface components. We now consider models with both
additive and surface components. It is worth mentioning that we draw from the joint posterior
distribution of the surface and additive knots, see Appendix A for MCMC details.
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Figure 5 shows that there are generally improvements from using both surface knots and addi-
tive knots in the same model. For example, the model with 4 free surface knots has an LPDS of
−1,284. Adding two free additive knots increases the LPDS to −1,270 and adding another two
additive knots gives a further increase of 14 LPDS units. Figure 5 also shows strong gains from
estimating the knots’ locations, but the improvement in LPDS from free knots tends to be less
dramatic when more additive knots are used to complement the surface knots. There is little or
no improvement in LPDS as the number of surface knots approaches 60. The results in Figure 5
reinforces the evidence in Figure 4 that the shrinkage prior is very effective in mitigating potential
problems with overfitting.

To simplify the graphical presentation of the results, we choose to illustrate the posterior in-
ference of the knot locations in a model with only the two covariates Market2Book and Profit.
We use 20 surface knots and 4 additive knots in each covariate. The mean acceptance proba-
bilities for the knot locations and the shrinkage parameters in Metropolis-Hastings algorithm are
0.73 and 0.64, respectively, which are exceptionally large considering that all 2×20+2×4 = 48
knot location parameters are proposed jointly, as are all the shrinkage parameters. The acceptance
probability in the updating step for Σ is 1 since we are proposing directly from the exact condi-
tional posterior when p = 1 . Because of the knot switching problem (see Section 3), it does not
make much sense to display the posterior distribution of the knot locations directly. We instead
choose to partition the covariate space into small rectangular regions, count the frequency of knots
in each region over the MCMC iterations, and use heat maps to visualize the density of knots in
different regions of covariate space. Figure 6 displays this knot density heat map. As expected, the
estimated knot locations are mostly concentrated in the data dense regions, particularly in regions
where the relation between the covariates and response in the data is most nonlinear, which is seen
by comparing Figure 6 and Figure 3.

Finally, we present the posterior surface for the firm leverage data in Figure 7. To enhance the
visual representation, the graphs zoom in on the region with the majority of the data observations.
Figure 7 plots the mean (left) and the standard deviation (right) of the posterior surface. The latter
object is for brevity sometimes referred to as the posterior standard deviation surface. Figure 7
(right) also displays the covariate observations to give a sense of where the data observations
are located. The appendix to this article investigates the robustness of the posterior results to
variations in both the prior mean and variance of the knot locations. The posterior heat map of
the knot locations are affected by the fairly dramatic variations in the prior mean of the knots, and
to a lesser extent by changes in the prior variance of the knot locations, but the posterior mean
and standard deviation surfaces are robust to variations in the prior on the knots, especially in data
dense regions. The appendix also shows that the posterior is robust to changes in the prior on the
shrinkage factors.

5.4. MCMC efficiency in the updating of the knot locations. In order to study the efficiency of
our algorithm for sampling the knot locations, we compare three types of MCMC updates of the
knots: i) one-knot-at-a-time updates using a random walk Metropolis proposal with tuned vari-
ance (SRWM), ii) one-knot-at-a-time updates with the tailored Metropolis-Hastings step (SMH)
in Section 3.2, and iii) full block updating of all knots using the tailored Metropolis-Hastings step
(BMH) in Section 3.2. SRWM moves are used in state-of-the-art RJMCMC approaches such as
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FIGURE 5. LPDS for the firm leverage data for the free and fixed knots models
with varying number of surface and additive knots.
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FIGURE 6. Heat map to visualize the posterior density of the knot locations in
covariate space for model with 4 free additive knots and 20 free surface knots
for the firm leverage dataset. The plot is constructed by partitioning the covariate
space into 70× 70 rectangular regions and counting the number of surface knots
in each rectangle over the MCMC draws. The posterior density of the locations
of the additive knots is constructed in a similar fashion and separate heat maps for
the additive knots in each covariate are shown just above the horizontal axis and
vertical axis, respectively.

Dimatteo et al. (2001) and Gulam Razul et al. (2003). Note that we are not studying the perfor-
mance of a complete RJMCMC scheme; we are here interested in isolating this particular updating
step and comparing it to our tailored proposal. We use the inefficiency factor (IF) (Geweke, 1992)
to measure the efficiency of MCMC. The IF is a measure of the number of draws needed to obtain
the equivalent of a single independent draw. It is defined as IF = 1+ 2∑

∞
i=1 ρi where ρi is the
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FIGURE 7. The posterior mean (left) and standard deviation (right) of the posterior
surface for the model with 4 free additive knots and 20 free surface knots for firm
leverage data. The subplot to the right also shows an overlay of the covariate
observations.

TABLE 3. Comparison of algorithms for updating the knot locations in a model
with 20 free surface knots and 4 additive knots in each covariate. Firm leverage
data.

SRWM SMH BMH

Mean IF for the posterior mean surface 29.63 2.70 1.16
Mean acceptance probability 0.26 0.62 0.88
Computing time (min) 388.21 1716.07 141.72
Effective sample size per minute 0.87 2.16 60.83

autocorrelation of the MCMC trajectory at lag i. We also document the effective sample size per
minute, i.e. (number of MCMC draws)/(IF× computing time) to measure the overall efficiency
of the MCMC.

Table 3 shows the efficiency of the three knot sampling algorithms in a model with 20 free
surface knots and 4 additive knots in each covariate on the firm leverage data. The inefficiency
factor in Table 3 is the average inefficiency of the posterior mean surface in 1000 random chosen
points in covariate space. There is some gain from tailoring the proposal for each knot separately,
but the really striking observation from Table 3 is the massive efficiency and speed gains from
updating all the blocks jointly using a tailored proposal; the effective sample size per minute is
roughly 70 times larger when our BMH algorithm is used instead of simple SRWM updates.
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6. CONCLUDING REMARKS

We have presented a general Bayesian approach for fitting a flexible surface model for a con-
tinuous multivariate response using a radial basis spline with freely estimated knot locations. Our
approach uses shrinkage priors to avoid overfitting. The locations of the knots and the shrinkage
parameters are treated as unknown parameters and we propose a highly efficient MCMC algorithm
for these parameters with the coefficients of the multivariate spline integrated out analytically. An
important feature of our algorithm is that all knot locations are sampled jointly using a Metropolis-
Hastings proposal density tailored to the conditional posterior, rather than the one-knot-at-a-time
random walk proposals used in previous literature. The same applies to the block of shrinkage
parameters. Both a simulation study and a real application on firm leverage data show that models
with free knots have a better out-of-sample predictive performance than models with fixed knots.
Moreover, the free knots model is also more robust in the sense that it performs consistently well
across different datasets. We also found that models that mix surface and additive spline basis
functions in the same model perform better than models with only one of the two basis types.

Our approach can be directly used with other splines basis functions, other priors, and it is at
least in principle straightforward to augment the model with Bayesian variable selection. We are
currently working on removing the assumption of Gaussian error distribution by using a Dirichlet
process mixture (DPM) prior on the model disturbances.
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APPENDIX A. DETAILS OF THE MCMC ALGORITHM

In this section we briefly address the MCMC details and related computational issues. For
details on matrix manipulations and derivatives, see e.g. Lütkepohl (1996). Our MCMC algorithm
only requires the gradient of the conditional posteriors w.r.t. each parameter. Since users can
always use their own prior on the knots and shrinkages, we will not document the gradient of
any particular prior. In particular for the normal prior, one can directly find the results in e.g.
Mardia & Kent (1979). We now present the full gradients for the knot locations and the shrinkage
parameters.
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A.1. Gradient w.r.t. the knot locations.
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We can decompose the gradient for the design matrix w.r.t the knots as

∂vecX

∂ξ′
=





0(nqo×ls) 0(nqo×la)

∂vecXs/∂vec(ξ′s)
′ 0(nqs×la)

0(nqa×ls) ∂vecXa/∂ξa
′





where ls and la are numbers of parameters in the knots locations for surface and additive compo-
nent, respectively. This decomposition makes user-specified basis functions for different compo-
nents possible and one may update the locations in a parallel mode (efficient for small models) or
batched mode (for models with many parameters). In particular for the thin-plate spline, we have

∂vecXi

∂ξi
′ =−





(1+2ln‖xi −ξi j‖)(xi −ξi j)
. . .

(1+2ln‖xi −ξi j‖)(xi −ξi j)





i∈{a,s},
j∈{1,...,qi}.

Note that the gradient can be obtained efficiently by applying Lemma 1 and Algorithm 2 in
Section A.3 below whenever ∂vecΣ−1

β
/∂ξ′ and the commutation matrix appear.
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A.2. Gradient w.r.t. the shrinkage parameters.
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zero elsewhere.

A.3. Computational remarks. The computational implementation of gradients in Section A.1
and Section A.2 is straightforward but the sparsity of some of the matrices can be exploited in
moderate to large datasets. We now present a lemma and an algorithm that can dramatically
speed up the computations. It is convenient to define A(i, :) and A(:,j) as matrix operations
that reorders the rows and columns of matrix A with indices i and j. Therefore, β = b(c, :),
µ= µ∗(c, :) and Σβ =Σb(c,c) for proper indices c, and |Σb|= |Σβ| since permuting two rows
or columns changes the sign but not the magnitude of the determinant.

Lemma 1. Given matrix C and the indexing vector z such that (vecΣb)(z, :) = vecΣβ holds, we

can decompose the following gradient as

C
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where θ is any parameter vector of the covariance matrix Σβ, Cs = {[C(:,z)](:,hs)}(:,zs 6= 0),
hs = [(p2qqo+1),(p2qqo+2), ..., p2q(qo+qs)]
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]′), Ca =
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]′).

Algorithm 2. An efficient algorithm to calculate Km,nQ (or QKm,n) where Km,n is the commu-

tation matrix and Q is any dense matrix that is conformable to Km,n.

