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Abstract

The aim of this thesis is to develop efficient and practically useful Bayesian
methods for statistical inference in structural second-price auctions. The models
are applied to a carefully collected coin auction dataset with bids and auction-
specific characteristics from one thousand Internet auctions on eBay. Bidders are
assumed to be risk-neutral and symmetric, and compete for a single object using the
same game-theoretic strategy. A key contribution in the thesis is the derivation of
very accurate approximations of the otherwise intractable equilibrium bid functions
under different model assumptions. These easily computed and numerically stable
approximations are shown to be crucial for statistical inference, where the inverse
bid functions typically needs to be evaluated several million times.
In the first paper, the approximate bid is a linear function of a bidder’s signal and

a Gaussian common value model is estimated. We find that the publicly available
book value and the condition of the auctioned object are important determinants
of bidders’ valuations, while eBay’s detailed seller information is essentially ignored
by the bidders. In the second paper, the Gaussian model in the first paper is con-
trasted to a Gamma model that allows intrinsically non-negative common values.
The Gaussian model performs slightly better than the Gamma model on the eBay
data, which we attribute to an almost normal or at least symmetrical distribution
of valuations. The third paper compares the model in the first paper to a directly
comparable model for private values. We find many interesting empirical regulari-
ties between the models, but no strong and consistent evidence in favor of one model
over the other. In the last paper, we consider auctions with both private-value and
common-value bidders. The equilibrium bid function is given as the solution to an
ordinary differential equation, from which we derive an approximate inverse bid as
an explicit function of a given bid. The paper proposes an elaborate model where
the probability of being a common value bidder is a function of covariates at the
auction level. The model is estimated by a Metropolis-within-Gibbs algorithm and
the results point strongly to an active influx of both private-value and common-
value bidders.
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1 Introduction

1.1 Historical background

Auctions have been used since antiquity for the sale of a variety of objects. Ancient
Romans used auctions in commercial trade to liquidate property and estate goods.
It is not known if the bidding process was increasing or decreasing. However, since
the word ”actus” in Latin means increasing, it is assumed that auctions were held in
an increasing fashion. In 193 A.D. the Praetorian Guard sell off the entire Roman
Empire by means of an auction.
Nowadays, auctions are widely used in many areas and account for a huge volume

of economic transactions. Private firms sell products including real estates, fresh
flowers, fish, houses and cars. Governments offer contracts through procurement
auctions and every week sell foreign exchange, bills and bonds through auctions.
During the last decade, Internet auctions have gained wide popularity where billions
of dollars are turned over every day. Probably the biggest auction in the world is
currently the keyword search auctions on Google.
An auction can be summarized as a bidding mechanism, described by a set of

auction rules that specifies how the winner is determined and how much the bid-
der has to pay. There exists many different auction rules, but four basic types of
auctions, where the object is awarded to the bidder with the highest bid, are par-
ticularly common and referred to as standard auctions. They are divided into open
and sealed-bid auctions. The open auctions inlude the ascending-bid or English
auction and the descending-bid or Dutch auction, while the first-price and second-
price auctions are sealed-bid auctions. In oral auctions, like the English auction,
bidders note each other’s bids and can make counteroffers. In sealed-bid auctions
the bidders submit only one bid simultaneously without revealing them to others.
The English auction is the oldest auction form and typically starts with low

bids and increases in small predetermined portions until only one bidder is left.
The Dutch auction is the counterpart to the English auction. Here the auctioneer
begins at a usually high price and gradually lowers it until someone makes a sign
to claim the item at the current price. In both first-price and second-price auctions
the bidder with the highest bid wins, but in a second-price auction the winning
bidder pays an amount equal to the next highest bid in contrast to the payment of
the highest bid in first-price auctions.
Since the pioneering work of Vickrey (1961) the theory of auctions as games of

incomplete information has developed extensively, especially over the last decades.
There has been a number of economic theorists that made a considerable amount
of work in understanding the factors influencing auction prices for different types
of goods. Klemperer (1999) outlines practical, empirical and theoretical reasons
why auction theory is important. First, auctions constitute a market with a huge
volume of economic transactions. This is especially true with the advent of Internet
auctions in recent years where high-quality datasets are readibly available. Second,
auctions are simple and can be explicitly modeled with well-defined game-theoretic
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forms that provide a very valuable platform for testing economic theory. Finally,
through much fundamental theoretical work, auction theory has been important
as a tool of understanding other methods of price formation in other competetive
markets.

1.2 Valuations

Wolfstetter (1996) states that auctions are essentially used for rapid sales, to reveal
the information about buyers’ valuations and to prevent dishonest dealing between
the seller’s agent and the buyer. A key feature is the asymmetries in information.
If the seller would knew the bidders’ valuations, he could just offer the object to the
bidder with the highest valuation at a price just below what the bidder is willing
to pay. The valuations of the bidders are often classified into one of two standard
paradigms: the independent private-value or the pure common-value paradigm.
Within the private-value model each bidder knows his valuation (the value) and
knowledge of other bidders’ valuation would not affect a bidder’s valuation. This
is a reasonable model if the object for sale is used for consumption, e.g. a piece of
furniture, a painting or private collectibles.
In the pure common-value model, bidders use their own private information to

estimate the unknown value of the object that is the same for all bidders. Typical
examples include objects that are derived from an unknown market price at the
time of bidding, e.g. for the sale of oil contracts with an unknown amount of
oil. The common-value model is a special case of a general specification called
one of interdependent values. In this general setting, the bidders have only partial
information regarding the value, which may be different for different bidders, and
would be affected of knowing the information that other bidders posess. Each
bidder uses his private information to estimate the value of the object.

1.3 Bid equilibrium

A bidder’s strategy can be defined as a mapping from a conceived value of the
object to a final bid. The strategic mapping from a bidder’s value to a bid is the so
called bid function. Nash (1951) proved for a general, finite non-cooperative game
that there always exists at least one equilibrium point. In the setting of auctions
this means that there always exist an equilibrium strategy that maps a bidder’s
value to an equilibrium bid. The consequence of the bid equilibrium is that no
bidder (player) in the auction (game) can succeed with a better strategy given the
strategy of the other players.
In auction theory, the equilibrium bidding strategies depend on the type of auc-

tion and the nature of the buyers and seller(s) in the auction. In this thesis, we
typically consider second-price auctions with a symmetric equilibrium, in which all
bidders follow the same strategy. We also assume that bidders are risk-neutral,
which means that each bidder seeks to maximize his expected utility by maximiz-
ing his expected profit. The profit is defined as the difference between the bidder’s
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value of the object and the bidder’s payment. Risk-neutral bidders are commonly
assumed in the literature and is a special case of risk-averse bidders, where the
bidders seek to maximize their expected utility functions.
In second-price auctions with private-value bidders, Vickrey (1961) showed that

it is a dominant strategy for a bidder to bid his value. The strategic problems
for common-value bidders in second-price auctions are much harder, since their
mapping from a value to a bid depends on the other bidders’ distribution of values.
The bidder faces a simple trade-off. Increasing the bid increases the probability
of winning, while at the same time decreases a potential profit if the bidder wins.
The expected profit for a bidder is calculated as the size of the profit from winning
times the probability of winning. By maximizing the expected profit with respect
to the bidder’s bid, the equilibrium bid function can be derived.
In an influential article, Milgrom and Weber (1982) derive the equilibrium bid

function for a symmetric second-price common value auction. In general, common
value models are much more technically challenging than the models of private
values. This makes it, in practice, difficult to specify distributional assumptions
of valuations that yield closed-form solutions of the equilibrium bid function or at
least neat implicit forms. A handful closed-form solutions have been derived, but
mostly for highly specialized models, see e.g. Kagel and Levin (1986), Matthews
(1984), and Levin and Smith (1991).
The lack of closed form solutions has two major drawbacks. First, it is hard

to see how the bid function depends on various distributional components of the
model, which makes it more difficult to bring out model characteristics. Second,
to evaluate the bid function one has to make use of numerical integration, which
is very time demanding. This is a crucial step for econometric analysis of auc-
tion data (e.g. likelihood/Bayesian estimation) where the equilibrium bid function
has to be evaluated over and over again. Bajari and Hortacsu (2003) reduce the
computational complexity significantly in their model by exploiting a linearization
property, but the inverse bid function in the very complicated likelihood function
still needs to be evaluated by time-consuming numerical integration.

1.4 Revenue equivalence principle

At the late seventies the major contributions came in the mechanism-design field of
auction theory. Roughly during the same time, independent of each other, Myerson
(1981) and Riley and Samuelson (1981) generalized Vickrey’s results about the
equivalence in expected seller revenue for many different auctions, including the
four standard auctions. As Klemperer (1999) mention, in his broad survey of the
literature in auction theory, the theorem is so fundamental that any reader who is
unfamiliar with the result is strongly urged to learn it.
In short, the theorem of revenue equivalence principle can be described as follows.

Assume that risk-neutral, private-value bidders draw their values independently
from the same distribution. Then, any symmetric and increasing equilibrium of any
standard auction yields the same expected revenue to the seller. The counterpart
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of this principle to interdependent values and affiliated (correlated) signals is called
the revenue ranking (linking) principle, where the highest expected seller revenue is
obtained in English auctions, followed by the second-price and first-price auctions.

1.5 The winner’s curse

The winner’s curse is by far the most highlighted phenomenon in common value
auctions. The concept origins from the curse of winning the auction when the price
exceeds the unknown market value at the time of bidding. Wilson (1969) introduced
the common-value model and developed the first closed-form equilibrium analysis of
the winner’s curse. However, it was the three Atlantic Richfield engineers, Capen,
Clapp, and Campell (1971) that introduced the name of the concept. They found
out that oil firms suffered from the winner’s curse during the oil era in the Gulf
of Mexico after the 1950s, when business had paid off less than expected. Later,
Thaler (1988) views the empirical results of the winner’s curse as an anomaly in
his comprehensive discussion of the concept.
The winner’s curse can be clarified by the following countervailing trade-offs.

Bidders in common-value auctions face effects from both competition and informa-
tion perspectives. More bidders introduce more competition that gives a bidder
incentives to submit a higher bid (competition effect). However, a bidder must also
account for the risk of overestimating the value of the object if he wins, since his sig-
nal is then the highest signal among bidders. This implies that a bidder should also
lower his bid when facing more bidders (overestimation effect). In equilibrium, the
overestimation effect is always larger than the competition effect and bidders cor-
rect for the winner’s curse by lowering their bids as the number of bidders increases
(Krishna, 2002).

1.6 Asymmetric bidders

In recent years, auctions with asymmetric bidders have been actively studied.
Asymmetry is present when at least one of the main assumptions in the modeling
of auctions is dropped, e.g. assuming risk-averse bidders instead of risk-neutral,
relaxing the assumption of independently drawn valuations, and allowing for both
private-value and common-value components. In the mechanism-design literature
of auction theory, Maskin and Riley (1985) bring out many key ideas by weakening
the main assumptions on the nature of bidders and focusing on only two bidders
with private values. In addition, Maskin and Riley (2000) analyze asymmetric auc-
tions by distinguishing between weak and strong private-value bidders. Apart from
private values, Goeree and Offerman (2002,2003) and Jackson (2009) analyze auc-
tions with both private-value and common-value components, and Reny and Zamir
(2004) prove the existence of equilibria in general asymmetric first-price auctions
with interdependent values. In second-price auctions with both private-value and
common-value bidders, Tan and Xing (2011) prove the existence of a monotone
pure-strategy equilibrium.
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1.7 Structural econometric auction models

Reiss and Wolak (2007) give a broad introduction to the logic of structural econo-
metric models, including models for auctions, and compare them to other types
of econometric models. Over the last decades the structural estimations of auc-
tion data have become increasingly popular. Laffont and Vuong (1996) came with
major contributions in this field and emphasize that auction models are particu-
larly suited for structural estimation, where many datasets are readily available and
well-defined game forms exist.
Bajari and Hortacsu (2005) mention three conditions that must apply for struc-

tural estimation of auction data. First, the bidders’ goal is to maximize their
expected utility. This is basicly an assumption of rational bidders. If the bidders
are risk-neutral they maximize their expected profits. Second, bidders are able to
compute the relationship between their bid and the probability of winning the auc-
tion. That is, they are able to compute the optimal combination of the probability
of winning and the amount of the profit if they win. Third, given their beliefs,
bidders are able to correctly maximize their expected utility.
These assumptions of rationally are quite strong, but there exists a number of

papers that test for necessary conditions. Guerre, Perrigne, and Vuong (2000) point
out that a necessary condition for rationality in private value auction models is, in
principal, to the test if the bid function is increasing in values. Paarsch and Hong
(2006) survey the field of structural econometrics of auction data.

