Seasonal Adjustment and Dynamic Linear Models

1 Introduction

Predicting the future by inferring from the past requires that information is analyzed for
its possible impact forward in time. This judgment can then be extrapolated to the prediction
horizon. Several methods can help in integrating the information into a point estimate in
order to learn about the past in an organized and replicable manner. This process is named
modeling and can be described as something that “organizes information and experiences
providing a means of learning and forecasting” (West & Harrison, 1989).

One approach to model building is in terms of a dynamic linear model, abbreviated DLM,
and is due to Harrison & Stevens (1976). Based on the Kalman (1960) filter, DLMs are an
adaptive Bayesian approach of model formulation in terms of state and space. In this
formulation, the time series observation Y, at time t is assumed to consist of an unobservable

component ¢, and some noise v,. This component is in turn assumed to be a function of itself
at a previous time point and some innovation noise «,. Following the notation used in West
& Harrison (1989), the DLM system is stated as

Observation (Space): Y, =6, +v,,
Component (State): 6, =GO_, +w,.

A DLM uses Bayesian updating of the posterior distribution, so the unobserved component
6, is updated by assimilating the prior knowledge 6, , and the data Y,. This recursive

filtering, which implies the Markov property that all necessary prior information is stored in
the previous estimate, is shown by Kalman (1960) to be the optimal estimate of the
unobserved component. It is based on partitioning the observation into a random component
orthogonal to a linear component in the observation space.

A dynamic linear model carries this partitioning one step further and allows for more
extensive modeling. The unobserved component is itself divided into components, e.g. a
seasonal and a trend: 6, =z, +s, ;- Here, atrend 7, and a seasonal s, ;,, at time t affect an

observation at season j with a recurrence period of length p (say p = 4 for quarterly data).

A more commonly used model framework is the autoregressive and integrated moving
average models (ARIMA) approach, as introduced by Box & Jenkins (1970). The technique is
a way of modeling time series with linear functions and normally distributed random
components. If the data follows an ARIMA model, the parameters are usually estimated by
the Maximum Likelihood method and a model is fit to past observations. This approach often
involves data filtering in terms of transformations (e.g. logarithmic or Box-Cox), outlier
processing, dummy variable fitting (i.e. intervention variables) and integration (i.e.
differencing) of various orders before the best (minimum squared error) model can be fitted.
By construction, it is an averaging method that fits something that on average works well on
historical data. Similar to DLM, these models may also be expressed in a state space
representation, see e.g. Hamilton (1994).



A more algorithmic approach to model fitting, which also has state space representation, is
the exponential smoothing methodology, originating from work by Holt (1957), Brown
(1959) and Winters (1960). These methods were developed for forecasting and do not use
statistical theory, unlike the ARIMA and DLM approaches. Yet, they offer similar
possibilities as DLM in partitioning the observed time series into unobserved components
such as the seasonal decomposition. This method requires parameters, but since it is not based
on maximum likelihood inference, parameters can be estimated more flexibly than the
ARIMA approach, without involving squared error functions to minimize.

2 Seasonal adjustments by DLM and exponential smoothing

Seasonal effects exhibited in many time series sometimes need to be cleared out. This is
called seasonal adjustment and is often necessary for comparative analysis of time series. In
official statistics production however, state space approaches are not commonly used for this
purpose. Instead, two different kinds of signal filtering approaches are applied with the
assistance of ARIMA modeling, namely the X11/X12-ARIMA and TRAMO/SEATS
methods. These methods are well adapted to practical use but they are somewhat complicated
to grasp. Put in that context, simpler state space approaches such as DLM (or exponential
smoothing) should receive attention as they remain fairly unexplored for this specific purpose.
Despite the rigorously supporting theory behind the Kalman filter, DLM are simple to
intuitively understand and rather straightforward to apply. Seasonal estimation by X11/X12-
ARIMA and TRAMO/SEATS have been compared in many studies, but often the comparison
criteria can be difficult to understand, whereas to the authors knowledge, no comparisons of
these standard methods have been made with DLM.

The first paper in this thesis (Section 1) is an introductory and very basic attempt to
compare seasonal adjustments made by DLM to those made by TRAMO/SEATS. Some
diagnostics and comparison criteria are stated, such as mean squared errors of components,
model fit, roughness etc., and applied to either method or to both methods when possible for
comparative analysis.

Two varieties of DLM are used in the first study. First, a simpler seasonal DLM approach
(similar to the Kalman filter) is applied to both simulated time series and empirical data. This
model is found to be unsatisfactory with respect to the criteria stated. Second, for empirical
data, a more elaborated DLM approach is applied and requires estimating parameters to use in
the recursion. This is achieved by Gibbs sampling and turns out to be far more satisfactory
than the basic model, although both DLM models are inferior to the benchmark
TRAMO/SEATS and tend to smooth excessively, i.e. they appear to be too rigid. For the
artificial data, it is seen that the DLM with informative priors can compare somewhat well
with TRAMO/SEATS, but this result is limited to a few cases and occurs only for the
irregular and trend components, although some cases are close to ties between the methods.
The simple DLM with uninformative priors appears as unsatisfactory throughout. The overall
conclusion is that this should be viewed as a window of opportunity for elaborating on DLM.

