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Abstract

This thesis concerns optimal designs and estimation approaches for a class of
nonlinear dose response models, namely multi-response Emax models. These
models describe the relationship between the dose of a drug and two or more
efficacy and/or safety variables. In order to obtain precise parameter estimates
it is important to choose efficient estimation approaches and to use optimal
designs to control the level of the doses administered to the patients in the
study.

We provide some optimal designs that are efficient for estimating the pa-
rameters, a subset of the parameters, and a function of the parameters in multi-
response Emax models. The function of interest is an estimate of the best dose
to administer to a group of patients. More specifically the dose that maximizes
the Clinical Utility Index (CUI) which assesses the net benefit of a drug taking
both effects and side-effects into account. The designs derived in this thesis
are locally optimal, that is they depend upon the true parameter values. An
important part of this thesis is to study how sensitive the optimal designs are
to misspecification of prior parameter values.

For multi-response Emax models it is possible to derive maximum like-
lihood (ML) estimates separately for the parameters in each dose response
relation. However, ML estimation can also be carried out simultaneously for
all response profiles by making use of dependencies between the profiles (sys-
tem estimation). In this thesis we compare the performance of these two ap-
proaches by using a simulation study where a bivariate Emax model is fitted
and by fitting a four dimensional Emax model to real dose response data. The
results are that system estimation can substantially increase the precision of
parameter estimates, especially when the correlation between response pro-
files is strong or when the study has not been designed in an efficient way.

Keywords: multi-response Emax models, Clinical Utility Index (CUI), optimal de-
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1. Introduction

Finding a suitable dose and, more generally, characterizing a dose response
relationship is among the most difficult tasks during clinical development of
a new drug. In dose response studies a primary response variable is usually
defined, often an efficacy variable. However, information on the dose response
relationship on safety is at least equally important as to that on efficacy. When
response variables have been selected, dose response models can be used to
describe the relation between dose and the response variables. It is important
that the model parameters are estimated with as high precision as possible.
The more data at hand the more precise parameter estimates can be obtained.
Choosing a good and efficient estimation approach is also important for obtain-
ing precise parameter estimates. Finally, in order to obtain precise parameter
estimates, whenever possible, an optimal design should be used to control the
level of the experimental variables which for dose response studies is the level
of the drug.

Flournoy was one of the first to use optimal design theory for designing a
dose response study in 1985 [2]. Since then optimal designs are used more and
more frequently in dose response studies. Several authors have studied optimal
designs when simultaneously considering an efficacy and a safety variable. Li,
Durham, and Flournoy [3] and Dragalin and Fedorov [4] study designs where
both responses are binary. Dragalin, Fedorov, and Wu [5] and Fedorov and Wu
[6] study designs where the responses follow an underlying bivariate normal
distribution but interest is in dichotomization for both responses. Fedorov, Wu
and Zhang [7] also assume an underlying bivariate normal distribution but di-
chotomize only the safety response variable. In this thesis we are concerned
with optimal designs where both the efficacy variable and the safety variable
are continuous. Padmanabhan, Hsuan, and Dragalin [8] also consider optimal
designs where both variables are continuous but their model and the aim of the
study are different from what is assumed here. Finally we note that López-
Fidalgo and Biswas [9] study designs allowing any general type of responses
for both efficacy and safety and allowing the designs to depend on covariates
such as age and sex. López-Fidalgo and Biswas, moreover, give a comprehen-
sive discussion and references on optimal designs for dose response studies
where efficacy and safety are considered simultaneously.
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The primary aim of this thesis is to study optimal designs for specific dose
response models, namely multi-response Emax models. Optimal designs are
a class of study designs that are efficient with respect to some statistical crite-
rion. In Section 3 we provide a brief introduction to optimal design theory. The
theoretical material in Section 3 can be found in classical optimal design litera-
ture, in particular Atkinson, Donev and Tobias [10], Pázman [11] and Fedorov
[12]. An aim of this thesis is to derive designs that are efficient for estimating
the model parameters or a subset of the parameters. More specifically, to de-
rive so called D- and Ds-optimal designs, respectively. Another aim is to study
designs that are efficient when estimating the dose that maximizes the Clini-
cal Utility Index (CUI). The Clinical Utility Index is a function that combines
the efficacy and safety outcomes into a single metric in order to assess the net
benefit from taking a specific dose of a drug. More information on the CUI is
provided in the next section. In the optimal design literature designs that are
efficient for estimating some function of the parameters are called c-optimal
designs.