1.8 Internet auctions

Recently, over the last decade, Internet auctions have gained wide popularity. Ba-
jari and Hortacsu (2004) argue in their survey of online auctions that auctions on
the Internet grow at an impressive pace and are one of the most successful forms
of electronic commerce. Lucking-Reiley (2000) survey 142 online auctions and esti-
mate eBay as the world’s largest auction site by far. At eBay, millions of items are
sold every day in thousands of categories from which high-quality datasets become
available to buyers and sellers through completed auction listings.
To explore the determinants of bidder and seller behaviour, Bajari and Hortacsu

(2003) examine a dataset of coin auctions from eBay. According to several empirical
findings for auctions with a fixed end time, e.g. Wilcox (2000) and Ockenfels and
Roth (2006), bids tend to arrive very late in these auctions. In the spirit of Wilson
(1977), Bajari and Hortacsu (2003) show that late bidding in their independent
symmetric common value model of eBay auctions is a symmetric Nash equilibrium.
In this environment each bidder is assumed to place only one bid in the very last
minute of the auction, so that no other bidders have time to revise their bids. As
a consequence, they estimate eBay auctions as independent second-price common
value auctions.
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2 Summary of the papers

2.1 Paper I: Bayesian Inference in Structural Second-Price

Common Value Auctions

Structural econometric modeling of auction data has become increasingly popular
in recent years, especially with the advent of high-quality datasets from Internet
auctions. Bajari and Hortacsu (2003) made a number of important contributions
to the field by simplifying the analysis of common value auction models with a
stochastic number of bidders. They proved that a symmetric Nash equilibrium
exists in their study of eBay auctions, which allowed them to model eBay coin auc-
tions as independent second-price common value auctions. The analysis of common
value models is well-known for being technically challenging under realistic model
assumptions.
In this paper, we refine and extend the analysis in Bajari and Hortacsu (2003). An

important obstacle in their model is the need for numerical integration to solve the
equilibrium bid function. This is very time-consuming since the likelihood function
of bids needs to be evaluated many times for inference. A key contribution in
our approach is a very accurate approximation of the equilibrium bid as a linear
function of the bidder’s signal, giving fast and numerically stable evaluations of the
likelihood function.
We use both simulated and real data to analyze our model. The real data was

carefully collected by human inspections and contains bids and auction-specific
characteristics from 1050 eBay coin auctions. To estimate the data we use an
efficient Bayesian framework for variable selection that brings out the posterior
probability of including a given covariate in the model. We find the publicly avail-
able book value and the condition of the auctioned object as the main determinants
for bidders’ valuations, whereas the eBay’s detailed seller information is essentially
ignored by the bidders. We also show that our approximate bid function does not
distort inference for a number of economic implications, such as the bidders’ cor-
rection for the winner’s curse by lowering their bids. Finally, we document good
out-of-sample predictions of auction prices.

2.2 Paper II: Bayesian Inference in Structural Second-Price

Auctions with Gamma Distributed Common Values

The valuations in auction models are intrinsically non-negative. Nevertheless, dis-
tributional assumptions are often used in the literature that allow for negative val-
ues. In our paper, we explore this issue by proposing an extension of the Gamma
model in Gordy (1998) as an alternative to the Gaussian modeling of valuations
in Wegmann and Villani (2011, henceforth WV). Similar to the Gaussian model in
WV, a key contribution for the Gamma model is a very accurate approximation
of the equilibrium bid function. The approximate bid function is non-linear, but
since the approximate inverse bid (the approximate signal) is an explicit function
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of a given bid, we also obtain fast and numerically stable likelihood evaluations for
the Gamma model.
The Bayesian framework with variable selection and the eBay coin auction dataset

in WV are used to compare the performances between the Gaussian and Gamma
models. The posterior results are quite similar between the models. The Gaussian
model fits the data and predicts auction prices slightly better than the Gamma
model. We find evidence that this is probably due to an almost normal or at least
symmetrical distribution of valuations, where the density only attains small proba-
bilities of negative values. Finally, we document for simulated datasets with differ-
ent degrees of skewness that the superiority of the Gamma model for highly skewed
data diminish when the value distribution becomes more symmetrical. These are
findings that agree with the results for the eBay dataset.

2.3 Paper III: Bayesian Comparison of Private and Com-

mon Values in Structural Second-Price Auctions

Most of the literature in auction theory focus on either the private value or common
value paradigm. Attempts to distinguish between the paradigms have been exten-
sive during the last couple of decades, but mostly within first-price auctions. We
compare the Gaussian model for common values in WV to a directly comparable
model for private values in second-price auctions. The comparison is performed in
numerous ways by using the Bayesian framework on the eBay coin auction data in
WV.
Both models fit the data well with a slight edge for the more robust common-

value model. The private-value model is better in predicting auction prices, but
the more complex common value model is more robust in predicting some auctions.
We find many interesting empirical regularities between the models. First, the
winner’s curse effect in common values explains the differences in the estimates
for the expected values. Second, the optimal minimum bids in the common value
model are much closer to the actual minimum bids than the optimal choice of zero
or close to zero for the private value model. Third, we find no evidence of the
winner’s curse in the data, since the average bids do not decrease for an increasing
number of bidders. Fourth, the models seem to capture the correlation between
bids equally well.
Our results indicate that the value of the object probably includes both a pri-

vate and a common value component, since we find evidence for both private and
common values in different ways. However, auction models with a combination of
private and common values have not yet seen the light in the literature. It is indeed
a promising area of future research.
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2.4 Paper IV: Bayesian Inference in Structural Second-Price

Auctions with both Private-Value and Common-Value

Bidders

Auction models with asymmetric bidders have received much attention in recent
years. Tan and Xing (2011) show the existence of a montone pure-strategy equi-
librium for symmetric second-price auctions with both private-value and common-
value bidders. In their setting, the dominant strategy for a private-value bidder is
to bid his value, while the bid equilibrium for a common-value bidder is the solu-
tion to an ordinary differential equation (ODE) that depends on the parameters in
the private-value distribution. To solve the highly complicated ODE one needs to
resort to numerical integration methods which are too time-consuming to be used
for statistical inference.
We assume the model in Tan and Xing (2011) and derive a very accurate ap-

proximation of the equilibrium bid function. The approximate inverse bid is an
explicit function of a given bid, which virtually takes no time to evaluate, giving
fast and numerically stable evaluations of the likelihood function. We use Bayesian
methods to evaluate the model on the eBay coin auction data in WV. Since we do
not model auctions with a minimum bid, we use data from 464 auctions where the
minimum bids have a negligable effect on the bidding process.
We propose a model where the probability of being a common-value bidder is a

function of auction-specific covariates. An interesting feature of this modeling is
the possibility to make inference, through Bayesian variable selection, on the proba-
bility of being a private-value or a common-value bidder in a given auction. We use
a Metropolis-within-Gibbs algorithm to sample from the posterior in our Bayesian
inference. Our main findings are that the empirical results for the common-value
distribution are essentially the same as the results for a model with only common-
value bidders, whereas the estimates of the parameters in the private-value distri-
bution are more affected by the influx of common-value bidders. Finally, there is
a slightly larger probability of being a common-value bidder, but this probability
does not seem to depend on the covariates at the auction level.
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BAYESIAN INFERENCE IN STRUCTURAL SECOND-PRICE

COMMON VALUE AUCTIONS

BERTIL WEGMANN AND MATTIAS VILLANI

Abstract. Structural econometric auction models with an explicit game-theoretic modeling
of bidding strategies have been quite a challenge from a methodological perspective, espe-
cially within the common value framework. We develop a Bayesian analysis of the hierarchical
Gaussian common value model with stochastic entry introduced by Bajari and Hortacsu. A
key component of our approach is an accurate and easily interpretable analytical approxi-
mation of the equilibrium bid function, resulting in a fast and numerically stable evaluation
of the likelihood function. We use a Bayesian variable selection algorithm that simultane-
ously samples the posterior distribution of the model parameters and does inference on the
choice of covariates. The methodology is applied to simulated data and to a newly collected
dataset from eBay with bids and covariates from 1000 coin auctions. We demonstrate that
the Bayesian algorithm is very efficient and that the approximation error in the bid function
has virtually no effect on the model inference. The model fits the data well and we document
good out-of-sample predictions of auction prices.

Keywords: Bid function approximation, eBay, Internet auctions, Likelihood inference, Markov
chain Monte Carlo, Normal valuation, Variable selection.

1. Introduction

Strategic bidding behavior in auctions has been a widely studied phenomenon since the pi-
oneering work of Vickrey (1961), particularly over the last few decades (see, e.g., Wolfstetter
1996; Klemperer 1999, 2004; and Milgrom 2004 for recent surveys and a general introduction).
The advances in auction theory have also found their way into the econometric analysis of
auction data. It seems widely accepted that an explicit modeling of bidders’ strategic consider-
ations is a necessary condition for making economic sense of the observed patterns in the bids.
The availability of high-quality auction data has increased in recent years, especially with the
advent of Internet auction sites, such as eBay (see, e.g., Bajari and Hortacsu 2004 for a sur-
vey). Paarsch (1992) and Elyakime, Laffont, Loisel and Vuong (1997) have provided excellent
examples of structural econometric analyses of auction data. Bajari (2005) and Paarsch and
Hong (2006) have surveyed the field.

Analyzing auction data through the lens of a structural game-theoretic model is not an
easy task. It has been quite a challenge to derive the strategic equilibrium bid function (i.e.,
the map from a bidder’s conceived or estimated value of the object to his optimal bid) under
realistic model assumptions. When such results are available, they typically come in a form
unamendable to analytical computations, and one needs to resort to time-consuming and
possibly unstable numerical methods, such as numerical integration. This is an important
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obstacle to statistical inference as a single likelihood evaluation typically requires a repeated
evaluation of the inverse bid function for all bids in the dataset.

Common value auctions have been especially difficult to analyze by structural econometric
models. In common value auctions, the auctioned object has the same value to every bidder,
but the common value is unknown. The bidders use private information (their signal) to infer
the unknown value. In an influential work, Bajari and Hortacsu (2003; henceforth BH) made
a number of important advances that substantially simplify the analysis of data from common
value auctions. BH proved that it is sufficient to compute the bid function in a selected auction
and then extrapolate linearly to the other auctions in the dataset. This property considerably
speeds up the computation of the bid function, and thereby also likelihood evaluations. BH
also show that it is optimal to place a bid in the very last seconds of commonly used Internet
auction formats, such as eBay’s. This, in turn, implies that Internet auctions can be modeled
as sealed-bid auctions without additional strategic considerations of the timing of the bids.
BH also extended the results of Milgrom and Weber (1982) to the situation with a stochastic
number of bidders, an inherent feature of Internet auctions.

The present paper refines and extends the analysis of BH. Our first contribution is an accu-
rate linear approximation of the equilibrium bid function for cases with a fixed number and a
stochastic number of bidders. The approximate bid function is of a particularly simple analyt-
ical form with an interesting interpretation. It can be inverted and differentiated analytically,
two extremely valuable properties for fast and numerically stable evaluations of the likelihood
function. The approximation can be simultaneously evaluated for all bids in all auctions in a
negligible amount of computing time.

An interesting aspect of the BH model is the use of auction-specific covariates, both in the
model for the common value and in the stochastic entry process. Our second contribution is the
use of a highly efficient general posterior sampling algorithm that simultaneously approximates
the joint posterior distribution of the model parameters and does Bayesian variable selection
among the covariates of the model. This allows us to quantify the importance of the individual
covariates in the different parts of the model, and to correctly account for the uncertainty in
the choice of covariates in, for example, the predictive distribution of the price. Bayesian
variable selection also makes it possible to use a large number of covariates in the model
because it typically reduces the dimensionality of the parameter space dramatically in every
step of the Metropolis-Hastings algorithm (see Section 3.2).