(1) Create an m×n (or n×m) matrix T and fill it by columns with the sequence {1,2, ...,nm}.
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(2) Obtain the indexing vector t= vec(T ′).
(3) Return Q(t, :) (or Q(:,t)).

APPENDIX B. PRIOR ROBUSTNESS

This section explores the sensitivity of the posterior inferences with respect to variations in
the prior. There are clearly many aspects of the prior to explore, but we will here focus on the
sensitivity with respect to the prior on the shrinkage factors and the prior on the knot locations,
which are the most influential priors for the model. Since our model is very flexible and richly
parametrized it is natural to expect, or even desireable, that the posterior responds to variations in
the prior hyperparameters. But since the prior in complex models is always hard to specify, it is
hoped that moderate changes in the prior should at least not overturn the posterior inferences.

B.1. The prior on the shrinkage parameters. Figure 8 displays the posterior sensitivity of the
knot locations, the posterior mean and standard deviation surfaces to changes in the prior variance
on the shrinkage factors. The posterior and predictive results are clearly very robust to changes in
this particular aspect of the prior.

B.2. The prior on the knot locations. Figure 9 displays the effect on the posterior knot density
from changes in both the mean (columns) and the variance (rows) of prior on the knot locations.
While there are some differences in the posterior knot densities when the prior variance changes
(changes across rows), there is much larger difference in the posterior of the knots when the prior
mean of the knot locations change. This is partly explained by fact that the differences between the
three ways of placing the prior means are rather dramatic, but it is clear that the prior mean of the
knot locations are affecting where the knots are located a posteriori. Considering the complexity
in the inference on the knot locations and the fact that many of the knots probably correspond to
regression coefficients that are close to zero, this is perhaps not too surprising.

The posterior inference of the knot locations is typically not of interest. What matters is the
inferences on the conditional predictive distribution p(y|x). Figure 10 and 11 investigate the
sensitivity of the posterior mean and standard deviation surfaces to changes in the prior mean and
variance of the knot locations. Here the robustness to variations in the prior is much larger. Both
the predictive mean and the predictive standard deviation remain largely unchanged, considering
the magnitude of the changes in the prior. The main differences in the prior mean surface occur in
points of covariate space where the uncertainty in the predictive mean is large.

APPENDIX C. FURTHER SIMULATION RESULTS

C.1. Additional results from the simulation study in Section 4 of the paper. This section
documents the simulation results for the simulation setup with p= 2 and n= 1000. The simulation
setup is identical to the one in Section 4 of the paper with the exception that number of data points
is increased from n = 200 to n = 1000. Figure 12 compares the estimation loss from using fixed
and free knots, respectively. Figure 13 compares the out-of-sample predictive residuals from a
models with 15 fixed surface knots to a model with 5 free knots, and Figure 14 does the same type
of comparison for a model with 20 fixed surface knots to a model with 10 free knots.
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FIGURE 8. Posterior sensitivity with respect to changes in the prior variance of
the shrinkage factors. The first column shows the posterior of the knot density (top
row), the posterior mean surface (middle row) and the posterior standard deviation
surface (bottom row) using the default prior in the paper. The second and third
columns demonstrates the effect on the posterior inferences when the prior variance
is half of the default value (second column) and twice the default value (third col-
umn).
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FIGURE 9. Sensitivity of the posterior knot density with respect to changes in the
mean (columns) and variance (rows) in the prior distribution of the knot locations.
The prior mean of the locations in the second columns is chosen from the empirical
marginal distribution of each covariate, and the prior mean in the third column are
random draws without replacement among the data points.
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FIGURE 10. Sensitivity of the posterior mean surface with respect to changes in
the mean (columns) and variance (rows) in the prior distribution of the knot loca-
tions. The prior mean of the locations in the second columns is chosen from the
empirical marginal distribution of each covariate, and the prior mean in the third
column are random draws without replacement among the data points.
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FIGURE 11. Sensitivity of the posterior standard deviation surface with respect to
changes in the mean (columns) and variance (rows) in the prior distribution of the
knot locations. The prior mean of the locations in the second columns is chosen
from the empirical marginal distribution of each covariate, and the prior mean in
the third column are random draws without replacement among the data points.
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FIGURE 12. Boxplot of the log loss ratio comparing the performance of the fixed
knots model with the free knots model for the DGP with p = 2 and n = 1000. The
three columns of the figure correspond to different degrees of nonlinearity of the
realized datasets, as measured by estimated DNL in (5) in the paper.

C.2. Simulation results from a situation where none of the two models are correct. In this
section, we briefly describe a simple simulation example where the true model is not nested in any
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FIGURE 13. Plotting the norm of the predictive multivariate residuals as a function
of the distance between the covariate vector and its sample mean. The results are
for the DGP with p = 2 and n = 1000. The lines in each subplot are the normed
residuals from the model with 15 fixed surface knots (vertical bars above the zero
line), and the model with 5 free knots (vertical bars below the zero line). The
column to the left shows the results for three datasets chosen when performance
is ranked according to the fixed knots model, and the right column displays the
results for three datasets chosen when performance is ranked according to the free
knots model.
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FIGURE 14. Plotting the norm of the predictive multivariate residuals as a function
of the distance between the covariate vector and its sample mean. The results are
for the DGP with p = 2 and n = 1000. The lines in each subplot are the normed
residuals from the model with 20 fixed surface knots (vertical bars above the zero
line), and the model with 10 free knots (vertical bars below the zero line). The
column to the left shows the results for three datasets chosen when performance
is ranked according to the fixed knots model, and the right column displays the
results for three datasets chosen when performance is ranked according to the free
knots model.

91



FENG LI AND MATTIAS VILLANI

10 20 40 10 20 40 60 80 100

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Radial

No. of knots

L
O

S
S

Free knots model

Fixed knots model

FIGURE 15. Boxplots of the loss in the simulations for the radial mean function.

of the two estimated models. We generate Gaussian data around the following mean surface

y = 42.659[0.1+(x1 −0.5)(0.05+(x1 −0.5)4

−10(x1 −0.5)2(x2 −0.5)2 +5(x2 −0.5)2)]
(7)

The function in Equation (7) is called a radial function. We generate 100 datasets using N(0,0.1)
disturbances around the mean. The number of observations are 1000 in each dataset. We use
linear and surface components. The number of knots used in the free knot models is 10, 20, and
40, and the number of knots used in the fixed knots model is 10, 20, 40, 60, 80 and 100.

Figure 15 displays boxplots of the losses for the different number of knots in each model. The
free knots model outperforms the fixed knots model, but the improvement from using free knots
are not that large here since the covariate space is only two-dimensional, which is small enough
for the fixed knots to have a decent coverage.
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MODELING COVARIATE-CONTINGENT CORRELATION AND

TAIL-DEPENDENCE WITH COPULAS

FENG LI

ABSTRACT. Copulas provide an attractive approach for constructing multivariate densities with
flexible marginal distributions and different forms of dependence. Of particular importance in many
areas is the possibility of explicitly modeling tail-dependence. Most of the available approaches
estimate tail-dependence and correlations via nuisance parameters, yielding results that are neither
tractable nor interpretable for practitioners. We propose a general Bayesian approach for directly
modeling tail-dependence and correlations as explicit functions of covariates. Our method allows
for variable selection among the covariates in the marginal models and in the copula parameters.
Posterior inference is carried out using a novel and efficient MCMC simulation method.

KEYWORDS: Covariate-dependent copula; Bayesian variable selection; tail-dependence; Kendall’s
τ; MCMC.

1. INTRODUCTION

Copula modeling has been an active research area dating back to Sklar’s theorem (Sklar, 1959)
in which he proves that a multivariate cumulative distribution function F(x1, ...,xM) can be written
in terms of univariate marginal distributions and a copula function C(u1, ...,uM), where ui = Fi(xi)
is the i:th marginal CDF. Various properties and applications of copulas have thereafter been stud-
ied, see e.g. Nelsen (2006) for an introduction to copulas, Joe (1997) for dependence and extreme
value distribution with copulas, and Dorota (2010) for constructions of multivariate dependences
using bivariate copulas.

Copula models have been widely used in financial applications due to its ability in model-
ing tail-dependence and correlations, see Patton (2012b) for a recent survey. Jaworski et al.
(2010) reviews the state of the art approaches in copula estimation, including pair-copula con-
structions (Czado, 2010). An important concept in copula modeling is the tail-dependence. In
bivariate copulas, the tail-dependence describes the dependence of random variables in the tail:
limu→0+ p(X1 < F−1

1 (u)|X2 < F−1
2 (u)) is called the lower tail-dependence and limu→1− p(X1 >

F−1
1 (u)|X2 >F−1

2 (u)) is the upper tail-dependence for the two random variables X1 and X2. Dobrić
& Schmid (2005) use nonparametric methods to estimate the lower tail-dependence in bivariate
copulas with continuous marginals. Schmidt & Stadtmuller (2006) explore the tail-dependence
estimators for the tail copula where the lower tail copula and upper tail copula for a bivariate
copula C are defined as limt→∞ tC(x/t,y/t) and limt→∞(x+ y− t + tC(x/t,y/t)) respectively, if
the limits exist. Another special case in the tail-dependence is the asymptotically independent: x1

and x2 are asymptotically independent if F(x1,x2) = limx1→∞ F(x1,x2) limx2→∞ F(x1,x2). We do

Feng Li (feng.li@stat.su.se): Department of Statistics, Stockholm University, SE-106 91 Stockholm,
Sweden.
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not further explore this possibility but see Draisma et al. (2004) for hypothesis testing to detect
the dependence of extreme events when they are asymptotically independent, and for the study of
asymptotic dependence case, see e.g. Ledford & Tawn (1997).