The data that are used in the study are time series of monthly Swedish foreign trade of
goods, i.e. exports and imports. The particularity of this kind of data is the implicitly obtained
trade balance (or net trade) series, which is exports minus imports. This kind of time series
raises the issue of direct and indirect seasonal adjustments, which is briefly introduced in the



first paper and is worked through in the two following papers on seasonal adjustment in
Sections Il and I11.
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Figure 1. Seasonal adjustments of exports. Estimation through the simple Model 1 (on top), the elaborated
Model 2 on minus 10 000 Million Swedish Kronor SEK of its actual value (in the middle) and TRAMO/SEATS
on minus 20 000 Million Swedish Kronor SEK of its actual value (lowest line). January 1993-July 2009.

An example of seasonal adjustments of Swedish exports based on DLM and
TRAMO/SEATS is shown in Figure 1, and the original time series is found in the first paper.
Model 1 (the simpler DLM), gives the smoothest/stiffest line (on top), Model 2 (DLM with
Gibbs sampling) renders a more fluctuating adjustment (in the middle) and TRAMO/SEATS
(the lowest line) is more dynamic and is presumed to capture the underlying seasonal
component more accurately, as concluded from simulated series.

3 Direct and indirect seasonal adjustments

Given that a time series is a function of two or more time series, such as the trade balance
which is derived as exports minus imports, the issue of how to obtain the seasonal adjustment
arises. One could either seasonally adjust both exports and imports prior to taking their
difference, which gives the indirectly seasonally adjusted trade balance, or one could take
their difference first and then directly seasonally adjust the obtained difference, i.e. the trade
balance. Which way to go appears to be an unsolved issue in practice. In an early study,
Geweke (1978) showed that in theory, a multivariate indirect approach was to prefer under the
presumption that an optimal joint estimator was available, whereas e.g. Planas & Campolongo
(2000) found that the problem depends on the spectral densities of the input series. Maravall
(2005, 2006) argued for the benefits of the direct approach, which is a highly relevant point-
of-view for various practical reasons. One of his arguments was that noisy subseries tend to
aggregate to a less noisy total.

In the first paper, the DLM is found to render very small discrepancies between direct and
indirect seasonal adjustments of the trade balance compared with TRAMO/SEATS. This is an
expected result since an identical DLM filter is used for the three input series, whereas in
TRAMO/SEATS, a unique adaptive filter is applied automatically for each of the series.

In the second paper (Section II), this issue is discussed more theoretically by applying a
simple seasonal level model with no trend in state space. It is assumed that the underlying
time series process is in a steady state, i.e. stationary. The innovation variance Var(w, )=W of



the unobserved component, i.e. the signal, and the observation noise variance Var(v,)=V are

derived for a system consisting of two artificial time series, rendering the variance matrices W
and V for direct, indirect and optimal/multivariate models. Given each of the two series’
signal-to-noise ratios (W/V), the ingoing covariance components are varied (by varying the
correlations) in order to study the relative efficiency between the direct, indirect and
optimal/multivariate estimations. The method is then applied to Swedish foreign trade data
(after a data transformation) to infer which approach to prefer.

An example of the relative efficiency for o
a specific set of variance combinations hl
(and thus signal to noise ratios), is given ol
in Figure 2 and specified in the second e
paper. The vertical axis shows the o
relative efficiency, computed for a grid o |

of correlations of the variance matrices
W and V, where each correlation
implicitly determines the covariance
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Figure 2. Relative efficiency of direct
adjustment over indirect adjustment.

In the third paper (Section I11), the issue is addressed with another presumption. In reality,
using direct seasonal adjustment does not eliminate the possibility of obtaining the indirect
seasonal adjustment since the included time series (i.e. the subseries) often have to be
processed anyway. One might instead consider the possibility of seasonally adjusting the
individual series so that their adjustments account for the aggregate as well. This is
accomplished by formulating a total loss function that covers both the individual series and
their aggregate. The loss function is minimized in a continuum from direct to indirect seasonal
adjustments with some trade-off weights « reaching between the two approaches and
conceptualizing the preference of minimum errors. This preference frontier formulation for an
arbitrary loss function L( ) for residuals ¢ is shown in Figure 3 below.
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Figure 3. Trade-off frontier between indirect estimation (« =1) with n individual losses L

and direct estimation (& = 0) with aggregate loss L,

An exponential smoothing method with a trend and a seasonal component is used, and
necessary parameters are estimated so that the weighted total loss is minimized. The total loss
is computed with either of two different loss functions: first, a squared error loss is applied,
which is the standard loss function when normality is assumed; second, a Huber loss function
known from robust estimation (Huber, 1964) is used. The method is applied to both quarterly
Swedish gross domestic product (GDP) series, and to monthly Swedish foreign trade data
used in the two previous papers (in Sections I and II). This results in guidelines on what kind
a seasonal adjustment to apply and what not to do. It is also seen that differences between
direct and indirect seasonal adjustments are smaller when the Huber loss function is applied
compared to when the standard squared loss function is applied.