Finally, we apply the methodology to a newly collected dataset with bids and auction-
specific information from 1000 eBay coin auctions. The dataset was collected by a careful
human visual inspection of both photos of the auctioned object and the seller’s text description.
We provide a partial reduced form analysis as well as structural estimates, and show that the
structural model fits the data well. We also document good out-of-sample predictions of
auction prices on 50 auctions that took place after the auctions in the estimation sample.
The variable selection shows that the publicly available book value and the condition of the
auctioned object are important determinants of bidders’ valuations, whereas eBay’s detailed
seller information, such as bidders’ subjective ratings of sellers and sellers’ historical selling
volumes, is essentially ignored by the bidders. The seller’s posted minimum bid acts as a
safeguard for the seller, to avoid large losses. We show that it is typically optimal for the
seller to post a minimum bid only slightly below the seller’s valuation of the object, despite
the fact that a high minimum bid discourages auction entry. The estimation results are shown
to be robust to a variety of modifications of the basic model.
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2. A model for second price common value auctions

2.1. General setup. Assume that the seller sets a publicly announced minimum bid (reser-
vation price), r ≥ 0, and that risk-neutral bidders compete for a single object using the same
bidding strategy (symmetric equilibrium). The value of the object, v, is unknown and the
same for each bidder at the time of bidding, but a prior distribution for v is shared by the
bidders. To estimate v, each bidder relies on his or her own private information of the object
modeled as a private signal, x, from a distribution, x|v, that is the same for all bidders (sym-
metric bidders). Let fv(v) denote the probability density function of v, let fx|v(x|v) denote
the conditional probability density function of x|v, and let Fx|v(x|v) denote the conditional
cumulative distribution function of x|v. Since the auction involves symmetric bidders and a
symmetric equilibrium, we can focus on a single bidder without loss of generality. The bid
function can be written (BH) as

b(x, λ) =

∑∞
n=2(n− 1) · pn−1(λ) ·

∫

v v · F
n−2
x|v (x|v) · f2

x|v(x|v) · fv(v) dv
∑∞

n=2(n− 1) · pn−1(λ) ·
∫

v F
n−2
x|v (x|v) · f2

x|v(x|v) · fv(v) dv
, if x ≥ x⋆(2.1)

and 0 otherwise, where pn−1(λ) is the Poisson probability of (n − 1) bidders in the auction
with λ as the expected value in the Poisson entry process. Bidders participate with a positive
bid if their signal, x, is above the cutoff signal level, x⋆. Given an arbitrary bidder with signal
x, let y be the maximum signal of the other (n − 1) bidders. The cutoff signal level is then
given in implicit form as (Milgrom and Weber 1982)

x⋆(r, λ) = inf
x
(EnE[v|X = x, Y < x, n] ≥ r) ,

which gives the minimum bid, r, as

(2.2) r(x⋆, λ) =
∞
∑

n=1

pn(λ) ·

∫

v v · F
n−1
x|v (x⋆|v) · fx|v(x

⋆|v) · fv(v) dv
∫

v F
n−1
x|v (x⋆|v) · fx|v(x⋆|v) · fv(v) dv

.

The minimum bid is exogenously given by the seller and x⋆ is then given as the solution to
(2.2).

Let vj denote the common value in auction j, and let xij denote the signal of the ith bidder
in auction j. Similar to BH, we use the following hierarchical Gaussian model

vj ∼ N(µj , σ
2
j ), j = 1, ...,m,

xij |vj
iid
∼ N(vj , κσ

2
j ), i = 1, ..., nj ,

µj = z′µj
βµ

σ2
j = exp

(

z′σj
βσ

)

λj = exp
(

z′λj
βλ

)

,(2.3)

where m is the total number of auctions, nj is the number of bidders that bid 0 or place
a positive bid in auction j, and zj = (z′µj , z

′
σj , z

′
λj)

′ are auction-specific covariates in the

regression models for (µj , σ
2
j , λj) in auction j. In addition, let β = (βµ, βσ, βλ)

′. BH modeled

σ2 with a linear function of covariates and thus needed to restrict the elements of βσ to ensure
that σ2 is positive, whereas βσ is unrestricted in our setup.

BH made the assumption that bids in parallel auctions are independent and showed that
last-minute bidding is a symmetric Nash equilibrium on eBay. This allows us to model eBay
auctions as independent second-price auctions. The likelihood function of bids is complicated,
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because some bids are unobserved. First, some bidders may draw a signal, x < x⋆, in which
case they do not place a bid. Second, the highest bid is usually not observed because of eBay’s
proxy bidding system (see BH and Section 4.1 for more details). The bid distribution for a
single auction is of the form:

(2.4) fb (b|β, κ, r, z, v) = fx|v [φ(b)|β, κ, r, z, v]φ
′(b),

where φ(b) is the inverse bid function. Let ns be the number of bidders who submit a positive
bid in a given auction and let b = (b2, b3, . . . , bns) be the vector of observed bids, where
b2 > b3 > ... > bns . Then, the likelihood function for that auction is given by

fb (b2, b3, . . . , bns |β, κ, r, z)

=
N̄
∑

i=ns

pi(λ) ·

∫ ∞

−∞
Fx|v (x

⋆|β, κ, v)i−ns ·
{

1− Fx|v [φ (b2) |β, κ, v]
}I(ns≥1)

×

ns
∏

i=2

fb (bi|β, κ, r, z, v) · fv(v|β)dv,(2.5)

where I (ns ≥ 1) is an indicator variable for at least one observed bid in the auction and N̄ is
an upper bound for the total number of potential bidders. Following BH, N̄ is set to 30. If
ns = 1, then b2 equals the minimum bid r.

We use Bayesian methods to estimate the model; see Section 3. A single evaluation of the
posterior density (likelihood function) requires numerical integration to compute b (x|β, r, z)
in (2.1), followed by additional numerical work to invert and differentiate b (x|β, r, z). The
same applies to the computation of x⋆. This costly procedure needs to be repeated for each
of the auctions in the dataset. BH cleverly exploited a linearity property of the bid function
that confines a large portion of the numerical work to a single auction, which is then linearly
extrapolated to the other auctions. Nevertheless, the likelihood evaluation suggested by BH is
not sufficiently fast to allow its routine use for inference. Instead, we make use of an analytical
approximation of the bid function (see the next section) that can be simultaneously evaluated
for all bids in all auctions. This leads to much faster and numerically more stable likelihood
evaluations.

Paarsch (1992) used an interesting method initially suggested by Levin and Smith (1991)
to compute bid functions for a class of models, including a model with Gaussian valuations.
This method assumes a diffuse prior for the auction value, which makes it harder to use an
interesting covariate structure as in (2.3). Moreover, contrary to our approximation approach,
the method of Levin-Paarsch-Smith (1991) is not easily extended to the case with stochastic
auction entry.

2.2. Approximation of the bid function. We derive the following linear approximation of
the bid function (see Appendix A for details):

(2.6) b(x, λ) ≈ c+ ωµ+ (1− ω)x, if x ≥ x⋆

and 0 otherwise, where c = −
√
κσγθ(λ−2)

γ(λ−2)+1+κ
2
, ω =

κ
2

γ(λ−2)+1+κ
2
, θ = 1.96 and γ = 0.1938. The

cutoff signal can be similarly approximated by

(2.7) x⋆(r, λ) ≈
r −

∑∞
n=1 pn(λ)(c̃+ ω̃µ)

∑∞
n=1 pn(λ)(1− ω̃)

,

where c̃ = −
√
κσγθ(n−1)

γ(n−1)+ 1
2
+κ

2

, and ω̃ =
κ
2

γ(n−1)+ 1
2
+κ

2

.
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The approximate bid function has the following properties. First, it is a linear combination
of the signal x and the publicly held value µ. The weight ω increases monotonically toward 1
as κ increases, which gives

b(x) −→ x if κ −→ 0, and b(x) −→ µ if κ −→ ∞.

The higher the precision in signals, the more the bidders trust their private information and
vice versa. A greater variance of the common value v implies a greater risk of drawing a
large signal and thus a greater risk of overestimating the true value of the object, which is
why bidders should lower their bids. The approximate bid function captures this effect well;
increasing the value of σ leads to lower bids.

The approximation in (2.6) can also be used to derive the unconditional distribution of the
bids, b = (b1, ..., bn)

′, in an auction with a given number of bids, n. It is straightforward to
show that

(2.8) b ∼ N
[

(c+ µ)1n, (1− ω)2σ2 (κIn + 1n×n)
]

,

where In is the identity matrix and 1n and 1n×n denote the n×1 vector and the n×n matrix
with 1s, respectively. Note that here we are ignoring the truncation that comes from x⋆. At a
first glance, it may appear that κ is merely a factor that inflates the variance of the bids and
is mainly estimated from the variance of the observed bids. Equation (2.8) shows that this
is an overly simplistic view. First, the unconditional variance of the bids, (1 − ω)2(κ + 1)σ2,
obviously increases with κ via the factor (κ + 1), but κ also affects var(b) through ω in a
nonlinear fashion that depends on λ. Second, κ determines the dependence between bids as
the correlation between any pair of bids is (1 + κ)−1.

Figure 1 compares the exact and approximate bid functions graphically. The exact bid
function is computed by numerical integration as in BH. The upper left subgraph displays the
bid function and its approximation for a representative auction in the eBay dataset analyzed
in Section 4. The representative auction is based on the median of the covariates in the eBay
data, analyzed in Section 4, and the posterior mean of the model parameters. Rounded to the
nearest integer, this gives κ = 5, µ = 22, σ = 9, λ = 4, and r

µ = 0.5. The other subgraphs are

variations of the representative auction. The approximation of the bid function is very good
in all four cases. It is not easy to assess the importance of the approximation errors in Figure
1 for practical work, but experiments in Section 3.2 and 4.3 show that inferences based on the
approximate bid function are very similar to those obtained from the exact bid function.

2.3. Discussion. The approach in the previous subsection can be used to obtain an accu-
rate, easily computable and interpretable approximate bid function for second-price common
value auctions with Gaussian-distributed signals and values. However, it is obvious that our
approach cannot be used for any arbitrary auction setup and valuation structure. To state the
conditions under which it can be used, let us first define a family of distributions P to be closed
under multiplication if for any p1, p2 ∈ P we have that k · p1 · p2 ∈ P, where k is a constant.
The success of the approach hinges upon i) that the distribution function Fx|v(x|v) can be
well approximated by the kernel of a density function px|v(x|v), ii) that px|v(x|v), fx|v(x|v)
and fv(v) all belong to a family of distributions P that is closed under multiplication (with
respect to v), and iii) that the kernel of any member of P can be integrated analytically. As
we have shown, all three conditions hold for the Gaussian model, and we have also verified
that they also hold when fx|v(x|v), px|v(x|v) and fv(v) are all log normal. Moreover, since
the distribution function Fx|v(x|v) appears in other major auction formats, it is clear that
the approach can at least in principle also be used to approximate the bid function in other
auction setups.
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3. Bayesian inference and variable selection

3.1. Prior. Bayesian inference combines the likelihood function in (2.5) with a prior distribu-
tion on the unknown model parameters. The numerical algorithms that we use for sampling
from the joint posterior distribution (see next section) can be used with any prior. In this
section, we propose a particular prior that can be used with very limited input from the user.
Our prior for βµ and βσ is motivated by the fact that the common values v = (v1, ..., vn)

′ are
modeled as a heteroscedastic regression

(3.1) v = Zµβµ + ε, εi ∼ N(0, σ2
i ),

where σ2 = (σ2
1, ..., σ

2
n)

′ = exp(Zσβσ). We can now specify a g-prior (Zellner, 1986) for βµ,
conditional on βσ (see Villani et al. 2009 for details)

βµ|βσ ∼ N [0, cµ(Z̃
′
µZ̃µ)

−1] = N [0, cµ(Z
′
µDZµ)

−1],

where D1/2 = Diag[exp(−z′σ1
βσ/2), ..., exp(−z′σn

βσ/2)] and cµ > 0 is a scaling factor that
determines the tightness of the prior. Setting cµ = n, where n is the number of auctions in the
sample, makes the information in the prior equivalent to the information in a single auction
(conditional on βσ), which is a useful benchmark. The marginal prior for βσ is also taken to
be a g-prior

βσ ∼ N [0, cσ(Z
′
σZσ)

−1].