Among the vast and extensive literature in copula modeling, few articles have investigated the
underlying causes of the dependence structures. This is partially because the computational com-
plexity is still a challenge in many situations, which explains the relatively simplistic models
used for the copula. Moreover, most copula approaches for modeling rank correlation and tail-
dependence for existing copulas require firstly modeling intermediate parameters and obtaining
the correlation and tail-dependence in the end. Thus the results are neither tractable nor inter-
pretable for practitioners. In this paper we present a general Bayesian approach for copula mod-
eling with explanatory variables entering both the tail-dependence and correlation parameters in
the copula function. This construction allows us to explore the drivers of the different forms of
dependence between the variables. We propose an efficient MCMC simulation method for the
posterior inference which also allows for variable selection in both the marginal models and the
copula features. In this paper a feature stands for a characteristic in the copula function, e.g.
Kendall’s τ and tail-dependence are two features of a copula.

The outline of the paper is as follows. In Section 2 we introduce the Bayesian covariate-
dependent copula model and Section 2.3 introduces the reparametrized Joe-Clayton copula with
some new properties. We discuss the prior specification for the model and present the general
form for copula posterior in Section 3. Section 4 presents the details of the MCMC scheme. In
Section 5 we apply the model to the daily returns from the S&P100 and S&P600 stock market
indices. Section 6 concludes the paper and discusses potential directions for further research. The
appendix of the paper documents the necessary analytical computation used in the MCMC.

2. THE COPULA MODEL

A copula is a multivariate distribution that separates the univariate marginals and the multivari-
ate dependence structure. The correspondence between a multivariate distribution F(x1, ...,xM)
and a copula function C(u1, ...,uM) can be expressed as

F(x1, ...,xM) = F(F−1
1 (u1), ...,F

−1
M (uM)) =C(u1, ...,uM) =C(F1(x1), ...,FM(xM))

where the correspondence is one to one with continuous marginal distributions. Copulas provide
a general approach to constructing more flexible multivariate densities. For example, the bivariate
Gaussian copula C(u1,u2|ρ) = Ψ(F−1

1 (u1),F
−1
2 (u2)|ρ) with the correlation parameter ρ , is a re-

laxed Gaussian density in the sense that F1(·) and F2(·) do not need to be normal, see e.g. Pitt et al.
(2006). New classes of multivariate densities are possible to construct in terms of copulas, see Joe
(1997) for details. A key feature in copula models is that the multivariate dependence structure
does not depend on the marginal densities. Thus multivariate modeling with copulas consists of
two parts: i) separate modeling of each marginal distribution and, ii) modeling the multivariate
dependence.

2.1. Marginal models. In this paper we use margins as synonym of marginal models. In princi-
ple, the copula approach can be used with any margins, but we will assume the margins to be split-t
distributions (Li et al., 2010) in our application in Section 5. The split-t is a flexible four-parameter
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distribution with the student’s t, the asymmetric normal and symmetric normal distributions as its
special cases; see Li et al. (2010) for some properties of the split-t distribution.

Following Li et al. (2010) we allow the location parameter µ , the scale parameter φ , the degrees
of freedom ν and the skewness parameter κ in the split-t density in the margins to be linked to
covariates as

(1) µi j = x′i jβµ j

(2) φi j = exp(x′i jβφ j
)

(3) νi j = exp(x′i jβν j
)

(4) κi j = exp(x′i jβλ j
), for i = 1, ...,n, j = 1, ...,M

where xi j is the covariate vector for the i:th observation in the j:th margin.
One may also consider using mixture models in the margins. Li et al. (2010) show in an applica-

tion to S&P500 data that the one-component split-t model with all parameters linked to covariates
does well in comparison with mixtures of split-t components. In this paper, we will therefore
use the one-component split-t model for demonstration purposes. Note that it is possible to also
specify different margins. Our inference procedure can be generally applied.

2.2. Dependence concepts. Modeling the multivariate dependence typically involves quantify-
ing two important quantities: correlation and tail-dependence. In copula models, the correlation
between two variables are usually measured with rank correlations like Kendall’s τ

τ = 4
∫ ∫

F(x1,x2)dF(x1,x2)−1 = 4
∫ ∫

C(u1,u2)dC(u1,u2)−1.

In this paper we focus on modeling Kendall’s τ , but our methodology also applies to other correla-
tions like Spearman’s ρ . The tail-dependence describes the concordance between extreme values
of random variables X1 and X2. The lower tail-dependence λL and the upper tail-dependence λL

can also be expressed in terms bivariate copulas

λL = lim
u→0+

p(X1 < F−1
1 (u)|X2 < F−1

2 (u)) = lim
u→0+

C(u,u)

u
,

λU = lim
u→1−

p(X1 > F−1
1 (u)|X2 > F−1

2 (u)) = lim
u→1−

1−C(u,u)

1−u
.

In principle, correlations and tail-dependencies can attain all values in the domain [−1,1], but
not all copulas can specify them in the whole interval. For example the Clayton copula and Gum-
bel copula (Joe, 1997) can only have positive correlations and tail-dependence. Gumbel exhibits
strong upper tail-dependence and relatively weak lower tail-dependence. The Fréchet–Hoeffding
bounds can help us to select a proper copula that describes the dependence correctly. The copula
function satisfies the inequalities

M

∑
i=1

ui −M+1 ≤C(u1, ...,uM)≤ min{u1, ...,uM}

where the left and right bounds are Fréchet–Hoeffding lower and upper bounds, respectively. In
the bivariate case, if the copula is close to the upper bound, it shows strong positive dependence
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and if the copula is close to the lower bound, it shows strong negative dependence, see Nelsen
(2006) for the proof.

2.3. The reparametrized Joe-Clayton copula. In this paper we focus on the bivariate copula
modeling with the two-parameter Joe-Clayton copula, which is commonly used in the literature.
Our copula modeling approach is general and can be applied to modeling any copulas with any
feature of interest. The popular Vine copula construction (Aas et al., 2009; Czado et al., 2012) can
also be used to extend our bivariate copula modeling to higher dimensions.

2.3.1. The copula density. The Joe-Clayton copula, also known as the BB7 copula, was intro-
duced by Joe (1997) and is of the form

C(u,v|θ ,δ ) =η(η−1(u)+η−1(v))

=1−

[

1−

{

(

1− ūθ
)−δ

+
(

1− v̄θ
)−δ

−1

}−1/δ
]1/θ

where η(s) = 1 − [1 − (1 + s)−1/δ ]1/θ , θ ≥ 1, δ > 0, ū = 1 − u, v̄ = 1 − v with lower tail-
dependence parameter λL = 2−1/δ and upper tail-dependence parameter λU = 2 − 21/θ . The
copula density function for the Joe-Clayton copula is then

c(u,v|θ ,δ ) =
∂ 2C(u,v,θ ,δ )

∂u∂v
=[T1(u)T1(v)]

−1−δ
T2(u)T2(v)L

−2(1+δ )/δ
1

× (1−L
−1/δ
1 )1/θ−2

[

(1+δ )θL
1/δ
1 −θδ −1

]

(1)

where T1(s) = 1− (1− s)θ , T2(s) = (1− s)θ−1 and L1 = T1(v)
−δ +T1(u)

−δ −1.
The Joe-Clayton copula has been widely used in modeling tail-dependence. Patton (2006) uses

a symmetric version of Joe-Clayton copula to model time-varying dependence with its autore-
gressive terms for daily return of the Deutsche mark with the U.S. dollar and the Japanese yen
with U.S. dollar. Aas et al. (2009) and Czado et al. (2012) among others develop a flexible class
of multivariate copulas allowing multivariate dependence via a vine structure based on bivariate
copulas, including the Joe-Clayton copula. Bouyé & Salmon (2009) apply the Joe-Clayton cop-
ula to a quantile regression that allows both positive and negative slopes for the quantile curves.
But none of these works have a model that can explain the driving forces behind the dependence
structures.

2.3.2. Kendall’s τ . Kendall’s τ of the Joe-Clayton copula for the case 1 ≤ θ < 2 can be found in
e.g, Smith & Khaled (2012). We now present the full expression for all θ ≥ 1.

τ(θ ,δ ) =











1−2/[δ (2−θ)]+4B(δ +2,2/θ −1)/(θ 2δ ), 1 ≤ θ < 2;

1− [ψ(2+δ )−ψ(1)−1]/δ , θ = 2;

1−2/[δ (2−θ)]−4π/
[

θ 2δ (2+δ )sin(2π/θ)B(1+δ +2/θ ,2−2/θ)
]

, θ > 2,

where B(·) is the beta function and ψ(·) is the digamma function. It is easy verified that Kendall’s
τ is continuous for all θ ≥ 1.
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FIGURE 1. Contour plot of the Kendall’s τ with respect to lower tail-dependence
(λL) and upper tail-dependence (λU ) for the Joe-Clayton copula.

If we employ the equations δ = − log2/ logλL and θ = log2/ log(2− λU) to the preceding
result, we can rewrite the Kendall’s τ in terms of lower and upper tail-dependence as τ(λL,λU),
see Figure 1 for a contour plot of these relationships.

The Joe-Clayton copula can only determine positive correlations. If the relationship between
two variables is negative, we just need to rotate the axes of the copula and the estimation procedure
remains the same. For example, for copulas rotated by 90 degrees, u has to be set to 1− u; for
270 degrees let v be 1− v and for 180 degrees set u and v to 1− u and 1− v, respectively. See
Durrleman et al. (2000) for the proof that after this transformation it is still a copula and for
other possible transformations to extend current bivariate copula with desired properties. In the
financial application in Section 5, the correlations are known to be positive, but modeling negative
correlations requires no extra work also for other copulas than the Joe-Clayton copula.

2.3.3. Some properties. The Joe-Clayton copula has some unique attributes. The upper tail-
dependence and lower tail-dependence are not functionally dependent. The Clayton copula (Clay-
ton, 1978) and the B5 copula (Joe, 1993) are special cases of the Joe-Clayton copula. All of them
belong to a more general class of Archimedean copulas. Furthermore, we also find the following
new properties.