The problem of optimally designing studies for multi-response Emax mod-
els has, to our knowledge, not been studied earlier but the problem of op-
timally designing studies based on a single-response Emax model has been
investigated by many authors see, for example Duggleby [13], Dette, Kiss
and Bevanda [14], López-Fidalgo and Wong [15] and Dette, Kiss and Wong
[16]. The reason why many have studied optimal designs for a single response
Emax model is that this model is used widely in many distinct fields, in par-
ticular in biomedical sciences such as pharmaceutical science, biochemistry
and in nutrition science. Moreover, this model is one of the most successful
dose response models. A problem with optimal designs for the Emax model is
that they depend upon unknown model parameters. This is a general problem
with nonlinear models. For dose response studies there is usually some prior
knowledge available from preclinical studies and/or comparator drugs. A de-
sign that is optimal, given a prior guess for the parameter values, is called a
locally optimal design. In this thesis we consider only locally optimal designs
but there is an extensive literature on methods dealing with the dependency of
optimal designs on model parameters. These methods involve using so called
sequential optimal designs, Bayesian optimal designs and minimax designs. A
description of these methods can be found in e.g., Atkinson, Donev and Tobias
[10]. When locally optimal designs are used in practice it is important to know
how sensitive they are to misspecification of the prior parameter values. An
important part of this thesis is to study the sensitivity of the derived optimal
designs.

When data from a, hopefully well designed, dose response study has been
collected we still have the issue of how to fit the chosen model to the data.
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The second most important aim of this thesis is to study how to estimate the
parameters in a multi-response Emax model. The most important estimation
approach is Maximum Likelihood (ML) estimation upon which the optimal
design theory relies. For multi-response models it is possible to derive ML
estimates for each response profile separately as if the responses where inde-
pendent. However, responses on the same patient are generally correlated and
information in one relation could be useful when making inference in another
relation. This motivates a simultaneous computation of ML estimates for the
response profiles. Numerical methods for deriving ML estimates simultane-
ously for all response profiles in multi-response models are for example illus-
trated in Bates and Watts [17] and Marshall [18]. In this thesis we consider a
multi-response Emax model and compare the precision of parameter estimates
obtained from system estimation, when all parameters are estimated simulta-
neously, with the precision of parameter estimates obtained from equation-by-
equation estimation, when the correlation structure between the relations is
ignored.

The outline of this thesis is as follows. In Section 2, background infor-
mation concerning the Emax model, the CUI and ML estimation is provided.
Section 3 gives a brief introduction to optimal design theory and introduces the
D-, Ds-, and c-optimal designs. Further, in Section 3 we provide some General
Equivalence Theorem (GET) proofs. The GET is the main tool for deriving
optimal designs. We also show some D-optimal designs for single response
Emax models. In Section 4 a summary of the four papers is given and Section
5 provides an overall summary and suggestions for further research.
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2. Background information

2.1 Estimation and Inference

Assuming additive errors, a model relating a response variable, y, to an ex-
planatory variable, x, can be written in the general form

y(x) = f (x,θ)+ ε,

where f is a known function, θ is a vector of parameters and ε is a random
error. All models considered in this thesis assume additive and normally dis-
tributed errors with mean 0. The most common method to estimate the param-
eters θ is the method of maximum likelihood (ML). The importance of ML
estimators arises because of their appealing large sample properties; see for
example, Ferguson [19]. Denote the ML estimators with θ̂ML and the Fisher
information matrix with I,

Ii, j =−E
[

∂ 2

∂θi ∂θ j
logφ(x,θ)

∣∣∣∣θ] ,
where φ is the probability density function of the error term, ε . When the num-
ber of observations, N, is fixed the interest is on the standardized information
matrix

M =
1
N

I.

Under regularity conditions, ML estimators are both consistent and asymp-
totically efficient. Moreover, asymptotically we have that

√
N
(

θ̂ML−θ

)
is

normally distributed with mean 0 and covariance M−1.
For nonlinear models such as the Emax models, introduced in the follow-

ing subsection, there is no closed formed expression for the ML estimates as
in linear regression. Numerical procedures are needed to estimate the param-
eters. The Gauss-Newton procedure is an iterative algorithm that searches for
the ML estimates of the parameters. The procedure involves linearizing the
model using first order Taylor expansion about some initial guess θ0 for the
parameters. A new guess, θ1 is derived by finding the ML estimates for the
linearized model. The procedure is then repeated with θ0 replaced by θ1 and a
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new estimate is found. This procedure is continued until a small change occurs
between two successive parameter estimates.

2.2 Single- and multi-response Emax models

This thesis centers around Emax models. The Sigmoid Emax model, which
is an Emax model with four parameters, was first introduced by A.V. Hill, see
[20], to explain the binding of oxygen to hemoglobin. Since then it has been
used to model various physicochemical reactions. Wagner [21] was the first
to use the Sigmoid Emax model to explain the relationship between drug con-
centration and response. The rationale for his approach was based on receptor
occupancy theory. Today the Sigmoid Emax model is widely used in pharma-
ceutical research when investigating how the effect of a certain drug depends
on the dose. For an illustration of how the model is used in today’s dose finding
studies see, for example, Pinheiro et al. [22] and Miller, Dette, and Guilbaud
[23]. The Sigmoid Emax model is of the form

f (x) = E0 +Emax
xγ

xγ +EDγ

50
.