Turning to the Poisson entry model, we use the following g-prior for βλ

βλ ∼ N [0, cλ(Z
′
λZλ)

−1].

We use an inverse-gamma prior for κ, κ ∼ IG(κ̄, g), where κ̄ is the prior mean of κ and g are
the degrees of freedom.

We also allow for variable selection among the covariates by introducing point masses at 0
in the prior distribution on the regression coefficients, e.g.,

p(βσ) =







N [0, cσ(Z
′
σZσ)

−1] with probability πσ

0 otherwise,

where πσ is referred to as the prior inclusion probability. The user thus needs to specify the
eight hyperparameters cµ, cσ, cλ, πµ, πσ, πλ, κ̄, and g. We typically set cµ = cσ = cλ = c
and πµ = πσ = πλ = π, thereby reducing the number of prior hyperparameters to four. Our
application in Section 4 and simulations in the next section show that the posterior distribution
and the variable selection inference are not overly sensitive to the exact choice of these prior
hyperparameters, and that a good default value for c is c = n.

3.2. A Metropolis−Hastings algorithm for variable selection. It is clear from (2.5)
that the likelihood function for second-price common value auctions is highly nonstandard and
thus, the posterior distribution of the model parameters cannot be analyzed using analytical
methods. The most commonly used algorithm for simulating from posterior distributions is
the Metropolis−Hastings (MH) algorithm, which belongs to the Markov chain Monte Carlo
(MCMC) family of algorithms (see, e.g., Gelman et al. 2004 for an introduction). At a given
step of the algorithm, a proposal draw, βp, is simulated from the proposal density f(βp|βc),
where βc is the current draw of the parameters (i.e., the most recently accepted draw). The
proposal draw, βp, is then accepted into the posterior sample with probability

a(βc → βp) = min

[

1,
p(βp|y)/f(βp|βc)

p(βc|y)/f(βc|βp)

]

,
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where p(β|y) denotes the posterior density. If βp is rejected, then βc is included in the posterior
sample. This sampling scheme produces (autocorrelated) draws that converge in distribution
to p(β|y). The f(βp|βc) can in principle be any density, but for efficiency reasons it should
be a fairly good approximation of the posterior density. One possibility is the random walk
Metropolis algorithm, where f(βp|βc) is multivariate normal density with mean βc and covari-

ance matrix −c·H−1, where H is the Hessian matrix evaluated at the posterior mode and c is
a scaling constant. This algorithm was used by BH. The random-walk Metropolis is a robust
algorithm, but it is well known to be rather inefficient. Moreover, it is not easily extended
to the case with variable selection. A more efficient alternative that can also be extended
to variable selection is the independence sampler where f(βp|βc) is the multivariate-t density

t(β̂,−H−1, h), where β̂ is the posterior mode of p(β|y), H is once more the Hessian matrix at
the mode and h is the degrees of freedom. Here, the multivariate-t density is defined in terms
of its mean and covariance matrix. We typically use h = 10 degrees of freedom, which we have
found to work well. The posterior mode and the Hessian matrix can be easily obtained using
a standard Newton−Raphson algorithm with a BFGS update of the Hessian matrix (Fletcher
1987).

Now consider setting a subset of the elements in β = (β′
µ,β

′
σ,β

′
λ)

′ to 0 (any other value is
also possible). In a regression situation, this is clearly equivalent to selecting a subset of the
covariates. Let J = (j1, ..., jr) be a vector of binary indicators such that ji = 0 iff the ith
element of β is 0. We can view these indicators as a set of new parameters. For simplicity,
we here assume that the elements of J are independent a priori with Pr(ji) = π for all i, so
that π is the prior probability of including the ith covariate in the model, but other priors for
J can be handled just as easily. Appendix B describes in detail how this algorithm can be
generalized to sample from the joint posterior distribution of the parameters and the variable
selection indicators J , all in a single MCMC run.

We use the mean acceptance probability and the inefficiency factor (IF) to measure the
performance of the Metropolis−Hastings algorithm. The inefficiency factor is defined as 1 +
2
∑K

k=1 ρk, where ρk is the autocorrelation at the kth lag in the MCMC chain for a given
parameter and K is an upper limit of the lag length such that ρk ≈ 0 for all k > K. The
inefficiency factor approximates the ratio of the numerical variance of the posterior mean from
the MCMC chain to that from hypothetical iid draws. Put differently, the IF measures the
number of draws needed to obtain the equivalent result of a single independent draw. Thus,
the presence of IFs close to unity indicates a very efficient algorithm.

We conducted a simulation study to evaluate the performance of the variable selection
procedure, where we are particularly interested in exploring the sensitivity of the posterior
inclusion probabilities to changes in prior hyperparameters c = cµ = cσ = cλ, and g. We set
the prior inclusion probability to π = 0.2 and κ̄ = 0.25 throughout the simulations (see Section
4 for a sensitivity analysis with respect to π). Rather than setting the parameters in the data
generating model to arbitrary values, we will here generate data from a model that mimics
the estimated Gaussian model for eBay data in BH. We simulated 50 full datasets, each with
407 auctions, using the posterior mean estimates in BH as parameter values. The covariates
in the model were simulated independently to mimic the summary statistics in Tables 1 and
2 in BH. The eBay auction model in BH for auction j, without a secret reserve price, can be
written as (see BH for a description of the covariates)

µj = β1BookValj + β2Blemishj · BookValj − 2.18

σj = β3BookValj + β4Blemishj · BookValj
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logλj = β5 + β6LogBookValj + β7Negativej + β8
MinBidj

BookValj
.

To check that the variable selection procedure assigns small posterior inclusion probabilities to
insignificant covariates in the model, we include one superfluous covariate in each of µj , σj and
λj , with each additional covariate drawn independently from the standard normal distribution.
To speed up the computations, we use the approximate bid solution in our article. We have
checked that the exact and approximate bid function gave very similar results by replicating
the analysis on several simulated datasets. As an example, Table 1 displays nearly identical
posterior results for a randomly chosen dataset. The empirical application on eBay coin
auctions in our article also provides reassuring evidence that this approximation does not
distort the inferences.

In Figure 2, posterior inclusion probabilities for each of the covariates in 50 simulated
datasets are shown as box plots for different values of c. Other priors than g = 4 and settings
with unequal values of cµ, cσ, and cλ gave very similar results. As we can see in Figure 2,
the inclusion probabilities for the most significant variables are all close to one and differ very
little across the different priors. The inclusion probabilities for parameters β4 and β7 are low
as these coefficients are quite close to zero in the data generating model. Figure 2 also shows
that insignificant variables obtain a higher posterior inclusion probability when the prior is
tighter around zero (i.e., when c is small because the cost of including a covariate with a small
coefficient is lower when c is small).

We find a simple way of characterizing the posterior inclusion probabilities by Bayesian
t-ratios, which we define as

tBayesian =

∣

∣

∣
θ̂
∣

∣

∣

s(θ̂)
,

where θ̂ is the posterior mode and s(θ̂) the approximate/asymptotic posterior deviation from
the optimization of the posterior density. In Figure 3, the inclusion probabilities increase
sharply around a threshold whose value depends on the prior hyperparameters (the dashed
line in Figure 3 marks out the 1.96 threshold used in classical t-tests at a 5% significance
level). As c decreases (tighter prior), the threshold moves to the left and the curve flattens
out. Note that the usual rule |t| > 1.96 is overly generous in including covariates.

Finally, most of the Metropolis-Hastings runs gave an acceptance probability in the range
0.6-0.8, only a few below 0.1, and none below 0.25 for the prior cµ = cσ = cλ = n.

4. Application to eBay auction data

At eBay, millions of items are listed into thousands of categories and subcategories. EBay’s
search engine can be used to review recently completed auctions. The listings typically contain
a detailed description of the item, the quantity sold, seller characteristics, reservation price,
and the sequence of placed proxy bids and their timing. As explained in Section 2, the highest
bid is typically not reported. Hence, high-quality datasets with detailed auction characteristics
and all but the highest bid can be collected at eBay and be used for estimating auction models.

4.1. Description of the data. Our dataset contains bid sequences and auction characteris-
tics from 1000 eBay auctions of U.S. proof sets that ended between November 7 and December
19, 2007 and December 27, 2007 to January 22, 20081. We exclude multi-unit objects, auctions

1U.S. proof sets can be defined as the specially packaged set of Proof coins issued annually and sold by the
U.S. Mint.
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with a Buy It Now option2 and Dutch auctions. We also collected data from 50 additional
auctions between January, 23 to January, 29 2008 that are used in Section 5.4 to evaluate the
model’s out-of-sample predictions of auction prices.

The bids recorded on eBay’s Bid History Page are supposed to correspond to the final bids
for each bidder. A careful inspection of the bids reveals, however, that some bids are only a
tiny fraction of the object’s book value, and cannot realistically represent serious final bids.
Therefore, we will exclude the most extreme bids in our main analysis. A bid b is excluded if
b ≤ δ ·min(BookValue,Price), where δ = 0.25 in the benchmark estimations (this excludes 107
bids from the 3742 bids in the sample). We also present results for the case where all bids are
used in the estimation (δ = 0) and for δ = 0.5 (431 bids removed).

Appendix C gives a detailed description of the data, and Table 2 presents summary statis-
tics. The last three columns of the table specify the covariates used in the models for µ, σ,
and λ in the next sections.

4.2. Preliminary analysis. To verify that our model has appropriate functional forms for
the regressions in µ, σ, and λ, we would like to plot these quantities against the (continuous)
covariates. Naturally, parameters µ, σ, and λ are not known, but simple estimates can be
obtained as follows.

The approximate bid solution in (3.3) as a function of (µ, σ) can be written as

b(x) = hσ + ωµ+ (1− ω)x,

where

h = −

√
κγθ(λ− 2)

γ(λ− 2) + 1 + κ
2

, and ω =
κ
2

γ(λ− 2) + 1 + κ
2

.

Since x|v
iid
∼ N

(

µ, κσ2
)

, we have

b(x|v)
iid
∼ N

[

µ+ hσ, (1− ω)2κσ2
]

.

The likelihood function for µ and σ2 is then obtained by integrating out v. It is now straight-
forward to verify that the maximum likelihood estimates of µ and σ2, conditional on κ, are
given by

(µ̂, σ̂2) =

(

b̄−
hsb

(1− ω)
√
κ
,

s2b
(1− ω)2κ

)

,

where we make the usual correction of the sample variance, defined as s2b =
∑n

i=1(bi−b̄)2

n−1 .

The estimates of µ and σ2 are conditioned on κ = 3.042, the posterior mean in the bench-
mark structural model estimated in the next section. Other values for κ, e.g. the estimate in
BH of κ = 0.25, did not have any major effects on the results. Note that the µ and σ estimates
can only be computed for auctions with at least two bidders (if the highest bid is observed,
otherwise three), so that the results in this subsection should be treated with care. Figure 4
displays scatterplots of µ̂j and ln σ̂2

j in auction j against the suitable transformations of the
covariate BookValue, and the relationship seems to be appropriately linear. Figure 4 also plots
ln(nj + 1), where nj is the number of bidders with non-zero bids in auction j, against the
continuous covariates in the entry model. The relationships are once more very close to linear.

As a precursor to the analysis of the full structural model in Section 5.3, we perform
separate reduced form regressions with the estimates µ̂ and ln σ̂2 in each auction as dependent
variables, respectively. Table 3 (upper and middle parts) presents the results from a full

2In some auctions, buyers have the option to directly purchase the item at a certain price, in which case the
auction is declared to be completed.
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Bayesian analysis with variable selection using the algorithm in Section 4.2. Note that the
continuous covariates have been de-meaned and a constant has been added to each model. As
an example, BookStd is the covariate BookValue minus its mean. This reduces the correlation
among the coefficients, which is beneficial for numerical stability. The same transformations
are also used in the structural model in Section 5.3.

The covariates BookStd and interactions between book values and Unopen and MajBlem
clearly belong in the model for µ̂, and their estimated coefficients are large and of the expected
sign. Similar results were also obtained from a Bayesian Tobit regression with auction prices
as the dependent variable3, see Table 4. The strongest predictors in the regression for ln σ̂2

are LBookStd (standardized ln(BookValue)) and the interaction between ln(BookValue) and
Unopen.