99



FENG LI

(1) The inequality holds 0≤ λL ≤ 21/2−1/(2τ) when the lower tail-dependence is not extremely
high. We say that λL and τ are variationally dependent. The proof is non-trivial, but we
have verified the inequality numerically in a very careful way. We discover the bound of
the inequality through the limit of τ(λL,λU) when λU → 0, see Figure 1 for an illustrative
plot.

(2) When λL → 0 (i.e. δ → 0), we have

τ → 1−
2H(2/θ)−2

2−θ
= 1−

2H(2log(2−λu)/ log2)−2

2− log2/ log(2−λu)

and
∂τ

∂θ
→

2(1−H(2/θ))

(θ −2)2
−

4ψ1(2/θ +1)

(θ −2)θ 2

where H(·) is the Harmonic number. A special case is when θ → 2 (i.e. λU → 2−
√

2 ≈
0.59), we have τ → 2− π2/6 ≈ 0.36 and ∂τ/∂θ → π2/12−Zeta(3)/2 ≈ 0.22. where
Zeta(·) is the Riemann zeta function.

(3) Furthermore, we also have derived the analytical gradients for the copula density with
respect to Kendall’s τ and tail-dependence of Joe-Clayton copula in Appendix A.2, which
will be used to construct efficient proposal distributions for MCMC.

2.3.4. Reparametrization. The parameters in most copula functions do not directly represent the
copula features, see e.g. the tail-dependence parameters and Kendall’s τ in the Joe-Clayton copula.
In this section we describe how to reparameterize the copula function so that the parameters are
the copula features of interest.

To simplify the interpretation of the copula model, we parameterize it in terms of lower tail-
dependency parameter λL and Kendall’s τ ,

C(u,v|λL,τ) =1−

[

1−

{

[

1− ūlog2/log(2−τ−1(λL))
]log2/logλL

+
[

1− v̄log2/log(2−τ−1(λL))
]log2/logλL

−1

}logλL/ log2
]log(2−τ−1(λL))/ log2

where τ−1(λL) is the inverse function of Kendall’s τ given λL, i.e. the upper tail-dependence λU .
And the related reparametrized copula density is obtained by substituting δ =− log2/ logλL and
θ = log2/ log(2− τ−1(λL)) from (1).

An attractive property of Kendall’s τ is that it is invariant with respect strictly monotonic trans-
forms. Other types of correlation like Spearman’s rank correlation can be equally well modeled
with our method. For measuring the dependence in trivariate distributions, one may consider using
a three-dimensional version of correlations, see e.g. García et al. (2013). Correlations in higher
dimensions are usually estimated pairwise.

Our parameterization has two main advantages. Firstly, it reduces the efforts for specifying the
prior information in our Bayesian approach in Section 3. Secondly, and most importantly, this
parameterization make it possible to directly link correlations and tail-dependence to covariates,
see Section 2.4 for details.
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Modeling the upper tail-dependence is also important in financial applications. There are also
alternative reparametrization schemes that allow modeling upper tail dependence parameter λL

directly. A simple way to achieve the same effect is to rotate the copula for 180 degrees in our
parameterization.

2.4. Covariate-dependent copula parameters. Letting the Kendall’s τ and tail-dependence pa-
rameters in copula modeling be fixed numbers is very restrictive. This is particularly true in
financial time-series applications where the tail-dependence has been shown to vary with time
(Patton, 2006). We introduce a covariate-dependent copula model that allows the copula features
to be linked to observed covariate information. A prominent example is covariate-dependent cor-
relation and tail-dependence:

(1) τ = l−1
τ (x′βτ)

(2) λ = l−1
λ

(x′βλ )

where λ without subscripts represents the dependence parameter in the lower and/or upper tail,
τ is Kendall’s τ , and x is the set of covariates used in the margins. Furthermore lτ(·) and lλ (·)
are suitable link functions that connect λ and τ with x. Other copula parameters can be linked to
covariates in the same way.

Patton (2006) allows ARMA-like variation in the dependence parameter. Our approach makes
it possible to use all marginal information to model the dependence parameters. This approach not
only leads to more interesting interpretations of the features, but generates more accurate forecasts
(see Section 5.3) and allows for heteroscedasticity in the dependence parameters. We also use
variable selection to select meaningful covariates that influence the dependence. Furthermore,
variable selection also reduces the model complexity and prevents overfitting, see Section 4 for
details.

3. THE PRIOR AND POSTERIOR

We use the same technique to specify the priors for the marginal parameters and the prior in
the copula features. We omit the subscript that indicates the functionality of the parameter in this
section for convenience. We will first assume that the model parameters are independent a priori,
and then turn to a more general situation with dependent model parameters in Section 3.3.

Let I be the variable selection indicator for a given covariate

I j =

{

1 if β j 6= 0

0 if β j = 0,

where β j is the jth covariate in the model. More informally, this can be expressed as

I j =

{

1 if variable j enters the model

0 otherwise.

We standardize each covariate to have zero mean and unit variance and assume prior independence
between the intercept β0 and the slope β . We can decompose the joint prior as

p(β0,β ,I ) = p(β0)p(β ,I ) = p(β0)p(β |I )p(I ).
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We will use normal priors for both β0 and β . We also assume that the intercept is always included
in each parameter, so the variable selection indicator for β0 is always one.

3.1. Prior for the intercept . We set the prior for the intercept by following the strategy in Villani
et al. (2012) that firstly puts prior information on the model parameters (e.g. τ and λL in the Joe-
Clayton copula), and then derive the implied prior on the intercept β0 under the assumption that
the covariates are at their means. The technique can be applied to the following two situations
directly. When the link is the identity, setting the implied prior on the model parameter is trivially
the same as on the intercept. When the link is the log function, assuming a log-normal distribution
on the model parameter with mean m and variance σ2 yields a normal prior with mean log(m)−
log[σ2/m2 +1]/2 and variance log[σ2/m2 +1] in the intercept.

We now generalize this to a general situation that can be applied to any link function with any
distribution. We take the tail-dependence parameter λ as an example, where 0 < λ < 1 in some
copula functions, e.g. the Joe-Clayton copula in Section 2.3. It is natural to consider using the
logit link to connect the tail-dependence λ with covariates. When there is only an intercept in the
covariates, we have λ = 1/(1+ exp(−β0)). Therefore, if we assume λ to have a beta distribution
Beta(m,σ2) with mean m and variance σ2, we have the mean and variance for β0 as

E(β0) =
∫ 1

0
log(

x

1− x
)Beta(x,m,σ2)dx = ψ(α1)−ψ(α2),

V (β0) =
∫ 1

0
(log(

x

1− x
))2Beta(x,m,σ2)dx−E2(β0) = ψ1(α1)+ψ1(α2)

where ψ(·) and ψ1(·) are the digamma and trigamma functions respectively, α1 =−m(m2 −m+
σ2)/σ2 and α2 = −1+m+(m− 1)2m/σ2. Higher order moments are also possible to obtain
either analytically or numerically. We can now set the prior on the intercept β0 based on the
derived mean and variance information. The prior for the intercept in the Kendall’s τ parameter
can be elicited in the same fashion but the integration domain and link function should be changed
accordingly.

3.2. Prior for the slope and variable selection indicators. We first consider the case without
variable selection. We assume that the slopes are normally distributed with mean 0 and covariance
matrix Σ. The extension to a non-zero mean is trivial. The covariance matrix is defined as Σ =
c2 ·P−1 where P is a positive definite symmetric matrix and c is a scaling factor. In the application,
P is the identity matrix. Using the inverse Fisher information for P as in Villani et al. (2012) is
also possibility.

We now consider the case with variable selection. Conditional on the variable selection indica-
tors, the slopes are still normal distributed with mean µI +Σ21Σ−1

I c(βI c − µI c) and covariance

matrix becomes ΣI −Σ21Σ−1
I cΣ12 (Mardia & Kent, 1979), with obvious notations. The prior for

each variable selection indicator is identically Bernoulli distributed with probability of p.
A shrinkage prior is often used as an alternative method for reducing model complexity. In our

experience, the choice between variable selection and shrinkage estimator depends on the context
of the application. Variable selection is usually used to select meaningful variables, which is of
great interest here as we are exploring which variables that explain or drive the dependence among
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variables. See also Vach et al. (2001) for a comparison for the two approaches in some commonly
used models.

3.3. Priors when the parameters are dependent. In this section we consider a special case
when two or more model parameters are dependent a priori. When we reparametrize the original
density function in terms of other parameters, it is common to introduce a variational dependence
between the new parameters in the sense that the outcome of one parameter puts a restriction on the
domain of the other parameter. In our model, the original Joe-Clayton copula has two parameters
θ and δ which are variationally independent. When we reparametrize it in terms of lower tail-
dependence and Kendall’s τ , Section 2.3.3 shows the inequality between the two parameters (see
Figure 1 for a visualization of the relations between the parameters).

As before, our aim is to elicit a prior on βτ0,,βτ ,βλ0
and βλ via an elicited joint distribution on

τ and λ . When the parameters are variationally dependent and we can no longer assume prior
independence and instead we decompose the joint prior for the model parameters as

p(τ,λ ) = p(τ|λ )p(λ ). (2)

The marginal priors for βλ0
,βλ and its variable selection indicators Iλ are the same as in Sec-

tion 3.1 and Section 3.2. We will now document the prior for βτ0 ,βτ and its variable selection
indicators Iτ conditional on λ .

We first introduce the generalized beta function and the generalized logit link function.

Definition 1. The generalized beta distribution. Let gBeta(x,a,b,m,σ) be the generalized beta

distribution with mean m, standard deviation σ where a < x < b. Then (x−a)/(b−a) follows the

beta distribution with mean (m−a)/(b−a) and standard deviation σ/(b−a).

Definition 2. The generalized logit function. The generalized logit function that extends the logit

function with two parameters a and b as

glogit(x,a,b) = a+
b−a

1+ exp(−x)
,

where a < x < b.

The generalized beta distribution and the generalized logit link function now both have two
boundary parameters a and b. Furthermore, when a = 0 and b = 1, they reduce to their usual
form.