In dose-response studies x stands for dose and f (x) for the effect given dose x.
An important feature of the Sigmoid Emax model is that the parameters have
a natural interpretation. E0 represents the effect when the dose is zero i.e. the
placebo effect. Emax represents the maximal achievable effect from the drug af-
ter adjusting for the placebo effect. Further we see that f (ED50) = E0+

1
2 Emax,

so after adjusting for the placebo effect, ED50 is the dose that gives half of the
maximal achievable effect. Finally γ , which is known as the Hill coefficient,
determines the steepness of the response curve. In practice the effect of a drug
usually increases monotonically with dose. If the maximum obtainable effect,
Emax, is positive then a monotonically increasing Sigmoid Emax model is ob-
tained by considering a positive Hill coefficient. The Sigmoid Emax model is
sometimes simplified by setting E0 = 0 and/or γ = 1. The model with γ = 1
is often called the Emax model. The model with γ = 1 and E0 = 0 is often
called the Michaelis-Menten model because it was proposed by Michaelis and
Menten, see [24], who used it to model the relationship between velocity of a
reaction and concentration of substrate. For more information on the proper-
ties of the Sigmoid Emax model and its mechanistic features see, e.g., Holford
and Sheiner [25], Goutelle et al. [26], and Macdougall [27]. In this thesis we
assume throughout that γ = 1, that is we work with the Emax model which we
sometimes call the single-response Emax model in order to distinguish it from
our multi-response Emax models.
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The above model is one dimensional in the sense that it models the relation-
ship between dose and a single response variable. In order to model how two
or more response variables change with dose of a drug, we extend the Emax
model to higher dimensions. In this thesis we consider multi-response Emax
models were each dose response relation is modeled with an Emax model with
E0 = 0. For example, a model with two responses is written as(

y1
y2

)
=

(
Emax,1

x
x+ED50,1

Emax,2
x

x+ED50,2

)
+

(
ε1
ε2

)
,

where we assume that
(

ε1
ε2

)
∼ N2(0,Σ(σ1,σ2,ρ)) is bivariate normally dis-

tributed. We refer to this model as the bivariate Emax model. The response
variables can denote two efficacy variables, two safety variables or one of each
of these. In the first two papers the two responses, y1 and y2, stand for an
efficacy and a safety variable, respectively. Thus Emax,1 represents the max-
imal achievable effect and ED50,1 is the dose giving half of the maximal ef-
fect. Emax,2 represents maximal realizable side-effect and ED50,2 is the dose at
which half maximal side-effect is obtained.

2.3 The Clinical Utility Index (CUI)

The Clinical Utility Index (CUI) is a tool for multiattribute decision making.
While the effect of a drug usually increases with dose, too high a dose leads
to problems with side-effects. The CUI models the patient net benefit from
receiving a particular dose of a drug. The term and the use of the CUI in dose
finding studies is relatively new, but the CUI is an increasingly popular tool in
drug development. For a good historical overview of the CUI see, e.g., Car-
rothers et al. [28]. Although relatively new in drug development, functions that
combine several outcomes into a single metric have a long history in industrial
statistics, where the term ’desirability index’ is used see, e.g., Harrington [29]
and Derringer and Suich [30]. The form and derivation of the CUI should be
considered separately for each drug under investigation. The most common
approach is however to use a linear combination of the different response vari-
ables

CUI(x) = ∑
All efficacy

variables

v jy j− ∑
All safety
variables

vkyk.

As before x denotes the dose and here v j represents the weight (importance) of
variable y j. The sums are over all efficacy/safety variables that are chosen to
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be represented in the CUI. The variables chosen for the CUI should be those
of most importance to the patients. Two highly correlated variables need not
both be included in the CUI. For explicit examples of how linear CUI is used
in practice see Ouellet et al. [31] and Khan, Perlstein and Krishna [32]. In
this thesis we include a single efficacy and a safety variable in the CUI and
use Emax models for both response profiles. When placebo effects are not
modeled we define the CUI as

CUI(x) = v1y1(x)− v2y2(x)

= v1Emax,1
x

x+ED50,1
− v2Emax,2

x
x+ED50,2

.

A graphical representation is shown in Figure 2.1. In this thesis we consider
c-optimal designs for estimating the dose that maximizes the CUI.

Figure 2.1: The expected effects, side-effects and CUI are shown as functions of
dose. Underlying is the bivariate Emax model with parameters Emax,1 = Emax,2 =
1, ED50,1 = 1 and ED50,2 = 2. The weights are assumed to be equal, v1 = v2 =
0.5.
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3. Optimal Design of Experi-
ments

Optimal design theory deals with designing experiments when a statistical
model is used to describe the relationship between response variables and ex-
perimental variables. Which design is optimal depends on the statistical model,
the design space and the objective of the study. When designing a study it is
important that the objectives are clearly specified. The optimality criterion, Ψ,
can then be chosen in concordance with the objectives. If the aim is to estimate
a model parameter, an optimal design will result in an estimate with minimum
variance for a given experimental effort. Thus a study that is not optimal will
need more experimental effort, i.e. more experimental runs to get an estimate
with the same precision. In practice, the experimental efforts is limited and
thus in order to save time and money it is crucial to design an experiment in
an efficient way. A non-optimal design, compared to an optimal one, will re-
sults in a higher number of subjects needed to conduct the experiment and/or
a delay until a successful medicine will be available on the market.