Finally, the last part of Table 3 gives the result for a Poisson regression with the number
of bidders with a non-zero bid as the dependent variable. Here, the covariates MinBidStd
(standardized MinBid/BookValue), LBookStd, and the interactions LBook*ID, LBook*Unopen,
LBook*MajBlem come out as the most relevant covariates.

The Metropolis-Hastings acceptance probabilities for all reduced form regressions were very
high (70-90%), the inefficiency factors are close to unity, and the convergence was excellent.

4.3. Estimation results from the structural model. Tables 5 and 6 report the estimation
results for the approximate and exact case of the structural model in equation (2.3).With a few
exceptions, the parameter estimates, for both cases of the structural model and for the reduced
form regressions in the previous section, are fairly similar. The estimated coefficients are
mostly of the expected sign and are of reasonable magnitudes. The only major difference is for
the estimate on Book*ID, which is highly significant in the structural model of the approximate
case compared to the exact case and the reduced form regressions. These discrepancies do
not seem to depend on the approximation since the reduced form regressions, which are
based on the approximate bid function, give a highly insignificant result. The MH acceptance
probability in the model with the exact bid function was only 10 % (compared to 38 % in the
approximate case), which we partly attribute to the occasional instability in the numerical
evaluation of the bid function in this case.

The covariates BookStd and LBookStd play a very central role in the models for µ and σ,
respectively. The large negative sign for MinBidStd is explained by the fact that a higher min-
imum bid implies a higher cutoff signal, which reduces the number of positive bids. Overall,
the posterior inclusion probabilities are either close to 0 or 1, which gives conclusive evidence
on which covariates that are important for explaining valuations and participation in eBay
auctions for common value objects. It is interesting to note that eBay’s detailed seller in-
formation seems to be of little use to buyers: the covariates Power, ID and LargNeg (dummy
for a large proportion of negative feedbacks from buyers) almost invariably have very small
posterior inclusion probabilities. We experimented with other transformations of the negative
feedback score and also transformations of the overall feedback score as substitutes for Power
and ID, with unchanged results.

To check for the sensitivity of the prior hyperparameters, we repeated the estimations using
several different priors. In Table 7, we use the estimated model in Table 5 as a benchmark
and compare posterior means given various prior settings. Almost all parameter estimates are
insensitive to changes in priors, especially in the model for λ. Notable changes only appear
in the model for σ, where the estimated value of the constant increases and the estimated
value of the parameter for LBookStd decreases with more prior information. The tighter

3In an auction where the object remains unsold, a Tobit regression uses the information that the price is smaller
than the auction’s minimum bid.
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prior distribution around zero reduces the impact of LBookStd and the estimated constant is
increased to compensate for this. The last column but one in Table 7 shows that varying the
prior inclusion probability, π, does not affect the posterior mean estimates, as expected.

Finally, the last column of Table 7 gives the posterior mean estimates when the benchmark
model is estimated using all bids (δ = 0), see Section 5.1. The main difference in the results
is the larger estimates of κ and σ, a natural consequence of the wider dispersion in bids
when δ = 0. Estimations with δ = 0.5 (results not shown) reduced κ to 2.27. It should
be noted, however, that the relation between κ and the unconditional variance of the bids
is complicated by the bidders’ strategic behavior. One way of seeing this is to look at the
unconditional variance of the bids, var(b) = (1 − ω)2(κ + 1)σ2, under the approximate bid
function. var(b) obviously increases with κ via the factor (κ+1), but κ also affects var(b) via
ω (the weight placed on the prior mean of v) in a non-linear fashion that depends on λ. Figure
5 displays Std(b) as a function of κ for σ2 = 1, and for different values of λ. It is seen from
Figure 5 that Std(b) is fairly insensitive to κ over a large region. There are larger differences
in Std(b) across λ for a given κ.

In Table 8, we also check for the sensitivity of the posterior inclusion probabilities with
respect to the prior hyperparameters. Overall, the small inclusion probabilities in the bench-
mark model tend to increase as the prior information becomes more precise (c decreases),
which is exactly the same expected result that was established by simulation in Section 4.
Once more the results are not overly sensitive to c. Furthermore, increasing the prior inclu-
sion probability from 0.2 to 0.5 does not overturn the previous results on the variable selection
inference.

4.4. Model evaluations and predictions. We will now evaluate the in-sample fit of the
model by comparing the observed data to simulated data from the estimated benchmark model.
Given the observed auction-specific covariates, we simulated 100 new complete datasets for
each of 100 systematically sampled posterior draws of the model parameters. This gives us
10, 000 full datasets, each with bids from 1000 auctions.

Following BH, we compare the observed and simulated data through two summary statistics:
within-auction bid dispersion and cross-auction heterogeneity. The within-auction dispersion
is defined as the difference between the highest observed bid and the lowest bid divided by the
auctioned item’s book value, and cross-auction heterogeneity is investigated by histograms of
the bids divided by the corresponding book value in that auction. As we can see in Figures 6
and 7, the observed within-auction bid dispersion and the cross-auction heterogeneity are very
well captured by the model. This is in contrast to BH where the within-auction bid dispersion
is severely under-estimated and the cross-auction bid dispersion is over-estimated.

A more severe test of the model is to evaluate its out-of-sample predictions. To test this, we
use the estimated benchmark model in Section 5.3 to predict a fresh dataset of 50 additional
auctions of U.S. proof sets, all completed in the week directly following the estimation sample.
Given the covariates from these auctions, we simulated price distributions for each auction
in a similar way as above. The parameters are drawn from the posterior distribution, which
was computed by only using the previously analyzed 1000 auctions. Figures 8 and 9 display
the predictive distributions for the 50 out-of-sample auctions. Note that these distributions
have three components: i) a probability that the item is not sold (Pr(No)), ii) a point mass at
the minimum bid (Pr(Min)), which is the price when there is a single bidder in the auction,
and iii) a continuous price density when there is more than one bidder. The predictive price
distributions look reasonable and capture the observed prices very well in most cases. This
fact together with the good fit of the bid dispersion strongly indicates that our estimated eBay
auction model is quite accurate in explaining seller and bidder behavior at eBay.
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4.5. Economic implications. The winner’s curse is by far the most highlighted phenomenon
in common value auctions where bidders face effects from both information and competition
perspectives.4 More bidders lead to more competition which gives a bidder incentives to
submit a higher bid (competition effect). However, a bidder must also account for the risk
of overestimating the value if he wins, since his signal is then the highest signal among all
bidders. As such, a bidder should also lower his bid when facing more bidders (overestimation
effect). In equilibrium, the overestimation effect is always larger than the competition effect
and bidders correct for the winner’s curse by lowering their bids as the number of bidders
increases (Krishna, 2002); see Figure 10 for an illustration based on the representative auction
described in Section 3. The approximate counterpart to Figure 10 is given in Figure 11.
Figure 11 for the approximate case is quite similar to the exact case in Figure 10, except
for high signals located above a certain signal where the approximate bid functions intersect.
However, such high signals lie almost three standard deviations above the expected value, and
are therefore highly improbable. To investigate this more generally, let us look at the first
derivative of the approximate bid function with respect to n. This gives

(4.1) b′n(x) =
γκ

[

x− µ−
σθ(2+κ)√

κ

]

2
[

γ(n− 2) + 1 + κ
2

]2 .

It can be verified that the unconditional distribution of signals is given by X ∼ N(µ, (κ+1)σ2),
and, as such, x = µ+dσ

√
κ+ 1 represents signals that deviate from the expected value µ with

d standard deviations. By replacing x by µ+dσ
√
κ+ 1, the derivative of the approximate bid

function in (5.1) can be written as

b′n(x) =
γκσ

√
κ+ 1

[

d− θ(2+κ)√
κ(κ+1)

]

2
[

γ(n− 2) + 1 + κ
2

]2 ,

which is positive for any κ if d > θ(2+κ)√
κ(κ+1)

> θ(2+κ)
1+κ > θ = 1.96. According to the estimation

results in Table 5, let κ = 3. Then, b′n(x) > 0 for d > 2.83, showing that the winner’s curse is
present in the approximate bid function with a probability close to unity.

It is expected that more competition (an increased number of bidders) should increase
sellers’ revenue. The mechanism-design literature also suggests a bidder’s expected profit to
increase with the magnitude of his signal, see Gordy (1998). Nevertheless, counter-examples
are often available. For example, Matthews (1984) shows that the seller revenue can decrease
with an increasing number of bidders if the signals come from a Pareto distribution. Therefore,
it is interesting to present comparative statics on the bidder’s expected profit and expected
seller revenue using the hierarchical Gaussian model. To simulate the expected seller revenue
we utilize the same Monte Carlo techniques as in Gordy (1998).

In a second price common value auction, a bidder’s expected profit for a given signal x is
given by

(4.2) Π(x) =

∫ x

−∞
(v(x, y)− b(y)) fY |X(y|x) dy.

This integral can be solved by using Gaussian quadrature methods. As we can see in Figure 12,
the bidder’s expected profit increases with signals x, and decreases with more competition as n
increases. However, according to Figure 13, the bidder’s expected profits do not monotonically
increase with a higher precision in signals as κ decreases. By intuition, this is an expected

4See Thaler (1988) for a careful discussion.
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result. Gordy (1998) suggests that higher precision in signals only increase Π(x) to a certain
point and will eventually decrease Π(x) when signal precision becomes too narrow. In the
limit, as κ −→ 0, signals become perfectly precise. Thus, the true unknown value of the
object becomes common knowledge and the bidders face Bertrand competition, which results
in zero expected profits. The precision in signals of about κ = 1.5 was estimated to give the
highest expected profits for sufficiently high values of signals x. Lower and higher precision
from this point results in a decline of Π(x).

To compute the posterior distribution of the expected seller revenue, we found that 100000
auctions were good enough for convergence. Figures 14 and 15 show that the expected seller
revenue increases with n and µ as expected. In addition, we also noted that a higher variance
of the common value v decreases the expected seller revenue and increases a bidder’s expected
profit. Intuitively, the bidders’ fear of overestimation increases with the uncertainty in v which
makes them lower their bids. Overall, we find no evidence of pathological behavior whatsoever.

Finally, since entry into the eBay auction is stochastic, the seller faces two counter-acting
effects. First, the seller needs to post a sufficiently low minimum bid to encourage a sufficient
number of bidders to participate in the auction. Second, to protect himself from a very low
sale price, the seller also needs to post a sufficiently high minimum bid. A risk-neutral seller
will choose the minimum bid that maximizes his expected revenue, given by

E[Revenue] = Pr(Sale|r)E[Price|r] + (1− Pr(Sale|r))µ,

where µ is assumed to represent the seller’s valuation of the object if he fails to sell it. To ob-
tain the optimal minimum bid for a seller, we simulated 500 auctions from the representative
auction setup, described in Section 2.2, for each of a 1000 posterior draws from the variable se-
lection algorithm, giving a total of 500, 000 simulated expected revenues for the representative
auction. We then repeated this procedure for different values of the MinBid/BookV al ratio.
Figure 16 shows that the seller’s optimal minimum bid is obtained just above the book value
of the auctioned object. The expected seller revenue up to this point is fairly constant, so the
choice between lower minimum bids does not seem to be of any greater importance. In Figure
17, the probability intervals of the number of bidders shrink as the ratio of MinBid/BookV al
increases. Eventually, already at MinBid/BookV al = 1.1, the probability becomes nearly 1
for a zero number of bidders.

5. Conclusions

Our paper contributes to the technically challenging econometric analysis of (second price)
common value auctions. Building on the seminal work of Bajari and Hortacsu (2003), we
propose a Bayesian framework that can be used to analyze auction datasets on a routine
basis using a prior distribution with a small number of easily specified prior hyperparameters.
One of the key features of our approach is a linear approximation of the otherwise highly
complicated equilibrium bid function. The approximate bid function is analytically invertible
and differentiable and can therefore be used for a fast and numerically stable evaluation of
the likelihood function. Our proposed posterior sampling algorithm has the ability to handle
variable selection among the model’s covariates. The algorithm is documented to be very
efficient on real and simulated data.