Based on the decomposition in (2) we now assume that τ in Section 2 follows a generalized beta
distribution gBeta(x,a,b,m,σ) conditional on λ with the generalized logit link glogit(Xτβτ ,a,b)
where a= log(2)/(log(2)− log(λ )) and b= 1. We can now elicit the prior on the intercept, slopes
and variable selection indicators for τ conditional on λ by following Section 3.1 and Section 3.2.

Furthermore, for conditional dependence with more than two parameters, we can always de-
compose the joint distribution with pairwise conditional distributions and apply the technique
thereafter. It is shown in our application that the conditional link function used in the prior also
makes the MCMC algorithm more robust and gives higher acceptance probability in Metropolis-
Hastings algorithm compared to the case where the prior is simply truncated to the region of
allowed (τ,λ ) pairs and all proposal draws outside this region are rejected in the MCMC.
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3.4. The joint posterior. The posterior in the copula model can be written in terms of the like-
lihoods from the marginal distributions, the copula likelihood and the prior for parameters in the
copula and marginal distributions as

log p({β,I }|y,x) =constant+∑
M

j=1
log p(y. j|{β,I } j,x j)

+ logLC(u|{β,I }C,y,x)+ log p({β,I })

where log p(y. j|{β,I } j,x j) is the log likelihood in j:th margin, the sets {β ,I } j are the pa-

rameter blocks in the j:th margin. Furthermore, u = (u1, ...,uM), where u j =
(

u1 j, ...,un j

)′
and

ui j = Fj(yi j), and Fj(·) is the CDF of the j:th marginal distribution and LC is the likelihood for the
copula function. In our application, we have M = 2 and we use the reparametrized Joe-Clayton
copula defined in Section 2.3.4.

4. THE GENERAL MCMC SCHEME

We update the copula component together with the marginal components jointly. The joint
posterior is not tractable and we use the Metropolis–Hastings within Gibbs sampler, i.e. a Gibbs
sampler is used for updating the joint parameter components, with each conditional parameter
block {β,I } updated by the Metropolis–Hastings algorithm. The complete updating scheme is
as follows.

4.1. Metropolis–Hastings within Gibbs. The updating order in the Gibbs sampler is given in
Table 1. We jointly update the coefficients and variable selection indicators {β ,I } in each pa-
rameter block using an efficient tailored Metropolis–Hastings algorithm with integrated finite-step
Newton proposals. The acceptance probability for a proposed draw {β (p),I (p)} conditional on
current value of the parameters {β (c),I (c)} is

min

[

1,
p({β (p),I (p)}|{β (c),I (c)},Y,X)g({β (c),I (c)}|{β (p),I (p)})

p({β (c),I (c)}|{β (p),I (p)},Y,X)g({β (p),I (p)}|{β (c),I (c)})

]

(3)

where g(·) is the jumping rule in the Metropolis-Hastings for {β ,I }. Note that it is convenient
to decompose g({β (p),I (p)}|{β (c),I (c)} = g1(β

(p)|{β (c),I (p)}i)g2(I
(p)|{β (c),I (c)}). And

g1(·) is the proposal distribution where the proposal mode is from finite-step Newton approxima-
tion of the posterior distribution (usually smaller than three steps) starting on current draw and
the proposal covariance matrix is from the negative inverse Hessian matrix. In our application,
g1(·) is multivariate t distribution with six degrees of freedom. The distribution of g2(·) is such
that we always propose a change of I : a currently excluded variable is proposed to enter the
model, and vice versa. We do not allow all indicator to change in a given iteration, each indicator
is proposed to change with probability pprop. This simple scheme works well in the copula model.
For alternative types of variable selection schemes, see e.g. Nott & Kohn (2005).

The updating scheme is used in e.g. Villani et al. (2009) and Villani et al. (2012) where it is
shown that Metropolis–Hastings with finite-step Newton proposals increases the convergence rate
rapidly. The algorithm only requires the gradient for the marginal distribution and copula model
with respect to their the (low-dimensional) parameters. Appendix A.1 documents the details for

104



COVARIATE-DEPENDENT COPULAS

TABLE 1. The Gibbs sampler for covariate-dependent copula. The notation
{βµ ,Iµ}m denotes the covariates coefficients and variable selection indicators in
copula component m for parameter feature µ . And the notation {βµ ,Iµ}−m indi-
cates all other parameters in the model except {βµ ,Iµ}m. The updating order is
column-wise from left to right. If dependent link functions are used, the updating
should be ordered accordingly.

Margin component (1) ... Margin component (M) Copula component (C)

(1.1) {βµ ,Iµ}1|{βµ ,Iµ}−1 ... (M.1) {βµ ,Iµ}M|{βµ ,Iµ}−M (C.1) {βλ ,Iλ}C|{βλ ,Iλ}−C

(1.2) {βφ ,Iφ}1|{βφ ,Iφ}−1 ... (M.2) {βφ ,Iφ}M|{βφ ,Iφ}−M (C.2) {βτ ,Iτ}C|{βτ ,Iτ}−C

(1.3) {βν ,Iν}1|{βν ,Iν}−1 ... (M.3) {βν ,Iν}M|{βν ,Iν}−M

(1.4) {βκ ,Iκ}1|{βκ ,Iκ}−1 ... (M.4) {βκ ,Iκ}M|{βκ ,Iκ}−M

calculating the gradient with respect to copula features for reparametrized copulas in the MCMC
implementation with both independent and dependent link functions.

An alternative approach is the two-stage estimation method which first independently estimate
the margins and then estimates the copula likelihood conditional on the estimated margins, see
e.g. Xu (1996) and Joe (1997). The two-stage estimation method is widely used as it reduces the
computational difficulty in maximizing the likelihood for high-dimensional copula models. Joe
(2005) shows that the asymptotic relative efficiency of the two-stage estimation procedure depends
on how close the copula is to the Fréchet bounds. The initial values for the MCMC are obtained
by numerical optimization of the posterior distribution. Alternatively, one can use the estimates
from a two-stage approach as initial values. An R package for estimating the covariate-dependent
copula model with our MCMC scheme is available upon request.

5. APPLICATION TO FINANCIAL DATA

In order to illustrate our method, we use an financial application with daily stock returns. The
copula model is the reparametrized Joe-Clayton copula with split-t distributions on the continuous
margins. For the discrete case, see e.g. the approach by latent variables for the Gaussian copula
in Pitt et al. (2006) and the extension to a general copula in Smith & Khaled (2012).

5.1. The S&P100 and S&P600 data. Our data are daily returns from the S&P100 and S&P600
daily stock market indices during the period from September 15, 1995 to January 16, 2013. The
S&P100 index includes the largest and most established companies in the U.S. which is a subset
of the well-known S&P500 index. The S&P600 index covers the small capitalization companies
which present the possibility of greater capital appreciation, but at greater risk. The S&P600 index
covers roughly three percent of the total US equities market.

Patton (2012a) uses hypothesis tests to show that there is significant time-varying dependence
between S&P100 and S&P600. Both parametric and nonparametric methods are used to estimate
the tail-dependence coefficient in different copula models in Patton (2012a). Nevertheless, little
effort has been devote to interpreting the dependence, in particular from using covariate informa-
tion.
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TABLE 2. Description of variables in the S&P100 and S&P600 data.

Variable Description

Return Daily return yt = 100log(pt/pt−1) where pt is the closing price.

RM1 Return of last day.
RM5 Return of last week.
RM20 Return of last month.
CloseAbs95 Geometrically decaying average of absolute returns (1 − ρ)∑

∞
s=0 ρs|yt−2−s|

with ρ = 0.95.
CloseAbs80 Geometrically decaying average of past absolute returns with ρ = 0.80.
MaxMin95 Measure of volatility (1 − ρ)∑

∞
s=0 ρs(log(ph

t−1−s)− log(pl
t−1−s)) with ρ =

0.95, where ph and pl are the highest and lowest prices.
MaxMin80 Measure of volatility with ρ = 0.80.
CloseSqr95 Geometrically decaying average of returns ((1 − ρ)∑

∞
s=0 ρsy2

t−2−s)
1/2 with

ρ = 0.95.
CloseSqr80 Geometrically decaying average of returns with ρ = 0.80.

The covariates we used in the margins and in the copula function are described in Table 2.
Villani et al. (2009) and Li et al. (2010) apply similar covariates in univariate response regres-
sion density estimation on S&P500 data using mixtures of Gaussian and asymmetric student’s t

densities.
Figure 2 shows the time series of the daily returns. It is seen that there is huge volatility in

the returns for both S&P100 and S&P600 during the 2008 financial crisis. Figure 3 depicts the
empirical copula Ĉn for Return estimated as proposed by Dobrić & Schmid (2005) by assuming
independent observations

Ĉn(
i

n
,

j

n
) =

1

n

n

∑
k=1

1(Y1k ≤ Y1(i),Y2k ≤ Y2( j))

for i, j = 1, ...,n, where Y1(1) ≤, ...,≤Y1(n) and Y2(1) ≤, ...,≤Y2(n) are the ordered values of Return
for S&P100 and S&P600, respectively. Figure 3 shows that the empirical copula is very close to
the Fréchet-Hoeffding upper bound copula, which means extreme positive dependence between
data S&P100 and S&P600 (Nelsen, 2006). Figure 3 also suggests that the positive dependence
restriction of the Joe-Clayton copula is appropriate for modeling the data without rotating the
scale. Furthermore, Joe (2005) shows that the usual two-stage approach for copula estimation is
not efficient for extreme dependence near the Fréchet bounds, which is the case in our application.

5.2. Posterior summary. We present the posterior summary for the model in Table 3. The con-
ditional link function is used for the dependent Kendall’s τ and lower tail-dependence. The effi-
ciency of the MCMC is monitored via the inefficiency factor IF = 1+ 2∑

∞
i=1 ρi, where ρi is the

autocorrelation at lag i in the MCMC iterations.
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FIGURE 2. Daily return of the S&P100 and S&P600 indices from September 15,
1995 to January 16, 2013.