When designing an experiment, the researcher has to make several deci-
sions. Among these are the total number of experimental units and the levels
of the experimental variables, such as temperature or quantities of a drug. We
refer to a design point as a particular level of the experimental variables such as
10 mg of a drug. Optimal design theory deals with choosing the design points
and the allocation of experimental units to the different points. The total num-
ber of experimental units N is, however, assumed to be fixed. A design, ξ , is
denoted by

ξ =

{
x1 x2 . . . xn

w1 w2 . . . wn

}
, 0≤ wi ≤ 1, and

n

∑
i=1

wi = 1,

where xi are the design points, n is the number of design points, and wi are the
proportions of the experimental units that are taken at xi, i = 1 . . .n. Finally χ

denotes the design space, the set of possible values for the design points.
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3.1 Optimality criteria

The choice of optimality criterion, Ψ, depends on the aim of the study. The aim
can, for example, be to estimate the parameters in the model, a function of the
parameters or a subset of the parameters. The optimality criterion is usually
based on some function of the Fisher information matrix. This is because
the asymptotic covariance matrix associated with maximum likelihood (ML)
estimates can be estimated by the inverse of the observed Fisher information
matrix. It is customary to name the different optimality criteria by letters from
the alphabet. In Table 3.1 some common optimality criteria are listed.

G-optimality

G-optimality can be used if the objective is to obtain an estimate of the re-
sponse, ŷ, over the design region, χ . A design is G-optimal if it minimizes the
maximum over χ of the standardized variance

d(x,ξ ) = N
var(ŷ(x))

σ2 .

Here the criterion to be minimized is Ψ(ξ ;θ) = max
x∈χ

d(x,ξ ).

D-Optimality

D-optimality is a common choice if the objective is to estimate the parameters
in the model. For a one parameter model the D-optimality criterion to be mini-
mized is Ψ= var(θ̂). When there are more than one parameter in the model we
want to make the inverse of the standardized information matrix, M−1, small in
some sense. Several approaches have been suggested, for example to minimize
the maximum value of the diagonal or to minimize the trace of the matrix. The
D-optimal designs minimize the determinant of M−1, that is

Ψ(ξ ;θ) = |M−1(ξ ,θ)|. (3.1)

The reason why D-optimality is often used is that D-optimal designs mini-
mize the joint confidence region of the estimated parameters. Note that in
practice it is usually more convenient to minimize the function Ψ(ξ ;θ) =
log(|M−1(ξ ,θ)|) which is equivalent to minimizing Ψ in (3.1) because the
logarithm is a monotonically increasing function. Let p denote the number of
model parameters. Most D-optimal designs for single response models have
p ≤ n ≤ p(p+1)/2 design points. The number of design points, n, for linear
polynomial regression models needs to be at least p if all parameters are to be
estimated. The upper bound is a result from Caratheodory’s theorem which
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gives that when the optimality criteria is a function of a single information ma-
trix then the number of design points, n, is less than or equal to p(p+ 1)/2.
However, as we will see in this thesis D-optimal designs for multi-response
models can have fewer than p design points. Moreover, Wang [33] shows that
there exists D-optimal designs for single response nonlinear models with fewer
than p design points.

A very important result in optimal design theory is that G- and D-optimal
designs are equivalent although the motivation for them looks very different.
This important result was observed by Kiefer and Wolfowitz [34].

Ds-Optimality

Ds-optimal designs are appropriate when the objective of a study is to estimate
a subset of s of the model parameters. Ds-optimal designs minimize the joint
confidence region of the estimated parameters in the subset. Let θ = (θ1,θ2)
represent a partition of the model parameters, θ , were θ1 corresponds to the s
parameters of interest and θ2 the p− s nuisance parameters. Moreover let

M(ξ ) =

[
M11 M12
M12 M22

]
define the corresponding partition of M(ξ ). The Ds-optimality criterion in-
volves minimizing

Ψ(ξ ;θ1,θ2) =
|M22(ξ )|
|M(ξ )|

. (3.2)

c-Optimality

c-optimal designs are appropriate when the objective of the study is to esti-
mate some differentiable function, g(θ), of the parameters. If we denote the
ML estimator of θ by θ̂ , then the criterion to be minimized is the asymptotic
variance of

√
N(g(θ̂)−g(θ)) which equals

Ψ(ξ ;θ) = ∇gT (θ)M−1(ξ ,θ)∇g(θ), (3.3)

where ∇g(θ) is the gradient of g with respect to the parameters. Caratheodory’s
theorem gives that n ≤ p(p+ 1)/2. However, different from D-optimal de-
signs, c-optimal designs for single response models can have fewer than p de-
sign points. In that case the information matrix becomes singular and a more
rigorous treatment involving generalized inverses is needed.
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Table 3.1: Some common optimality criteria.

criterion covariance matrix
(asymptotic)

optimality criterion, Ψ aim is to estimate

D M−1(ξ ,θ) log(|M−1(ξ ,θ)|) all parameters

Ds M11(ξ ,θ) log( |M22(ξ ,θ)|
|M(ξ ,θ)| ) a subset of the parameters

DA LT M−1(ξ ,θ)L log(|LT M−1(ξ ,θ)L|) linear comb. of the param.(LT θ)