To summarize, the three papers presented in this thesis convey the issue of direct and
indirect seasonal adjustments from different perspectives. In the first paper, some criteria
are stated by which direct and indirect seasonal adjustments from two different methods
are compared. In the second paper, the situations for which approach to prefer are discussed,
given a model and evaluation criteria. In the third paper, the model is estimated so that a
specific criterion is fulfilled. This overall process for determining what approach to prefer
can be summarized as doing the following: 1) state some criteria for desired properties of the
seasonal adjustment 2) set up a model to be estimated with minimum expected error and 3)
estimate the model based on a target function with respect to the requirements in 1) and 2).

4 Using state space models to get the best estimate of opinions

Public opinion polls in Sweden are most often made by several survey institutes and are
usually published on irregular dates, especially prior to elections. Even if each polling
institute does a good job in their estimate of the political opinion, polling results tend to differ
between institutes. In an attempt to reduce this uncertainty of the true opinion estimate, a
model based approach can be used that combines the different polls in order to obtain a more
accurate estimate of the underlying true opinion, see e.g. Silver (2008). This is an emerging
“Wisdom of crowds”- approach (Surowiecki, 2005) based on Bayesian inference, which was
pointed out by Harrison & Stevens (1976) as a Multi-Process modeling problem.

In the fourth paper (Section 1V), a continuous time stochastic process model is applied to
Swedish opinion polls to obtain the best estimate of the true political opinion. When new
opinion polls are observed, often at non-equidistant time points and possibly with polling
institute specific design effects and bias, the model is updated similar to DLM through the



Bayesian update of the posterior distribution. The changes in party preferences, which are the
target parameter, are considered to follow a Wiener process, modeled by a stochastic
differential equation without any auxiliary information since the observed opinion poll results
are assumed to account for all available political information, similar to stock market models.
In an attempt to reduce uncertainty even more, a trend is introduced and modeled as an
Ornstein-Uhlenbeck process. We are able to fit a model both for the individual parties in the
Swedish Parliament and for a block of parties, i.e. the Alliance (Alliansen), which has been
the incumbent block since September 2006.
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Figure 4. Probability of exceeding the parliamentary threshold of 4 % given all previous polls for all
parties except the Social Democrats and the Moderates which have probability one. Note that the
scales on the y-axes are different between the parties.

In Figure 4, the estimated probabilities of passing the election threshold in the elections in
2010 are shown for all sitting parties in the parliament except the two largest parties (the
Social Democrats and the Moderates). As a fringe benefit of our model, we can predict the
election outcome within a specific time window, e.g. three weeks prior to elections.



5 Issues that remain unexplored

5.1 Outliersin DLM

A remark made by an anonymous referee to the first paper in this thesis was on how to
deal with outliers in the DLM context. When likelihood based inference is used, outliers can
be identified by their contribution to the likelihood so that observations excessively
influencing the likelihood function are accounted for in some sense. As for recursive
estimations, like DLM, my proposition to dealing with outliers ex ante would be to consider
the prior-to-posterior updating differences, which could be used as an empirical basis for
determining when new observations should be treated (mechanically) as outliers. However,
sometimes what appears to be an outlier is in fact a crucial turning point, which in practice is
realized only ex post.

5.2 The variance discounting in DLM

One of the more hands-on actions when specifying a DLM is the choice of discounting
value of the variances, which affects the persistence/duration of noise in the system. This
choice has a substantial influence on the goodness of fit but has no apparent prior. In other
model frameworks, discounting problems are sometimes viewed in relation to the frequency
in data, i.e. depending on whether daily, quarterly or monthly data are used (see Oller, 1978).
For DLM, a discounting strategy needs to be worked out and put in relation to some fitting
parameters.

5.3 Exploring direct and indirect seasonal adjustments more deeply

Doing seasonal adjustments as a trade-off between direct and indirect seasonal adjustments
is a fairly unexplored issue and has been examined here only through an exponential
smoothing method. An extension of this trade-off formulation to other frameworks could be
studied since the exponential smoothing method is practically not used at all for seasonal
adjustments in official statistics.

6 Concluding the work

The ideas presented in this thesis have their basis in some unsolved issues. Direct or
indirect seasonal adjustments remain as a practical dilemma but may be remedied by the ideas
presented here. The dynamic linear models appear as a possible method for seasonal
adjustments, but they require more elaboration to compete with standard tools. However, in
terms of projections and predictions, the dynamic approach shows to be quite useful when
applied to opinion poll results as they produce inference on the true party preferences and as
they predict the election outcome.
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