Note that our marginal models are similar to the model in Li et al. (2010) except that the location
parameter of the split-t is fixed in Li et al. (2010). We also estimated the model with the inde-
pendent link for comparison. The mean posterior acceptance probability is 71% in comparison to
50% when the independent link function is used.

We focus on explaining the results in the copula component and refer to Li et al. (2010) for
a detailed interpretation of the marginal models. The variable selection results show that impor-
tant variables for Kendall’s τ are RM1, RM5, CloseAbs80 and MaxMin95 in the S&P600 margin
and the variables CloseAbs80, MaxMin95 , MaxMin80 and CloseSqr95 in the S&P100 margin.
Variables with large posterior inclusion probabilities in the lower-tail dependence part are: Clos-
eSqr95, RM1 and RM5 in S&P600 margin and RM1, RM20 and CloseAbs80 from the variables in
the S&P100 margin. Multicollinearity may occur when the same variables are used in a margin
and in the copula parameters. Figure 4 shows that the same covariate in S&P100 and in S&P600
tend to be highly correlated. Since covariates in both margins are used in the copula, there is
a risk of covariate duplication with associated problems with non-identification. Table 3 shows
that when a covariate in one margin is selected in the copula feature, the same covariate in the
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FIGURE 3. The empirical copula for daily return of S&P100 and S&P600 indices
from September 15, 1995 to January 16, 2013 (middle) and the Fréchet-Hoeffding
lower bound copula (left) and Fréchet-Hoeffding upper bound copula (right).

other margin does not appear in the copula, which indicates that our variable selection algorithm
is efficient in removing superfluous covariates.

Figure 5 shows a correlation between S&P100 and S&P600 indices with the posterior mean of
Kendall’s τ being rather stable around 0.3 over time (bottom left subgraph). The tail-dependence
is not so strong during normal time, but there is significant variation over time (bottom right
subgraph). The variation in λL over time is larger than the variation in Kendall’s τ and there is a
very high dependence in the tail even though the overall correlation is relatively small.

Figure 6 depicts the posterior contour plot for the Joe-Clayton copula model for some random
dates before and during the 2008 financial crisis. By comparing with the Fréchet-Hoeffding upper
bound in Figure 3, we can see that the lower tail-dependence is higher during the crisis in compari-
son to the dates before the crisis. Also note that the empirical copula overestimates the dependence
during normal time and underestimates the dependence during the 2008 financial crisis because
it assumes temporally independent observations. Our covariate-dependent copula model not only
captures but also estimates the dynamic dependence.

5.3. Model comparison. We evaluating the model performance based on out-of-sample predic-
tion. In our time series application, we estimate the model based on the 80% of historical data and
then predict the last 20% data. We evaluate the quality of the one-step-ahead predictions using the
log predictive score (LPS)

LPS = log p(D(T+1):(T+p)|D1:T ) = ∑
p

i=1
log
∫

p(DT+i|θ ,D1:(T+i−1))p(θ |D1:(T+i−1))dθ

where Da:b is the dataset from time a to b and θ are the model parameters. This calculation of
the LPS is usually computationally costly because every prediction needs a new posterior sample
from the posterior based on the data available at the time of the forecast. We approximate the LPS
by assuming that the posterior does not change much as we add a few data points to the estimation

108



COVARIATE-DEPENDENT COPULAS

TABLE 3. Posterior summary of copula model with S&P100 and S&P600 data.
In the copula component part, the first row and second row for β and I are the
results for the combined covariates that are used in the first and second marginal
model, respectively. The intercept are always included in the model.

Intercept RM1 RM5 RM20 CloseAbs95 CloseAbs80 MaxMin95 MaxMin80 CloseSqr95 CloseSqr80

Marginal component (1)

βµ 0.222 −0.076 −0.104 0.096 0.205 −0.385 0.090 0.173 −0.316 0.372
Iµ 1 0.15 0.09 0.08 0.06 0.11 0.11 0.10 0.03 0.05

βφ −0.001 −0.019 −0.118 −0.050 0.143 −0.283 0.021 0.005 0.070 0.352
Iφ 1 0.01 0.091 0.89 0.01 0.00 0.92 0.07 0.00 0.00

βν 0.900 −0.088 −0.401 0.263 −0.500 −0.832 0.851 −0.053 −0.802 −0.592
Iν 1 0.15 0.00 0.01 0.16 0.12 0.05 0.05 0.11 0.02

βκ −0.272 0.007 0.009 −0.061 −0.451 0.512 0.003 −0.357 0.445 −0.241
Iκ 1 0.02 0.16 0.19 0.02 0.13 0.10 0.19 0.11 0.15

Marginal component (2)

βµ 0.260 0.150 −0.089 0.044 0.173 −0.079 0.306 −0.124 −0.037 0.164
Iµ 1 0.20 0.17 0.10 0.05 0.03 0.11 0.05 0.14 0.14

βφ 0.208 0.025 −0.127 −0.042 −0.002 −0.300 0.145 0.165 0.066 0.291
Iφ 1 .10 1.00 0.09 0.03 0.00 0.01 0.11 0.03 0.07

βν 2.843 0.091 −0.435 −0.612 0.417 −0.388 0.299 −0.270 0.338 −0.467
Iν 1.00 0.10 0.13 0.03 0.04 0.10 0.12 0.18 0.08 0.12

βκ −0.265 −0.104 0.059 −0.055 0.389 −0.197 −0.708 0.401 0.253 −0.110
Iκ 1 0.06 0.02 0.05 0.00 0.00 0.09 0.00 0.06 0.05

Copula component (C)

βλL
−8.165 −0.555 1.793 0.005 −0.170 0.110 −0.667 −1.448 −0.636 0.050

1.463 0.405 0.934 −2.138 −1.288 −1.954 −1.577 −1.873 −1.805

IλL
1.00 0.98 0.37 0.63 0.02 0.61 0.36 0.35 0.39 0.29

1.00 1.00 0.00 0.30 0.35 0.40 0.00 0.61 0.34

βτ −1.726 0.181 −0.217 −0.304 −0.107 0.115 0.005 −0.257 1.068 0.037
−0.191 0.170 0.274 0.144 −0.051 −0.671 0.059 −0.209 −0.181

Iτ 1.00 0.00 0.00 0.00 0.00 0.90 0.99 1.00 0.85 0.00
1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00

The inefficiency factors for the parameters are all bellow 25.
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FIGURE 4. The pairwise scatter plot for the same covariate in S&P100 (in x-axis)
and S&P600 (in y-axis) margins that also enters in the copula function.

sample. This approximation has the advantage that we can parallelize the LPS evaluation on
multiple processors.Villani et al. (2009) document that this type of approximation is accurate in
an application of smooth mixture of Gaussians for density predictions of the S&P500 data.

Table 4 shows the out-of-sample comparison of models. Models with covariates in the cop-
ula features outperforms the commonly used model without covariates in the copula. Moreover,
variable selection also enhances the model’s predictive performance.

6. CONCLUDING REMARKS

We have proposed a general approach for modeling a covariate-dependent copula. The copula
parameters as well as the parameters in the margins are linked to covariates. We use an efficient
Bayesian MCMC method to sample the posterior distribution and to simultaneously perform vari-
able selection in all parts of the model. An application to the daily returns of S&P100 and S&P600

110



COVARIATE-DEPENDENT COPULAS

2000 2005 2010

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

SP600

µ

2000 2005 2010

0
.2

0
.5

1
.0

2
.0

5
.0

1
0

.0
5

0
.0

φ

2000 2005 2010

1
e

+
0

1
1

e
+

0
3

1
e

+
0

5

κ

2000 2005 2010

0
.0

5
0

.1
0

0
.2

0
0

.5
0

1
.0

0

λ

2000 2005 2010

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Copula

τ

2000 2005 2010

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

SP100

2000 2005 2010

1
2

5
1

0
2

0

2000 2005 2010

5
1

0
5

0
5

0
0

5
0

0
0

2000 2005 2010

0
.5

1
.0

1
.5

2
.0

2000 2005 2010

0
.0

0
.2

0
.4

0
.6

0
.8

Copula

λ
L

FIGURE 5. The posterior mean for the model parameters with S&P100 and
S&P600 data from September 15, 1995 to January 16, 2013. The first four rows
of subplots show time series plots of the location, scale, degrees of freedom and
skewness parameters in margin S&P100 (left) and S&P600 (right). The subplots
on the last row are the time series plot for Kendall’s τ (bottom-left) and the lower
tail-dependence (bottom-right). The dashed vertical bars indicate the beginning of
the 2008 financial crisis.
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FIGURE 6. Contour plot for the posterior copula. The two leftmost columns show
contour plots of the estimated copula and its density at five random dates before the
2008 financial crisis. The contour plots in each column are ordered with respect to
the lower tail-dependence. The two rightmost columns show the same plots but for
five dates during the 2008 financial crisis.
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TABLE 4. Model comparison with LPS. Note that variable selection is used in all
situations in the margins.

LPS Numerical standard error

No-covariates in τ and λ -1324 0.5
Covariates in τ and λ - no variable selection -1250 1.2
Covariates in τ and λ - variable selection -1238 1.1

indices shows the advantages of this approach in terms of understanding the copula dependence
via covariates and improved out-of-sample prediction performance. Covariate-dependent copula
modeling with discrete margins is also possible using the data augmentation in Pitt et al. (2006)
and Smith & Khaled (2012).
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APPENDIX A. THE MCMC DETAILS

In this section, we briefly present the MCMC details. The MCMC implementation is straight-
forward, but requires great care of the proposal distribution in the Metropolis–Hastings algorithm.

A.1. The chain rule. We use the finite-step Newton method embedded in the Metropolis-Hastings
algorithm that requires the analytical gradient for the posterior with respect to the parameters of
interest in marginal and copula components. The chain rule of gradient conveniently modularizes
the copula model and reduces the complexity of the the gradient calculation.