Linear LT M−1(ξ ,θ)L tr{LT M−1(ξ ,θ)L} linear comb. of the param.(LT θ)

(c-optimal)
linear

cT M−1(ξ ,θ)c cT M−1(ξ ,θ)c linear function, cT θ

(c-optimal)
non-linear

∇g(θ)T M−1(ξ ,θ)∇g(θ) ∇g(θ)T M−1(ξ ,θ)∇g(θ) non-linear function, g(θ)

If a study has several, say k, objectives, a weighted average of the chosen
optimality criteria Ψ̄ = m1Ψ1 +m2Ψ2 + . . .+mkΨk, can be used. The weights
mi are positive numbers that sum up to one and represent the importance of the
different objectives.

3.2 General Equivalence Theorems

The most important tool for verifying that a design is optimal is the General
Equivalence Theorem (GET). GET is a synonym for several equivalence theo-
rems used to demonstrate that designs are optimal. Their form depends on the
model, the design space and the criterion function. The first GET was discov-
ered for D-optimality by Kiefer and Wolfowitz, see [34]. Before taking a look
at some GET we need the following Lemma.

Lemma 1. Let ϕ(x,ξ ) stand for the Frechét directional derivative of Ψ in
the direction ξx and let Ψ be a general criterion function to be minimized. A
design, ξ , is locally optimal with respect to Ψ if and only if ϕ(x,ξ )≥ 0 ∀x∈ χ .
This further implies that ϕ(x,ξ ) = 0 for x ∈ {x1, ...,xn}.

Proof. See for example, Pázman [11].

Theorem 1. (GET D-optimality). Suppose ξ is a design such that M(ξ )−1

exists. Then ξ is locally D-optimal if and only if,

tr(M(ξ )−1M(ξx)) ≤ p, ∀ x ∈ χ. (3.4)

Further, the equality holds at x ∈ {x1, ...,xn}.

Proof. A design is locally D-optimal if it minimizes Ψ = log |M(ξ )−1| =
− log |M(ξ )|. First note that the Frechét directional derivative can be written
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of the form ϕ(x,ξ ) = tr
(

∂Ψ

∂M(ξ )
(M(ξx)−M(ξ ))

)
(see Pázman [11]). Now

∂Ψ

∂M(ξ )
=− ∂

∂M(ξ )
(log |M(ξ )|) =−(M(ξ )T )−1 =−M(ξ )−1.

It follows that

ϕ(x,ξ ) = tr(−M(ξ )−1(M(ξx)−M(ξ )))

= tr(M(ξ )−1M(ξ ))︸ ︷︷ ︸
p

−tr(M(ξ )−1M(ξx)).

Now
ϕ(x,ξ )≥ 0 ⇔ tr(M(ξ )−1M(ξx))≤ p.

Theorem 2. (GET Ds-optimality). Suppose ξ is a design such that M(ξ )−1

and M22(ξ )
−1 exists. Then ξ is locally Ds-optimal if and only if,

tr(M(ξ )−1M(ξx))− tr(M22(ξ )
−1M22(ξx)) ≤ s, ∀ x ∈ χ. (3.5)

Further, the equality holds at x ∈ {x1, ...,xn}.

Proof. Let Ψ1 := − log |M(ξ )|, Ψ2 := − log |M22(ξ )| and ϕ1(x,ξ ), ϕ2(x,ξ )
be the Frechét directional derivatives of Ψ1 and Ψ2, respectively, in the direc-
tion ξx. A design is locally Ds-optimal if it minimizes Ψ = − log( |M(ξ )|

|M22(ξ )|) =

−(log(|M(ξ )|)− log(|M22(ξ )|)) = Ψ1−Ψ2. We see that the Frechét direc-
tional derivative of Ψ, ϕ(x,ξ ), equals ϕ1(x,ξ )-ϕ2(x,ξ ) and from Theorem 1
we have that

ϕ1(x,ξ ) = p− tr(M(ξ )−1M(ξx))

ϕ2(x,ξ ) = (p− s)− tr(M22(ξ )
−1M22(ξx)).

Hence

ϕ(x,ξ ) = (p− tr(M(ξ )−1M(ξx)))− ((p− s)− tr(M22(ξ )
−1M22(ξx)))

= s− (tr(M(ξ )−1M(ξx))− tr(M22(ξ )
−1M22(ξx))).

and

ϕ(x,ξ )≥ 0 ⇔ (tr(M(ξ )−1M(ξx))− tr(M22(ξ )
−1M22(ξx)))≤ s.
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Theorem 3. (GET c-optimality). Suppose ξ is a design such that M(ξ )−1

exists. Then ξ is locally c-optimal with respect to a non-linear function of the
model parameters, g(θ), if and only if,

∇gT M(ξ )−1M(ξx)M(ξ )−1
∇g ≤ ∇gT M(ξ )−1

∇g, ∀ x ∈ χ. (3.6)

Further, the equality holds at x ∈ {x1, ...,xn}.