We collected a high-quality dataset from coin auctions on eBay and analyzed it with both
reduced form regressions and a structural model for second price common value auctions. The
results pointed strongly to book values as the most important predictor of common values.
The minimum bid turned out to be the main determinant of the number of bids in an auction.
Interestingly, the detailed seller information provided by eBay, and eBay’s feedback score
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system seemed to be of very little value to the buyers. These covariates did consistently get
a low posterior inclusion probability in the estimations. Finally, unopened coin envelopes
attracted a high bidding activity and were sold at unusually high prices.

The estimated eBay model captured the within-auction bid dispersion and the cross-auction
heterogeneity very well. A more severe test was to evaluate the out-of-sample predictions.
The predictive price distributions looked reasonable and captured the observed prices very
well in most cases. Overall, this fact together with the good fit of the bid dispersion indicates
strongly that our estimated eBay auction model is quite accurate in explaining seller and
bidder behavior at eBay.

Finally, possible extensions for future research could be to take into account and model
cross-auction heterogeneity. A careful inspection of the bids revealed that some bids are only
a tiny fraction of the object’s book value, and cannot realistically represent serious final bids.
One possible explanation could stem from the presence of incremental bidding. Ockenfels
and Roth (2006) argue that late bidding may also arise out of equilibrium as a best reply to
incremental bidding. Another possibility could be the effect that bidders are searching the
eBay marketplace for low-price auctions, see Sailer (2006) for a non-parametrical identification
of bidding costs in settings where the bidder searches with a reservation bid for low-price
auctions. Other possible extensions include auctions with both a private and a common value
element of the object, multiunit objects, or auctions with risk-averse bidders that we do not
cover in this paper.
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Appendix A. The linear approximation of the bid function

We first focus on the case with a known number of bidders, n, and then generalize the
results to the case with stochastic entry. The derivation of the linear approximation is divided
into three steps.

Step 1. By substituting t = x−v√
κσ

, the bid function for a known number of bidders becomes

(A.1) b(x) = x−
√
κσ

∫∞
−∞ te−t2Φn−2(t)e−

1
2σ2 (x−

√
κσt−µ)2 dt

∫∞
−∞ e−t2Φn−2(t)e−

1
2σ2 (x−

√
κσt−µ)2 dt

,

where Φ(·) is the standard normal cdf .

Step 2. Let h(t|γ, θ) = e−γ·(t−θ)2 be the approximating function to the standard normal
distribution function Φ(t) on [−a, a] (see Figure 18). The approximation error outside this
interval is likely to only have a minor effect on the approximation of b(x), because we choose a
in the tails of the signal density (see later). The approximation constants γ and θ are obtained
by minimizing the maximum divergence between h(t|γ, θ) and Φ(t) over [−a, a], that is,

(γ̂, θ̂) = min
γ,θ

(

max
t

|h(t|γ, θ)− Φ(t)|
)

.

For a = 2, we obtain

(γ̂, θ̂) = (0.1938, 1.9600).

Figure 18 shows that the strictly increasing Φ(t) is well approximated by the Gaussian density
at most values over the target domain [−2, 2]. The figure also shows that choosing a = 1 gives
a worse approximation in the tails, and a = 3 does somewhat better in the tails than a = 2,
but loses out in the main part of the distribution. The posterior inferences in the eBay data
used in Section 4 are strikingly similar for a = 1, 2 or 3, but the value a = 2 gave the best
approximation of the exact bid function; results are available from the authors upon request.
Thus, we use a = 2 in this work.

Step 3. Replacing Φ(t) by h(t|γ̂, θ̂), the approximated bid function becomes

b(x) ≈ x−
√
κ · σ ·

∫∞
−∞ t · e−t2 · e−(n−2)γ̂(t−θ̂)2 · e−

1
2σ2 ·(x−

√
κσt−µ)2 dt

∫∞
−∞ e−t2 · e−(n−2)γ̂(t−θ̂)2 · e−

1
2σ2 ·(x−

√
κσt−µ)2 dt

.

By completing the squares of the exponential functions, the bid function b(x) can be simplified
to

(A.2) b(x) ≈ x−
√
κ · σ ·

∫∞
−∞ t · e−m1(t−m2)2 dt
∫∞
−∞ e−m1(t−m2)2 dt

= x−
√
κ · σ ·

E(t)

1
= x−

√
κ · σ ·m2,

where m1 = 1+(n−2)γ̂+ κ
2 , and m2 =

(n−2)γ̂θ̂+
√

κ(x−µ)
2σ

1+(n−2)γ̂+κ
2

. Note that the constants of the normal

kernel in the numerator and the denominator cancel out. Substituting the expression for m2

gives the approximate bid function for a known number of bidders. If n = 2, then Φn−2(t) = 1,
and the bid function in A.1 can be computed exactly, and equals the approximate solution in
(A.2).
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Turning to the model with stochastic entry, it is straightforward to show that the same type
of approximations can be used for the minimum bid in (2.2)

r(x⋆, λ) ≈
∞
∑

n=1

pn(λ) (cr + ωrµ+ (1− ωr)x
⋆) ,

which can be solved for x⋆ as

x⋆(r, λ) ≈
r −

∑∞
n=1(cr + µωr)pn(λ)

∑∞
n=1(1− ωr)pn(λ)

.

The same approach cannot be used to approximate the bid function in (2.1). We could do the
approximation term by term in the summation, but then the bid function can no longer be
inverted analytically. One way of proceeding is to note that the bid function can be expressed
as

(A.3) b(x) =
En|λ [(n− 1)g1(n)]

En|λ [(n− 1)g2(n)]
,

where g1(n) =
∫∞
−∞ v ·Fn−2

x|v (x|v)·f2
x|v(x|v)·fv(v)dv, g2(n) =

∫∞
−∞ Fn−2

x|v (x|v)·f2
x|v(x|v)·fv(v)dv,

and En|λ denotes the expectation with respect to the Poisson distribution of the number of
bidders, n. A first-order Taylor expansion of (n− 1)g1(n) and (n− 1)g2(n) around n = λ then
gives

(A.4) b(x) =
En|λ [(n− 1)g1(n)]

En|λ [(n− 1)g2(n)]
≈

g1(λ)

g2(λ)
,

where the ratio g1(λ)/g2(λ) can now be approximated with the linear approximation in (2.6)
with n = λ. Figure 1 and the estimation results in Section 4.3 verify that this gives quite
an accurate approximation of the true bid function. This is because g1(n) and g2(n) are very
similar functions and thus, the approximation errors in the numerator and denominator in
(A.4) cancel out (see Tierney and Kadane 1986 for similar results in a more general setting).

Appendix B. A generalization of the MH algorithm

Starting with George and McCulloch (1993) and Smith and Kohn (1996), there has been a
number of algorithms that simultaneously draw the regression coefficients from the posterior
and does variable selection, all in a single run of the sampler. In particular, Nott and Leonte
(2004) propose an efficient algorithm for variable selection in generalized linear models (GLM).
Nott and Leonte’s algorithm requires that the gradient and hessian matrix are available in
closed form (which is the case for GLMs). The algorithm presented below is of similar form,
but can be applied to any problem as long as the likelihood and prior can be evaluated
numerically.

We present the algorithm for a general setting where β contains all r model parameters
and D denotes the available data. Consider now setting a subset of the elements in β to
zero (any other value is also possible). In a regression situation, this is clearly equivalent to
selecting a subset of the covariates. Let J = (j1, ..., jr) be a vector of binary indicators such
that ji = 0 iff the ith element of β is zero. We can view these indicators as a set of new
parameters. For simplicity, we shall here assume that the elements of J are independent a
priori with Pr(ji) = π for all i, so that π is the prior probability of including the ith covariate
in the model.5 The following algorithm samples β and J simultaneously using an extended

5A perhaps better way of viewing this is that the prior on the coefficients is given by a two-component mixture
density with one of the components degenerated at zero (Smith and Kohn, 1996).



PAPER I 17

Metropolis-Hastings algorithm. The algorithm uses the following proposal density

f(βp,Jp|βc,Jc) = g(βp|Jp, βc)h(Jp|βc,Jc),

where βp and Jp are the proposed values for β and J , βc and Jc are the current values for β
and J , h is the proposal distribution for J , and g is the proposal density for β conditional
on Jp. The Metropolis-Hastings acceptance probability then becomes

a[(βc,Jc) → (βp,Jp)] = min

(

1,
p(D|βp,Jp)p(βp|Jp)p(Jp)/g(βp|Jp, βc)h(Jp|βc,Jc)

p(D|βc,Jc)p(βc|Jc)p(Jc)/g(βc|Jc, βp)h(Jc|βp,Jp)

)

,

where p(D|βp,Jp) is the likelihood of the observed data conditional on β with zeros given by
Jp, p(β|J ) is the prior of the non-zero elements of β, and p(J ) is the prior probability of J .

We will propose Jp using the two updating steps: i) randomly picking a small subset of Jp

and then always proposing a change of the selected indicators (metropolized move), and ii)
randomly picking a pair of covariates (one currently in the model and the other currently not
in the model) and proposing a switch of their corresponding indicators (switch move). Our
experience is that these two simple updating rules work well in practise. Note also that the
acceptance probability for these updates simplifies to

(B.1) a[(βc,Jc) → (βp,Jp)] = min

(

1,
p(D|βp,Jp)p(βp|Jp)p(Jp)/g(βp|Jp, βc)

p(D|βc,Jc)p(βc|Jc)p(Jc)/g(βc|Jc, βp)

)

.

More sophisticated ways of proposing can easily be implemented, e.g. the adaptive scheme in
Nott and Kohn (2005), where the history of J -draws is used to adaptively build up a proposal
for each indicator.

The proposal density g(βp|Jp, βc) is obtained as follows. First, by including all covariates,

we approximate the posterior with the t(β̂,−H−1, h) density described in Section 3.2 for the
case without variable selection. We then propose βp|Jp from this multivariate t distribution
conditional on the zero restrictions dictated by Jp. Assume for notational simplicity that the
elements in β have been rearranged so that β = (β′

0, β
′
p)

′ where β0 are the p0 zero-restricted

elements of β under Jp, and βp are the non-zero parameters. Decompose β̂ and P = −H−1

conformably with the decomposition of β as

β̂ = (β̂′
0, β̂

′
p)

′

P̂ =

(

P00 P0p

Pp0 Ppp

)

.

Using results from the conditional distributions of subsets of multivariate-t variables (see e.g.
Bauwens, Lubrano and Richard (1999, Theorem A.16)), we can now propose βp conditional
on β0 = 0 from

βp|(β0 = 0) ∼ t[β̂p + P−1
pp Pp0β̂0, Ppp, c(β0), v + p0].

c(β0) = 1 + β̂′
0(P̂00 − P̂0pP̂

−1
pp P̂p0)β̂0,

using the parametrization of the t distribution in Bauwens et al. (1999). A similar algorithm
has recently been suggested by Giordani and Kohn (2008) in their adaptive sampling frame-
work. They propose to use a mixture of multivariate normals as a proposal density rather
than a multivariate t. They document good performance on simulated data.
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Appendix C: Description of eBay covariates

The following list describes each covariate for our collected data of 1000 eBay auctions:

Book Value: The price of the item as reported by the large Internet coin seller Golden
Eagle Coins at http://www.goldeneaglecoin.com.

Minor Blemish: Dummy variable, coded as 1 if the proof set had a minor damage on
the box or packaging according to careful subjective assessment of the item using the seller’s
detailed descriptions and pictures.

Major Blemish: Dummy variable, coded as 1 if at least one coin were missing or if other
major imperfections were present.

Seller’s Feedback Score: Buyer’s rating of the seller in terms of reliability and timeli-
ness in delivery.

Seller’s Negative Feedback Score: Buyer’s negative ratings of the seller.

PowerSeller: Dummy variable, coded to be 1 if the seller is ranked among the most successful
sellers in terms of product sales and customer satisfaction on eBay.

ID Seller: Dummy variable, coded to be 1 if the seller’s ID is verified. In the ID verifi-
cation process, members’ identity is established by cross-checking their contact information in
consumer and business databases, which helps both buyers and sellers to trust each other.

UnOpen: Dummy variable, coded to be 1 if the proof set is delivered sealed and unopened
in its original envelope. Most common for proof sets that originate from the fifties or sixties.

LargeNeg: Dummy variable, coded to be 1 if the seller’s negative feedback score is at least
one per cent of the seller’s overall feedback score.
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Table 1. Comparing the inferences from the exact and approximate bid func-
tions on simulated data.