A.1.1. The chain rule for copula parameters.

∂ logc(u1, ...,uM,λL,τ)

∂λL
=

∂ logc(u1, ...,uM,θ ,δ )

∂δ
×

(

∂λL

∂δ

)−1

∂ logc(u1, ...,um,λL,τ)

∂τ
=

∂ logc(u1, ...,um,θ ,δ )

∂θ
×

(

∂τ(θ ,δ )

∂θ

)−1

∂ logc(u1, ...,uM,λL,τ)

∂ϕm
=

∂ logc(u1, ...,uM,θ ,δ )

∂um
×

∂um

∂ϕ

where ϕm is any parameter in the m:th margin and um is the CDF function of its marginal density.
The parameters θ and δ are the intermediate parameters that link the dependence and correlations
with the traditional parametrization for copulas.

The MCMC algorithm requires evaluating τ−1
λL

excessively. It can be evaluated numerically
or through a dictionary-lookup method. In practice, we have found that the dictionary-lookup
method is particularly fast and robust. Modeling the upper tail-dependence can be done in the
same manner.
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Our model in Section 2 is covariate-dependent. Let l(ϕ) = x′β be the link function where ϕ is
the parameter of interest. The gradient expression can be written as

∂ logc(u1, ...,uM,ϕ)

∂β
=

∂ logc(u1, ...,uM,ϕ)

∂ϕ
×

(

∂ l(ϕ)

∂ϕ

)−1

×
∂x′β

∂β
.

When the conditional link function is used, e.g. τ depending on λL in our model in the link
function l(τ|λL) = x′β , the gradient for λL is slightly complicated. One needs to write τ as a
function of λL with the link function and substitute it into the copula density. The gradient for λL

is obtained thereafter. The details are straightforward, but lengthy, and will be omitted here.

A.2. Gradients for parameters in Joe-Clayton copula. The gradient for the Joe-Clayton copula
w.r.t lower tail-dependence parameters λL can be decomposed as

∂ logc(u,v,θ ,δ )

∂δ
=− logT1(u)− logT1(v)−

2(1+δ )∆1

δL1
− (

1

θ
−2)

logL1 −δ∆1/L1

δ 2(L
1/δ
1 −1)

+
2logL1

δ 2
+

L
1/δ
1 − (1+δ )L

1/δ
1 (logL1 −δ∆1/L1)/δ 2 −1

(1+δ )L
1/δ
1 −δ −1/θ

,

where ∆1 = ∂L1/∂δ =−T1(u)
−δ logT1(u)−T1(v)

−δ logT1(v). Furthermore, ∂λL/∂δ = 2−1/δ log2/δ 2.
The gradient for Joe-Clayton copula with respect to the Kendall’s τ is decomposed as

∂ logc(u,v,θ ,δ )

∂θ
=− (1+δ )∆2(0)+∆3(u)+∆3(v)+2(1+δ )∆2(−δ )/L1

+
(1−2θ)∆2(1/δ )

(1−L
−1/δ
1 )θδ

−
log(1−L

−1/δ
1 )

θ 2

+
(1+δ )L

1/δ
1 +θ(1+δ )/δL

1/δ−1
1 ∆2(−1/δ )−δ

(1+δ )θL
1/δ
1 −θδ −1

where ∆2(d)=−T1(u)
d−1(1−u)θ log(1−u)−T1(v)

d−1(1−v)θ log(1−v) and ∆3(s)= ∂ logT2(s)/∂θ =
(1− s)θ−1 log(1− s)/T2(s). Furthermore,

∂τ(θ ,δ )

∂θ
=



























































−2/[(θ −2)2δ ]−8B(2+δ ,2/θ −1) [θ +ψ(2/θ −1)−ψ(2/θ +δ +1)]/(θ 4δ ),

1 ≤ θ < 2;

−[12+24ψ(1)+6ψ2(1)+π2 −12(2+ψ(1))ψ(2+δ )+6ψ2(2+δ )−6ψ1(2+δ )]/(24δ ),

θ = 2;




−2(2+δ )θ 4B(1+δ +2/θ ,2−2/θ)−8π2(θ −2)2 cos(2π/θ)/sin2(2π/θ)

−8π(θ −2)2[ψ(1+δ +2/θ)−ψ(2−2/θ)−θ ]/sin(2π/θ)





δ (2+δ )(θ −2)2θ 4B(1+δ +2/θ ,2−2/θ)
,

θ > 2.
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where ψ1(·) is the trigamma function. then gradient for the case θ = 2 can be obtained by taking
the limiting result from the cases of 1 ≤ θ < 2 or θ > 2 when θ → 2.

∂τ(θ ,δ )

∂δ
=



































−2/[(θ −2)δ 2]+4B(2+δ ,2/θ −1)[ψ(2+δ )−ψ(2/θ +δ +1)−1/δ ]/(θ 2δ ),

1 ≤ θ < 2;

[ψ(2+δ )−δψ1(2+δ )−ψ(1)−1]/δ 2, θ = 2;

−
2

(θ −2)δ 2
−

4π[ψ(3+δ )−ψ(2/θ +δ +1)−2(1+δ )/(2δ +δ 2)]

(2+δ )δθ 2 sin(2π/θ)B(1+δ +2/θ ,2−2/θ)
,

θ > 2.

For the Joe-Clayton copula, u and v are exchangeable, and we only present the derivative with
respect to u:

∂ logc(u,v,θ ,δ )

∂u
=(1+δ )θ∆4(0)+(1−θ)[(1−u)θ−2/T2(u)+(1− v)θ−2/T2(v)]

−2(1+δ )∆4(−δ )/L1 − (1/θ −2)L
−1/δ−1
1 ∆4(−δ )/(1−L

−1/δ
1 )

− (1+δ )θL
1/δ−1
1 ∆4(−δ )/

[

(1+δ )θL
1/δ
1 −θδ −1

]

where ∆4(d) =−T1(u)
d−1(1−u)θ−1θ −T1(v)

d−1(1− v)θ−1θ .

A.3. Gradients for parameters in marginal distributions. The direct derivative of CDF func-
tion with respect to its parameters is straightforward for most densities. We only document
the split-t case. Let I = κ if y > µ and I = 1 elsewhere, J = 1, if y > µ and J = −1, and
A = I2νφ 2/[(y− µ)2 + I2νφ 2], the gradient for the split-t CDF function with respect to it pa-
rameters µ,φ ,κ,ν are as follows,

∂usplit−t(y,µ,φ ,κ,ν)

∂ µ
=−

2I
√

1
(y−µ)2+I2νφ 2 Aν/2

(1+κ)Beta
[

ν
2 ,

1
2

] ,

∂usplit−t(y,µ,φ ,κ,ν)

∂φ
=−

2I(y−µ)
√

1
(y−µ)2+I2νφ 2 Aν/2

(1+κ)φBeta
[

ν
2 ,

1
2

] ,

∂usplit−t(y,µ,φ ,κ,ν)

∂φ
=











−
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−νJ Beta

[

A,
ν

2
,
1

2

](

log(A)−ψ
(ν

2

)

+ψ

(

1+ν

2

))

}

where BetaRis the regularized beta function, pFq is the generalized hypergeometric function.
However there are exceptions when this derivative is numerically unstable in practice. In this

situation, we propose an alternative approach. Note that

∂u

∂ϕ
=

∂F(y,ϕ)

∂ϕ
=
∫ y

−∞

∂ f (x,ϕ)

∂ϕ
dx (4)

where u = F(y,ϕ) is the CDF function of density f (y,ϕ), and calculating ∂ f (y,ϕ)/∂ϕ is usually
easier than ∂F(y,ϕ)/∂ϕ . When the integral cannot be easily obtained analytically, numerical
methods can be applied in the last stage. Furthermore, Equation (4) has the advantage of connect-
ing existing derivatives of the PDF with respect to its parameters, e.g. Li et al. (2010) (asymmet-
ric student-t density where asymmetric normal and symmetric student-t densities are its special
cases), Li et al. (2011) (gamma and log-normal densities) and Villani et al. (2012) (negative bi-
nomial, beta and generalized Poisson densities) and Li & Villani (2013) (spline model with free
knots as unknown parameters).
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COMPUTATIONAL IMPLEMENTATION FOR FLEXIBLE BAYESIAN

CONDITIONAL DENSITY ESTIMATION

FENG LI

We will here give a brief overview of the computational implementation of modeling condi-
tional densities with R packages that we have developed in this thesis. For details regarding the
MCMC schemes, see the corresponding paper and the help in the software. The packages can be
downloaded from the author’s homepage.

In general, implementing the core code requires three modules.

(1) The model module

In this part, the likelihood function and priors for the model should be specified. In
particular, an efficient MCMC usually requires the analytical gradient for the posterior
with respect to the model parameters to be coded. The model can also be extended and
generalized by following the existing code structure.

(2) The MCMC module

The MCMC part contains the MCMC samplers, i.e. the Metropolis-Hastings within
Gibbs or other types of algorithms. Variable selection is also coded in this part.

(3) Model prediction and evaluation module

This part of code implements the predictive distribution, methods of evaluating condi-
tional densities and log predictive density score or other types of criteria for model evalu-
ation. This part is not essential if one only needs to fit a flexible density model.

We briefly describe the core functions in the movingknots package that is mainly designed for
the analysis in Li & Villani (2013), cdcopula that is mainly designed for Li (2013), and a utility
package flutils. Other functions such as code to reproduce the R plots in the papers can also
be found in the source code. The packages are self-contained and do not depend on external
packages. The packages are extendable to other flexible models.

1. THE movingknots PACKAGE

The movingknots package is written in R and is mainly used for modeling regression surface
with splines (Li & Villani, 2013) where the locations of basis functions are treated as unknown
estimated parameters.