Proof. The proof is similar to the proof of Theorem 1 and is provided in paper
II.

The GET can be used to verify which designs are optimal and which are
not. Searching for an optimal design can however be very challenging. In
this thesis two main approaches are used for finding optimal designs. The
first approach involves using an informal guess on the number of design points
and their weights and then searching numerically for the levels of the design
points that minimize Ψ. The other approach involves using a version of the
V-algorithm, see Atkinson [10]. The V-algorithm used in this thesis takes in an
initial design, ξ , and adds to the design a design point that maximizes the left
hand side of (3.4), (3.6) or (3.5), depending on which optimality criterion is
of interest. The same weight is given to all design points and the algorithm is
repeated a large number of times. The resulting design can have many design
points. Design points close to each other are combined and their frequency
used to construct weights. This procedure often leads to an optimal design.
The GET theorem is always used to check whether the constructed designs are
optimal or not. Numerical calculations in this thesis are carried out in Mathcad
15 and in R 3.0.2.

Finding closed form expressions for optimal designs is usually more chal-
lenging than finding optimal designs numerically. Closed form D-optimal de-
signs for the Emax model are shown in Table 3.2. For references see; Burman,
Miller and Wong [35] for the one parameter Emax model, Dette, Kiss and
Wong [16] for the two parameter Emax model and Dette, Kiss and Bevanda
[14] for the three parameter Emax model.
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Table 3.2: D-optimal designs for the Emax model.

Model χ Design

f (x) = x
x+ED50

[0,∞[ ξ ∗ =

 ED50

1


f (x) = Emax

x
x+ED50

[a,b] ξ ∗ =

 max(a,sbED50) b

1/2 1/2


f (x) = E0 +Emax

x
x+ED50

[a,b] ξ ∗ =

 a x∗ b

1/3 1/3 1/3


Here x∗ := b(a+ED50)+a(b+ED50)

(a+ED50)+(b+ED50)
, sb := b/ED50

2+(b/ED50)
and lim

b→∞

sb = 1.
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4. Summary of papers

4.1 Optimal designs for finding the dose that maximizes a
Clinical Utility Index (Paper I)

In paper I, we consider the problem of optimally designing dose response stud-
ies, aimed at estimating the dose that maximizes the Clinical Utiltiy Index
(CUI). We directly model the CUI for a given dose of a drug. The expected
CUI consists of a weighted average of an efficacy variable and a safety vari-
able which are represented with three and two parameter Emax models, re-
spectively. In other words, we use Emax models for both an efficacy and a
safety profile but combine them into a single metric, the CUI, before data is
fitted.

We derive some locally c-optimal designs for estimating the dose that max-
imizes the CUI. The resulting designs have four design points where two are
at the boundary of the design space. Most of the weight is, however, assigned
to the other two design points that are asymmetrically located around the dose
that gives the highest CUI. Some locally c-optimal designs for a simplified CUI
model are also derived. In the simplified CUI model, single parameter Emax
models are used to assess both efficacy and safety. The c-optimal designs for
the simplified CUI have two equally weighted design points which, on a log-
arithmic scale, are symmetrically located around the dose that maximizes the
CUI.

Efficiency plots are used to study how sensitive the designs are to mis-
specification of prior guesses for the parameter values. We conclude that the
efficiencies of the c-optimal designs are good when the true SD50 and Emax

parameters are equal to or larger than expected. This suggests that one might
consider using a prior guess that is somewhat lower than the informed guess.

Finally, simulation is used to show that the c-optimal designs are appro-
priate for small sample sizes and perform well in comparison to classical dose
finding studies.
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4.2 Optimal design problems for the bivariate Emax model
(Paper II)

The aim of paper II is to derive locally c-optimal designs for the bivariate Emax
model with error terms following a bivariate normal distribution. The bivariate
Emax model is used to describe how an efficacy and a safety variable change
with dose of a drug. As in paper I the interest is on estimating the dose that
maximizes the CUI. While the CUI in paper I is a model consisting of a mean
profile and an error term, the CUI in paper II is merely a function consisting of
a weighted average of expected efficacy and safety.

In paper II, we provide a GET for multi-response c-optimality together
with a proof. This theorem is a special case of the GET for linear optimality
which has been proved previously, see Fedorov [12]. The locally c-optimal
designs that we derive for the bivariate Emax model are two or three point
designs. We also derive designs for a simplified version of the bivariate Emax
model where each profile consists of a single parameter Emax model. For the
simplified model the derived c-optimal designs are one or two point designs.

An interesting question is how the optimal designs depend on the model
and covariance parameters. First, we provide a theorem that shows that, with-
out loss of generality, some of the parameters can be set equal to one. The
remaining parameters are then varied and different c-optimal designs are de-
rived. The results indicate that when the correlation, ρ , and the ratios σ2

2 /σ2
1

and SD50/ED50 are sufficiently small one less design point is needed as com-
pared to when ρ and the ratios are large. It is interesting that a model with
large negative ρ results in a design with one less design point than a model
with large positive ρ . In order to investigate further how important informa-
tion on ρ is when deriving an optimal design, a simulation study is carried out.
The simulation indicates that the locally c-optimal designs for the bivariate
Emax model are not sensitive to misspecification of ρ .