Parameter Mean Std Dev Incl prob
Exact Approx Exact Approx Exact Approx

lnκ −1.131 −1.122 0.115 0.112 1.000 1.000
β1 0.996 0.995 0.005 0.005 1.000 1.000
β2 −0.134 −0.136 0.032 0.035 0.911 0.892
β3 0.953 0.949 0.013 0.013 1.000 1.000
β4 −0.300 −0.304 0.072 0.069 0.908 0.911
β5 1.253 1.241 0.101 0.105 1.000 1.000
β6 0.221 0.224 0.021 0.021 1.000 1.000
β7 −0.008 −0.005 0.033 0.029 0.119 0.086
β8 −2.358 −2.369 0.166 0.166 1.000 1.000

Note: c = cµ = cσ = cλ = n, κ̄ = 0.25, g = 4, and π = 0.2.

Table 2. Summary statistics of the eBay data

Variable Mean Std Dev Min Max µ σ λ
Book Value($) 32.30 37.26 7.50 399.50 x x x
Price/Book Value, no Blemish 0.76 0.30 0.16 3.63
Price/Book Value, Blemish 0.61 0.24 0.05 1.20
Minor Blemish 0.09 x x x
Major Blemish 0.03 x x x
Number of Bidders 3.74 2.70 0 15.00
Minimum Bid/Book Value 0.35 0.34 0 1.34 x
Seller’s Feedback Score 2427 2883 0 12568
PowerSeller 0.53 x x x
ID Seller 0.06 x x x
Unopen 0.10 x x x
%Sold 0.86
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Table 3. Posterior inference for the reduced form regressions

Coeff Covariate Mean Stdev t-ratio Incl Prob IF
κ 5.499 − − − −

µ Const 24.913 0.298 83.710 1.000 4.8320
BookStd 0.698 0.008 89.448 1.000 3.017
Book*Power 0.030 0.012 2.523 0.645 2.321
Book*ID −0.003 0.022 −0.156 0.041 −

Book*Unopen 0.249 0.017 14.616 1.000 2.964
Book*MinBlem 0.032 0.017 1.841 0.184 −

Book*MajBlem −0.234 0.022 −10.793 1.000 2.691
Book*LargNeg −0.004 0.013 −0.270 0.037 −

σε 5.902 0.170 − − 2.338
R2 94.6%

σ Const 2.553 0.060 42.562 1.000 2.307
LBookStd 1.961 0.075 26.299 1.000 2.175
LBook*Power −0.017 0.033 −0.511 0.056 −

LBook*ID 0.089 0.081 1.090 0.076 −

LBook*Unopen 0.263 0.044 5.927 1.000 1.790
LBook*MinBlem 0.044 0.058 0.764 0.056 −

LBook*MajBlem −0.160 0.076 −2.099 0.259 −

LBook*LargNeg 0.083 0.048 1.738 0.167 −

σε 1.279 0.036 − − 2.3156
R2 56.1%

λ Const 1.056 0.023 46.978 1.000 1.694
Power −0.031 0.037 −0.859 0.010 −

ID −0.401 0.093 −4.299 0.997 1.304
Unopen 0.444 0.049 9.0538 1.000 1.379
MinBlem −0.027 0.055 −0.486 0.005 −

MajBlem −0.235 0.090 −2.615 0.111 1.615
LargeNeg 0.085 0.056 1.525 0.011 −

LBookStd −0.113 0.028 −3.998 0.973 1.416
MinBidStd −1.894 0.074 −25.675 1.000 2.797

Upper: linear regression with µ̂ as dependent variable.

Middle: linear regression with lnσ̂2 as dependent variable.

Lower: Poisson regression with the number of bidders with a non-zero bid as dependent variable.

µ̂ and σ̂2 are the MLE conditional on the posterior mean of κ from the structural model.
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Table 4. Posterior inference for the Tobit price regression

Covariate Mean Stdev t-ratio Incl Prob IF
Const 27.177 0.230 95.824 1.000 1.789
BookStd 0.757 0.007 86.353 1.000 1.796
Book*Power −0.005 0.009 −0.557 0.039 −

Book*ID 0.032 0.021 1.676 0.118 −

Book*Unopen 0.321 0.018 17.322 1.000 2.063
Book*MinBlem 0.003 0.014 0.291 0.035 −

Book*MajBlem −0.151 0.023 −6.673 1.000 1.601
Book*LargNeg 0.006 0.013 0.398 0.032 −

σε 6.664 0.158 − − 1.938

Tobit regressions with auction prices possibly censored at the minimum bid as dependent variable.
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Table 5. Posterior inference for the structural model with the approximate bid function

Parameter Covariate Mean St Dev t-ratio Incl prob IF

κ − 5.499 0.772 − − 7.889
µ Const 28.272 0.245 -14.014 1.000 6.062

BookStd 0.740 0.010 61.024 1.000 3.615
Book*Pow 0.033 0.015 2.260 0.064 −

Book*ID 0.128 0.036 2.775 0.900 4.197
Book*Unopen 0.372 0.029 12.023 1.000 3.771
Book*MinBlem -0.022 0.021 -1.594 0.010 −

Book*MajBlem -0.252 0.030 -8.277 1.000 3.306
Book*LargNeg -0.003 0.018 0.635 0.004 −

log(σ2) Const 3.997 0.071 54.553 1.000 7.018
LogBookStd 1.262 0.038 29.549 1.000 5.003
LBook*Pow 0.043 0.018 2.810 0.220 −

LBook*ID 0.108 0.040 3.173 0.481 3.946
LBook*Unopen 0.211 0.027 6.947 1.000 4.862
LBook*MinBlem -0.028 0.027 -0.902 0.012 −

LBook*MajBlem 0.036 0.040 1.026 0.007 −

LBook*LargNeg 0.035 0.021 1.303 0.017 −

log(λ) Const 1.193 0.021 40.055 1.000 3.634
Pow 0.009 0.035 0.163 0.005 −

ID -0.177 0.110 -1.656 0.030 −

Unopen 0.323 0.048 6.711 1.000 3.387
MinBlem -0.049 0.048 -1.222 0.008 −

MajBlem -0.151 0.085 -2.097 0.019 −

LargNeg 0.055 0.049 0.912 0.012 −

LogBookStd -0.038 0.027 -1.473 0.018 −

MinBidStd -1.433 0.056 -22.291 1.000 3.521

Note: c = n, κ̄ = 0.25, g = 4, and π = 0.2. The last column displays the inefficiency factors.
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Table 6. Posterior inference for the structural model with the exact bid function

Parameter Covariate Mean St Dev t-ratio Incl prob IF

κ - 4.479 0.345 - - 5.129
µ Const 29.345 0.409 -8.558 1.000 35.355

BookStd 0.756 0.015 50.200 1.000 10.767
Book*Pow 0.049 0.017 2.202 0.351 -
Book*ID 0.120 0.054 2.393 0.078 -
Book*Unopen 0.464 0.037 12.044 1.000 5.388
Book*MinBlem -0.033 0.022 -2.044 0.005 -
Book*MajBlem -0.224 0.029 -6.723 1.000 5.028
Book*LargNeg -0.029 0.024 0.368 0.016 -

log(σ2) Const 4.474 0.050 112.648 1.000 46.660
LogBookStd 1.536 0.034 43.820 1.000 6.607
LBook*Pow 0.053 0.021 3.902 0.507 31.367
LBook*ID 0.091 0.040 3.409 0.125 -
LBook*Unopen 0.247 0.023 9.574 1.000 8.293
LBook*MinBlem 0.005 0.019 -0.228 0.009 -
LBook*MajBlem -0.007 0.035 -0.283 0.009 -
LBook*LargNeg 0.045 0.017 2.260 0.239 -

log(λ) Const 1.274 0.024 40.934 1.000 4.631
Pow -0.028 0.040 -0.792 0.008 -
ID -0.133 0.111 -1.405 0.010 -
Unopen 0.322 0.048 6.566 1.000 3.999
MinBlem -0.067 0.055 -2.067 0.006 -
MajBlem -0.162 0.089 -1.738 0.023 -
LargNeg 0.064 0.047 0.110 0.010 -
LogBookStd -0.119 0.029 -4.371 0.986 6.691
MinBidStd -1.587 0.079 -21.566 1.000 7.088

Note: c = n, κ̄ = 0.25, g = 4, and π = 0.2. The last column displays the inefficiency factors.
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Table 7. Sensitivity analysis - Posterior means

Coeff Covariate Bench c = n/16 c = n/64 c = n/256 π = .5 δ = 0
κ 5.499 5.875 5.626 3.535 5.519 7.165
µ Const 28.272 28.165 28.138 28.330 28.175 28.469

BookStd 0.740 0.732 0.714 0.625 0.738 0.743
Book*Power 0.033 0.031 0.031 0.022 0.031 0.033
Book*ID 0.128 0.124 0.106 0.075 0.131 0.134
Book*Unopen 0.372 0.361 0.340 0.275 0.369 0.369
Book*MinBlem −0.022 −0.025 −0.021 −0.021 −0.024 −0.034
Book*MajBlem −0.252 −0.252 −0.252 −0.238 −0.252 −0.247
Book*LargNeg −0.003 −0.002 0.002 −0.003 −0.005 0.007

σ Const 3.997 4.010 4.006 3.878 3.972 4.197
LBookStd 1.262 1.214 1.114 0.932 1.263 1.426
LBook*Power 0.043 0.046 0.043 0.037 0.047 0.040
LBook*ID 0.108 0.096 0.069 0.009 0.111 0.111
LBook*Unopen 0.211 0.190 0.171 0.133 0.201 0.175
LBook*MinBlem −0.028 −0.024 −0.004 0.039 −0.031 0.012
LBook*MajBlem 0.036 0.039 0.048 0.067 0.027 −0.053
LBook*LargNeg 0.035 0.039 0.040 0.046 0.041 0.010

λ Const 1.193 1.187 1.180 1.174 1.192 1.203
Power 0.009 0.001 0.006 0.007 −0.012 0.022
ID −0.177 −0.135 −0.075 −0.066 −0.178 −0.183
Unopen 0.323 0.330 0.335 0.334 0.327 0.320
MinBlem −0.049 −0.051 −0.051 −0.060 −0.055 −0.015
MajBlem −0.151 −0.157 −0.149 −0.156 −0.162 −0.248
LargeNeg 0.055 0.073 0.069 0.048 0.075 0.054
LBookStd −0.038 −0.029 −0.014 −0.057 −0.041 0.022
MinBidShare −1.433 −1.449 −1.478 −1.537 −1.435 −1.525

The bench column displays the posterior mean of each parameter (conditional on inclusion) for the

benchmark model, the other columns are results for variations of the benchmark model.