1.1. The model module. The model used inLi & Villani (2013) is a Gaussian model but it is
possible to extend it to the generalized linear model framework. We just briefly describe the core
functions for the Gaussian model.

Feng Li (feng.li@stat.su.se): Department of Statistics, Stockholm University, SE-106 91 Stockholm,
Sweden.
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• make.knots()

Generating various types basis functions for both additive splines and interactive splines.
• d.matrix()

Efficient implementation for calculating the design matrix of a spline model with com-
plicated basis functions.

• linear_logpost()

The conditional and joint log posterior function.
• linear_gradhess()

The conditional gradient for the posterior with respect to the parameters (knots loca-
tions, shrinkages, covariates coefficients and covariance matrix). Great efforts have been
done to implement the calculations efficiently. For details on how to handle the sparsity
problem with big design matrix, see the etc directory in the source code.

– delta.xi()

Efficient implementation of the gradient for the design matrix with respect to knot
locations for various basis functions.

• linear_IWishart()

Calculating degrees of freedom and location matrix in the inverse Wishart distribution
when a conjugate prior is used.

• linear_post4coef()

Direct sampling of the coefficients from multivariate normal distribution when the co-
efficients can be integrated out analytically.

1.2. The MCMC module.

• MovingKnots_MCMC()

A Gibbs sampler where the Metropolis–Hastings algorithm is used in each Gibbs step.
The sampler allows the model parameters to be updated sequentially, jointly, or by blocks.

• MHPropMain()

The main function for Metropolis–Hastings algorithm where the random walk Metropo-
lis and the Metropolis–Hastings algorithm with an integrated finite-step Newton algorithm.

– MHPropWithIWishart()

A sub-function for the Metropolis-Hastings algorithm that the proposal density is
from inverse Wishart distribution.

– MHPropWithKStepNewtonMove()

A sub-function for the Metropolis-Hastings algorithm that the proposal density is
from multivariate student’s t distribution where the proposal mode and covariance
matrix are from finite-step Newton iteration.

∗ KStepNewtonMove()

Finite-step Newton iteration for the log posterior of a model.
– RandomWalkMetropolis()

Random walk Metropolis algorithm.
• MCMC.trajectory()
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The summary of posterior inference including posterior means, standard deviation, ac-
ceptance probability during the MCMC evaluation, and inefficiency factor that monitors
the MCMC efficiency periodically.

1.3. The DGP module.

• DGP.hwang(), DGP.surface()
Data generating processes for different surfaces.

1.4. The model evaluation module.

• FitDiagnosis(), FitDiagnosis.hwang()
Model diagnosis procedures based on LOSS functions, Kullback–Leibler divergence

and L2 distance criteria.
• PostPredIF()

The inefficiency factor for the out-of-sample predictive surface.
• LPDS()

The log predictive density score with numerical standard errors for the cross-validation
of the model.

2. THE cdcopula PACKAGE

The cdcopula package is mainly designed for modeling covariate-dependent copula models
in Li (2013). A bash script inst/run/CplRun in the source file can run the MCMC with cross-
validation and prediction in parallel non-interactive mode. The user only needs to supply a model
configuration file, see inst/config/config-main-sp100-sp600.R file for the configuration
example.

2.1. The model module.

• kendalltau(), kendalltauGrad(), kendalltauInv(), kendalltauTabular()

Computes the analytical Kendall’s τ , the gradient of the Kendall’s τ and the inverse of
Kendall’s τ in a copula. The inverse of Kendall’s can be evaluated numerically or with a
dictionary-lookup algorithm.

• logCplLik(), logCplGrad()

Computes the copula likelihood and its gradient with respect to copula parameters.
– HessApprox()

Approximating the Hessian matrix based on the outer-product method. This is used
when the Hessian is difficulty to obtain, or unstable.

• MargiModel(), MargiModelGrad()

Specify marginal models and their gradients with respect to the marginal parameters.
The marginal models can be retrieved from any other univariate models.

• logPriors(), logPriorsGradHess()

The prior specification of the copula model and its gradient and Hessian matrix for the
prior distribution.
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– any2any()

A function that automatically specifies priors in the intercept for covariate dependence
structure, see Li (2013) for details. The strategy is that firstly puts prior information
on the model parameters (e.g. τ and λL in the Joe-Clayton copula), and then derive
the implied prior on the intercept β0 under the assumption that the covariates are at
their means..

• logPost(), logPostOptim()
The function logPost() computes the log posterior of the copula model. Bayesian

inference and the classical two-stage approach can be applied directly to this function.
The function logPostOptim() is used to optimize the initial values for the MCMC.

• logPredDens(), logPredDensScore()
Evaluating the log predictive likelihood and log predictive density score based on MCMC

posterior inference.

2.2. The MCMC module. The MCMC part of this package allows evaluating the log predictive
density score with cross-validation in parallel. See the configuration files for detailed information.
The Metropolis-Hastings with tailored proposal based on finite-step Newton approximation is the
analogue of Li et al. (2010) and Li et al. (2011).

• CplMain()

The Main file for MCMC of the copula model that performs the MCMC.
• GNewtonMove()

The generalized Newton method that allows the dimension of the proposal draws to
change in the Metropolis-Hastings algorithm.

• MHWithGNewtonMove()

Metropolis–Hastings algorithm with generalized Newton method and variable selection
integrated.

• CplMCMC.summary()

The posterior summary for the copula model including the detailed summary report for
the marginal models and the copula model.

2.3. The simulation module.

• DGPCpl()

Copula model data generating process.
• ruCpl()

Random variable generators for common copulas, Joe-Clayton copula, Gaussian copula,
multivariate t copula, fgm copula, gumbel copula, etc. The empirical Kendall’s τ and
theoretical Kendall’s τ are also reported.

• uCpl(), cCpl()

Compute the copula function and copula density with given margins.
• hatCpl()

Empirical copula function estimation.
• emltdc()

Empirical lower tail-dependence coefficient.
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• u2qtl()

Transform percentile to quantile according to marginal densities.

2.4. The prediction and model evaluation module. This part is same as the one in movingknots
package in section 1.4.

3. THE flutils PACKAGE

The flutils package is the utility package that includes R functions which are not available in
R base packages or is not implemented efficiently elsewhere. We briefly describe some functions
here that are related to the thesis. Other functions with general purposes are available and are
documented in the package.

3.1. Distribution functions.

• psplitt(), dsplitt(), rsplitt()
Density and distribution functions and random number generators for the split-t distri-

butionused in Li et al. (2010) and Li (2013)
• pbeta2(),dbeta2(), rbeta2(), plnorm2() dlnorm2(), rlnorm2()

Density and distribution functions and random number generators for beta and log-
normal distributions are reparametrized in terms of their mean and variance used in Li
(2013).

• splitt.mean(), splitt.var(), splitt.skewness(), splitt.kurtosis()

The mean, variance, skewness and kurtosis for the split-t distribution.
• piwishart(), diwishart(), riwishart()

Density and distribution functions and random number generators for the inverse Wishart
distribution used inLi & Villani (2013).

3.2. MCMC functions.

• ineff()

Inefficiency factor of a given MCMC chain.
• parLinkFun(), parMeanFun(), parMeanFunGrad()

Functions that calculate the linear predictors, mean functions and their gradients for
common link functions. And the generalized logit link, generalized log link. The condi-
tional link functions are also considered in the function’s implementation.

3.3. Special mathematical functions.

• K.X(), K()
Efficient implementation of commutation matrix multiplications.

• ghypergeo()

The generalized hypergeometric function pFq for real numbers.
• pochhammer()

The series expansion of Pochhammer symbol.
• mvgamma()

The multivariate gamma function.
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• rdist()

Fast calculation of Euclidean distance matrix between two matrices.
• ibeta()

Incomplete beta function and regularized incomplete beta function.
• harmonic()

The harmonic numbers.
• zeta()

The Riemann zeta function.
• rps()

Generate random variable from a positive stable distribution.

3.4. Data manipulate functions.

• stock2covariates()

Constructing sensible covariates from stock market data. The data source is from Yahoo
Finance and the output format are suitable for the data used in Li et al. (2010) and Li
(2013).

• StdData()

Data standardization that standardizes a vector or colums of a matrix to e.g. mean zero
and unit standard deviation for the MCMC and the inverse operation to transform back in
the prediction and interpretation phase.

• data.partition()

The data partitioning procedure used in cross-validation with methods like, systematic,
random, ordered and for the special case of time series.

4. NOTES ON IMPROVING COMPUTING PERFORMANCE

The performance of the code is relatively fast in our real data application. Here we consider a
few situations that can speed up R in general.

R base package compiler can compile R functions into machine code which speeds up the
calculations. The function sourceDir() in package flutils can compile and load R functions
in a very flexible way. Compiling R from source with fast compiler and BLAS (Basic Linear
Algebra Subprograms) library, e.g. Intel compiler and Intel Math Kernel Library (MKL) can
significantly speed up the matrix calculations.

Cross-validation is always costly and one may consider using parallel computing with R. A
simple approach is the explicit parallelism where within each fold the MCMC are run sequentially.
This can be achieved via the parallel package in R. A complete example using R’s default
parallelism scheme is documented in the file inst/bin/CplRun in the package cdcopula. For
information of other types on parallelism with R, see the document CRAN Task View: High-

Performance and Parallel Computing with R.

5. IMPLEMENTING MATRIX DERIVATIVES

The efficient MCMC scheme for flexible Bayesian density estimation requires analytical ex-
pressions for the gradient and Hessian of the log posterior with respect to the parameters in the
model. The appendices in the papers include the results for each models. The models included
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in the thesis can be extended by providing the gradient and Hessian for the new model. Com-
mon rules for matrix derivatives are available in Lütkepohl (1996). However great care should be
taken when dealing with big sparse matrices where one should avoid direct calculations which are
memory-intensive and costly in CPU time. Sparse methods like those in the Matrix package in R
should be used for that purpose. Checking the results with numerical gradients and Hessians can
help to debug errors in coding.
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