A shortened version of paper II is published in mODa 10, see [1]. The
main difference between the papers is that in the mODa version of the paper
some results for the simplified model are excluded and the section concerning
the simulation study is also excluded due to space limitation.

4.3 Simultaneous estimation of parameters in the bivariate
Emax model (Paper III)

Results from paper II show that the correlation ρ plays a role for the optimal
design for the bivariate Emax model. However, when working with simulated
data in paper II, the two profiles of the bivariate Emax model are fitted sepa-
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rately without using information about ρ . The aim of paper III is to investigate
how information about the correlation can be used when fitting multi-response,
nonlinear models and how important it is to use information about the correla-
tion.

In paper III, we theoretically work out a system estimation approach for si-
multaneous estimation and inference of parameters in multi-response models.
In short, the approach involves iteratively using ML estimates of Σ to derive
ML estimates for the model parameters which in turn are used to derive new
ML estimates of Σ. This procedure is iterated until the parameter estimates are
stable. We note that other authors have also considered the problem of esti-
mating parameters in multi-response models, see for example Bates and Watts
[17] and Marshall [18].

By means of simulation we investigate how much can be gained by using
the system estimation approach as compared to an equation-by-equation ap-
proach. This is done by using both approaches for fitting the bivariate Emax
model to simulated datasets. We investigate in total 24 simulation settings
where the parameters ED50 and ρ are varied while other parameters are fixed.
Each simulation setting is repeated with new simulated datasets until results
from R = 10000 convergent replications are obtained.

The main results from the simulation study are that when ρ 6= 0 system
estimation increases the precision of some but not necessarily all parameter
estimates in the bivariate Emax model. We reason that system estimation uses
the correlation information to increase the precision for parameters that are dif-
ficult to estimate, sometimes at the expense of other parameters. The overall
gain in precision for the parameters in the bivariate Emax model is, however,
positive and increases with |ρ|. Further, we conclude that the study design is
of central importance for the efficiency gain. When study designs are not effi-
cient, system estimation can substantially increase the precision of parameter
estimates.

4.4 Optimal designs for a multi-response Emax model and
effcient parameter estimation (Paper IV)

The aim of paper IV is to combine ideas from papers I-III and to apply theoret-
ical results to real dose response data. In papers I and II we consider optimal
designs that are efficient for obtaining precise estimates. In paper III we see
that choosing a good estimation approach is also important in order to obtain
precise estimates. Here, in paper IV, we work with real data and consider
how to obtain precise parameter estimates both by choosing a good estimation
approach and by using an optimal study design.
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The data comes from a phase II clinical study. The objective of the study
was to evaluate a new compound as add-on treatment for patients with type 2
diabetes. We work with four important response variables from the study and
fit a multi-response Emax model to the data.

We compare equation-by-equation estimation and system estimation by
first fitting uni-response Emax models separately to the profiles and then fitting
a multi-response Emax model to the profiles. The system estimation approach
results in smaller standard errors for the parameters in two out of four profiles.
We reason that, overall, system estimation is beneficial and is recommended
unless possibly when assessment of different profiles are not of equal impor-
tance. Moreover we note that system estimation should be used with caution
if there are uncertainties concerning the chosen model for one or more of the
profiles.

Optimal designs for a multi-response Emax model depend on prior guesses
for the parameter values. We use the system estimation parameter estimates as
a prior guess and provide optimal designs for the multi-response Emax model.
We derive both a D-optimal design that minimizes the confidence region for the
estimated parameters and a Ds-optimal design that minimizes the confidence
region for a subset of the estimated parameters. We show that the designs are
not very sensitive to misspecification of prior values. Moreover we show that
the design that was used in the diabetes dose response study is very inefficient
for estimating parameters in the multi-response Emax model, as compared to
D- and Ds-optimal designs.
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5. Summary and further research

5.1 Summary

This thesis centers around optimal designs for Emax models and multi re-
sponse Emax models. In paper I two separate Emax models are used to model
efficacy and safety. In papers II and III the focus is on the bivariate Emax
model and in paper IV on a multi response Emax model with four responses.

In papers I and II we derive c-optimal designs that are efficient for estimat-
ing the dose that maximizes the CUI. The main difference between papers I
and II is that in paper I the CUI is a model fitted directly to the data while in
paper II we work with the bivariate Emax model and the CUI is merely a func-
tion of the expected efficacy and safety. Moreover we include a placebo effect
for the efficacy profile in paper I but not in paper II. In both papers we also de-
rive locally c-optimal designs where both profiles consist of a simplified Emax
model including only one parameter. By comparing the designs from paper I
and II that are based on one parameter Emax models and on the same prior val-
ues we see that the designs differ remarkably. Some of the designs in paper II
are one point designs while the corresponding designs in paper I are two point
designs. This is because some information is lost when the approach in paper I
is used and results from the two response variables are combined into a single
observation. Moreover, when both approaches lead to two equally weighted
design points, in paper II these points are close to each other while in paper I
they are further away from each other.

Comparison of system estimation and equation-by-equation estimation is
carried out in papers III and IV. In paper III an extensive simulation study is
carried out in order to compare how well these two estimation approaches per-
form when fitting the bivariate Emax model. In paper IV, the performances
of the two approaches are compared by fitting an Emax model with four re-
sponses to real dose response data. The main results from these papers are
that system estimation can substantially increase the precision of parameter
estimates, especially when the correlation between response profiles is strong
and when the study has not been designed in an efficient way. As with all esti-
mation approaches, system estimation should be used with caution if there are
uncertainties about the chosen model for one or more of the response profiles.
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The results further show that system estimation sometimes increases the pre-
cision of parameters that are difficult to estimate, while reducing the precision
of other parameters. Thus in case parameters in different profiles are not of
equal importance an equation-by-equation estimation might be preferable. In
paper IV, besides comparing the two estimation approaches, some locally D-
and Ds-optimal designs for a multi-response Emax model with four responses
are derived. The system estimation estimates that were derived from the real
dose response data are used as prior values for the designs.

The locally optimal designs derived in this thesis depend upon prior values
for the parameters. In order to study how sensitive our designs are we assume
that prior values have been misspecified and calculate the efficiency of our
designs as compared to an optimal design based on prior values assumed to be
correct. This is an important part of both paper I and IV.

5.2 Suggestions for further research

As noted earlier, many have studied optimal designs for a single-response
Emax model, but this thesis is among the first to consider optimal designs
for multi-response Emax models. A primary focus in the thesis is to derive c-
optimal designs for estimating the dose that maximizes the CUI. In this thesis
we have defined the CUI as a weighted average of efficacy and safety. For some
drugs it might, however, be appropriate to define CUI in some other way such
as the ratio between efficacy and safety. The methodology used in papers I or
II could be used to derive c-optimal designs based on CUI functions defined
in different ways. In paper IV we derived some locally D- and Ds-optimal
designs for a four dimensional Emax model. It would be very interesting to
try to derive closed form D- and Ds-optimal designs for multi-response Emax
models. The designs will depend upon, but probably not be very sensitive to,
changes in the correlation parameters. A suggestion is to initially assume zero
correlation before looking for closed form expressions.

Finally we note that there are many things that remain to be done in order
to compare system estimation and equation-by-equation estimation. We used
extensive simulations to compare these two approaches when fitting the bivari-
ate Emax model. The results are however subtle and can not be generalized to
other models. A suggestion for further work is thus to conduct simulation
studies for other models. In our simulation study a classical design with equal
allocation and equally spaced dose groups was used. It would be interesting
to use an optimal or a close to optimal design and investigate the impact the
design has on the efficiency gain. Moreover, an optimal design is likely to lead
to fewer nonconvergent scenarios as compared to the classical design.
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Swedish summary

I denna avhandling studeras konstruktion av optimala designer samt skattnings-
metoder för multi-respons Emax modeller. Dessa modeller förklarar samban-
det mellan dosen av ett läkemedel och två eller flera effekt- och/eller bieffekt-
variabler. Att använda optimala designer och bra skattningsmetoder är viktigt
eftersom man vill få parameterskattningar med så stor precision som möjligt.

Vi konstruerar optimala designer som är effektiva för att skatta modellpara-
metrar i multi-respons Emax modeller. Vi konstruerar också optimala designer
för att skatta en delmängd av parametrarna respektive en funktion av paramet-
rarna. Funktionen av intresse är en skattning av en dos som kan rekommende-
ras för en grupp av patienter, dvs. den dos som maximerar The Clinical Utility
Index (CUI), vilken mäter nyttan av en dos genom att ta hänsyn till både ef-
fekter och bieffekter.

De designer som konstrueras beror av sanna värden på modellparamet-
rarna. När dos-respons studier planeras har man ofta en del information från
tidigare studier. Denna information kan användas för att gissa värdet på pa-
rametrarna. En viktig del i avhandlingen är att studera hur känsliga optimala
designerna är för fel val av parametervärden.

Parametrarna i multi-respons Emax modellerna kan skattas med Maximum
Likelihhod (ML) metoden på två olika sätt. Ett sätt är att skatta varje respons-
profil seperat med hjälp av ML metoden. Ett annat sätt är att skatta paramet-
rarna i alla profiler samtidigt genom att använda information om hur de olika
responsprofilerna korrelerar med varandra. Vi använder både simulering och
data från en klinisk studie för att jämföra precisionen hos skattningar från de
två metoderna. Vi kommer fram till den slutsatsen att en simultanskattning ger
betydligt bättre skattningar, speciellt när responsprofilerna korrlerar starkt med
varandra och när designen som används inte är optimal. Vi konstanterar också
att simultan-skattning ger ibland bättre skattningar för de parametrar som är
svåra att skatta på bekostnad av parametrar som är lätta att skatta.
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