Bold numbers indicate that the estimate lies outside the benchmark model’s 95% posterior

credibility interval.
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Table 8. Sensitivity analysis - Posterior inclusion probabilities

Coeff Covariate Bench c = n/16 c = n/64 c = n/256 π = .5 δ = 0
κ − − − − − −

µ Const 1.000 1.000 1.000 1.000 1.000 1.000
BookStd 1.000 1.000 1.000 1.000 1.000 1.000
Book*Power 0.064 0.384 0.501 0.325 0.297 0.046
Book*ID 0.900 0.918 0.938 0.790 0.919 0.763
Book*Unopen 1.000 1.000 1.000 1.000 1.000 1.000
Book*MinBlem 0.010 0.045 0.070 0.135 0.041 0.030
Book*MajBlem 1.000 1.000 1.000 1.000 1.000 1.000
Book*LargNeg 0.004 0.018 0.051 0.061 0.016 0.007

σ Const 1.000 1.000 1.000 1.000 1.000 1.000
LBookStd 1.000 1.000 1.000 1.000 1.000 1.000
LBook*Power 0.220 0.671 0.804 0.913 0.600 0.149
LBook*ID 0.481 0.620 0.403 0.076 0.759 0.664
LBook*Unopen 1.000 1.000 1.000 1.000 1.000 1.000
LBook*MinBlem 0.012 0.038 0.044 0.372 0.050 0.006
LBook*MajBlem 0.007 0.039 0.112 0.625 0.030 0.016
LBook*LargNeg 0.017 0.113 0.289 0.824 0.098 0.006

λ Const 1.000 1.000 1.000 1.000 1.000 1.000
Power 0.005 0.023 0.045 0.058 0.014 0.005
ID 0.030 0.074 0.062 0.097 0.112 0.032
Unopen 1.000 1.000 1.000 1.000 1.000 1.000
MinBlem 0.008 0.022 0.045 0.117 0.031 0.004
MajBlem 0.019 0.067 0.124 0.305 0.064 0.295
LargeNeg 0.012 0.050 0.078 0.103 0.042 0.003
LBookStd 0.018 0.035 0.041 0.632 0.053 0.006
MinBidShare 1.000 1.000 1.000 1.000 1.000 1.000

The bench column displays the Posterior inclusion probabilities for the benchmark model, the

other columns are results for variations of the benchmark model. Bold numbers indicate a

difference from bench by more than 0.1.
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Figure 1. Examining the accuracy of the approximate bid function in the
Gaussian model for different configurations of parameter values. The vertical
lines in the figures mark out the mean (thick dotted) ± 1 and 2 standard
deviations (thin dotted) in the unconditional distribution of the signals, x.
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Figure 2. Posterior variable selection probabilities for the simulated data with
different values of c = cµ = cσ = cλ on the horizontal axis. κ̄ = 0.25, g = 4
and π = 0.2 were used in all simulations.
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Figure 3. The relation between Bayesian t-ratios and the posterior inclusion
probabilities for the simulated datasets. Each subplot corresponds to a different
value of the prior hyperparameter c = cµ = cσ = cλ.
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Figure 5. The unconditional standard deviation of bids as a function of the
variance scale parameter κ.
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Figure 6. Posterior predictive check of the within-auction dispersion. The
within-auction dispersion is defined as the difference between the highest ob-
served bid and the lowest bid divided by the auctioned item’s book value.
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figure displays histograms of the bids divided by the corresponding book value
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Figure 8. Out-of-sample predictions for the first 25 auctions in the evaluation
sample. Each subplot displays the realized price marked out by a star (if
the item is sold), the minimum bid (vertical dotted line), and the book value
(vertical dashed line). Pr(No) and Pr(Min) are the predictive probabilities of
no bids and a single bid (in which case the winner pays the seller’s posted
minimum bid), respectively. The solid curve is the predictive price density
conditional on at least two bids.
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Figure 9. Out-of-sample predictions for the last 25 auctions in the evaluation
sample. Each subplot displays the realized price marked out by a star (if
the item is sold), the minimum bid (vertical dotted line), and the book value
(vertical dashed line). Pr(No) and Pr(Min) are the predictive probabilities of
no bids and a single bid (in which case the winner pays the seller’s posted
minimum bid), respectively. The solid curve is the predictive price density
conditional on at least two bids.
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Figure 10. The winner’s curse effect of the exact bid function with a stochas-
tic number of bidders. Dotted vertical lines represent the positions of different
number of standard deviations from the expected signal µ in the unconditional
distribution of x, and the solid vertical line represent the position of µ. The
representative auction, described in Section 3, is used as a benchmark.
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Figure 11. The winner’s curse effect of the approximate bid function with
a stochastic number of bidders. Dotted vertical lines represent the positions
of different number of standard deviations from the expected signal µ in the
unconditional distribution of x, and the solid vertical line represent the position
of µ. The representative auction, described in Section 3, is used as a benchmark.
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Figure 12. The bidder’s expected profit for a different number of expected
bidders λ. The representative auction, described in Section 3, is used as a
benchmark.
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Figure 13. The bidder’s expected profit for different values of κ, the variance
scale parameter for signals. The representative auction, described in Section
3, is used as a benchmark.
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Figure 14. The expected seller revenue using the exact bid function. Each
curve corresponds to a different number of bidders n. The representative auc-
tion, described in Section 3, is used as a benchmark.
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Figure 15. The expected seller revenue using the approximate bid function.
Each curve corresponds to a different number of bidders n. The representative
auction, described in Section 3, is used as a benchmark.
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Figure 16. Posterior distribution of approximate expected seller revenue in
the eBay data as a function of the seller’s posted minimum bid divided by the
book value. All other covariates are fixed to their values in the representative
auction. The approximate bid function was used. It is assumed that the seller
obtains a revenue equal to µ if the object is not sold.
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Figure 17. Posterior distribution of the number of bidders in the eBay data
as a function of the seller’s posted minimum bid divided by the book value.
All other covariates are fixed to their values in the representative auction. The
approximate bid function was used.
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BAYESIAN INFERENCE IN STRUCTURAL SECOND-PRICE AUCTIONS

WITH GAMMA DISTRIBUTED COMMON VALUES

BERTIL WEGMANN

Abstract. Our paper explores possible limitations of the Gaussian model in Wegmann and
Villani (2011) due to intrinsically non-negative values. The relative performance of the Gauss-
ian model is compared to an extension of the Gamma model in Gordy (1998) within the
symmetric second price common value model. A key feature in our approach is the deriva-
tion of an accurate approximation of the bid function for the Gamma model, which can be
inverted and differentiated analytically. This is extremely valuable for fast and numerically
stable evaluations of the likelihood function. The general MCMC algorithm in WV is uti-
lized to estimate WV’s eBay dataset from 1000 auctions of U.S. proof coin sets, as well as
simulated datasets from the Gamma model with different degrees of skewness in the value
distribution. The Gaussian model fits the data slightly better than the Gamma model for the
particular eBay dataset, which can be explained by the fairly symmetrical value distribution.
The superiority of the Gamma to the Gaussian model is shown to increase for higher degrees
of skewness in the simulated datasets.

Keywords: Bayesian variable selection, Bid function approximation, eBay, Gamma model,
Gaussian model, Markov Chain Monte Carlo, Non-negative common values.

1. Introduction

Structural econometric models of auction data have become increasingly common in the
literature; see e.g. Bajari (2005) and Paarsch and Hong (2006) for recent surveys. As empha-
sized by Laffont and Vuong (1996), auction models are particularly well suited for structural
estimation since many datasets are available and well-defined game forms exist. This is es-
pecially true in the field of Internet auctions, such as eBay, where high quality datasets are
readibly available.

Most of the work in econometric models of auction data analyzes either the private or the
common value model. Within the private value paradigm, each bidder knows his own valuation
of the object and will not be affected by knowing the valuations of the other bidders. In a
common value auction the value of the object is unknown but the same for all bidders, and
each bidder uses his private information (the signal) to estimate the unknown value. Good
examples of structural econometric auction models are Paarsch (1992), Elyakime, Laffont,
Loisel and Vuong (1997), and Bajari and Hortacsu (2003, henceforth BH).

Within each paradigm, the values of the objects are often assumed to follow a certain
distribution that is commonly known to all bidders. In most empirical work, the outcomes from
one or several value distributions are treated in isolation without comparing the performance
between the different distributions. Our paper assumes the common value model, and shows
how the relative performance between two different distributional setups differs substantially
for various types of data.

BH model Internet coin auctions at eBay as independent second price common value auc-
tions with stochastic entry, and assume symmetric bidders and a symmetric Nash equilibrium.

Department of Statistics, Stockholm University, SE-106 91 Stockholm. E-mail: bertil.wegmann@stat.su.se.
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The values of the object are assumed to follow a hierarchical Gaussian model where the mean,
variance, and expected number of bidders are functions of covariates. Wegmann and Villani
(2011, henceforth WV) refine and extend the analysis in BH. WV derive an accurate linear
approximation of the bid function that can be inverted and differentiated analytically. This
is extremely valuable for fast and numerically stable evaluations of the likelihood function.
Moreover, WV use a general Metropolis-Hastings algorithm for Bayesian variable selection to
quantify the importance of individual covariates in the model. The model appears to fit the
data well, and the out-of-sample predictive performance is good.

Since values are intrinsically non-negative, it can be argued that the assumption of normally
distributed values in BH is untenable. The Gaussian model is nevertheless likely to be a
very useful approximation when the coefficient of variation (CV) of the value distribution is
moderate or small, so that the distribution has a small probability on negative values. The
aim of this paper is to explore this issue by contrasting the Gaussian model with an extension
of the Gamma model in Gordy (1998). We use the same dataset as in WV from 1000 eBay
auctions of U.S. proof coin sets. Other distributions than Gamma could also be used on (0,∞),
but since the Gamma model is closed under multiplication, we are able to derive a suitable and
accurate approximate solution of the bid function for the Gamma case. This approximation
is non-linear, but of a simple form that can be inverted and differentiated analytically.

The parameter estimates for the two models are nearly the same, in both signs and mag-
nitudes, but the Gaussian model performs slightly better in predicting auction prices and
the MCMC algorithm is more efficient in the Gaussian case. The reason why the Gaussian
distribution does so well is that the inferred signals in this particular eBay dataset are fairly
symmetric and essentially bounded away from zero. To explore the limitations of the Gaussian
model for other possible datasets, we conducted a simulation study where the data generating
process had increasingly more skewness in the signals. As expected, the Gamma model is
shown to be superior to the Gaussian model in this case, and the superiority is increasing for
higher degrees of skewness.

2. Two hierarchical models

Based on the theoretical considerations in BH, we model eBay auctions as independent
second-price auctions with stochastic entry. To account for asymmetric or positive-valued
distributions, we extend the Gamma model in Gordy (1998) and compare this model to the
Gaussian model in WV.

2.1. General setup. Assume that the seller sets a publicly announced minimum bid (public
reserve), r ≥ 0, and that risk-neutral bidders compete for a single object using the same
bidding strategy (symmetric equilibrium). The value of the object, v, is unknown and the
same for each bidder at the time of bidding, but a prior distribution for v is shared by the
bidders. To estimate v, each bidder relies upon her own private information of the object to
receive a private signal x from the same distribution x|v (symmetric bidders). Let fv(v) denote
the probability density function of v, fx|v(x|v) the conditional probability density function of
x|v, and Fx|v(x|v) the conditional cumulative distribution function of x|v. Since the auction
involves symmetric bidders and a symmetric equilibrium, we can focus on a single bidder
without loss of generality. The bid function can be written as (see BH for an implicit solution)

(2.1) b(x, λ) =















∑
∞

N=2(N−1)·pN−1(λ)·
∫
v
v·FN−2

x|v
(x|v)·f2

x|v
(x|v)·fv(v) dv

∑
∞

N=2(N−1)·pN−1(λ)·
∫
v
FN−2
x|v

(x|v)·f2
x|v

(x|v)·fv(v) dv
, if x ≥ x⋆

0, otherwise,
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where pN−1(λ) is the Poisson probability of (N − 1) potential bidders in the auction with λ
as the expected value of the Poisson entry process. Bidders participate with a positive bid if
their signal, x, is above the cut-off signal level x⋆. Given an arbitrary bidder with signal x, let
y be the maximum signal of the other (N − 1) bidders. The cut-off signal level is then given
in implicit form as (Milgrom and Weber, 1982)

x⋆(r, λ) = inf
x
(ENE[v|X = x, Y < x,N ] ≥ r) ,

which gives the minimum bid, r, as

(2.2) r(x⋆, λ) =
∞
∑

N=1

pN (λ) ·

∫

v v · F
N−1
x|v (x⋆|v) · fx|v(x

⋆|v) · fv(v) dv
∫

v F
N−1
x|v (x⋆|v) · fx|v(x⋆|v) · fv(v) dv

.

Note that the seller’s publicly announced minimum bid, r, is only written as a function of the
cut-off signal for tractability.

In both the Gaussian and the Gamma models, presented below, the expected value µ and
the variance σ2 exist in the distribution of v. Moreover, E[x|v] = v, and E

[

1
x |v
]

= 1
v in the

Gaussian and Gamma models, respectively. Similarly to BH, we specify regression models for
(µj , σ

2
j , λj) in auction j as

µj = z′µjβµ

σ2j = exp
(

z′σjβσ
)

λj = exp
(

z′λjβλ
)

,(2.3)

where zj = (z′µj , z
′
σj , z

′
λj)

′ are auction-specific covariates in auction j.
The likelihood function of bids is complicated since some bids are unobserved. First, poten-

tial bidders with signals x below x⋆ do not place any bid. Second, the highest bid is usually
not observed because of eBay’s proxy bidding system (see BH for a detailed description). The
bid distribution for a single auction is of the form:

(2.4) fb (b|β,η, r, z, v) = fx|v [φ (b) |β,η, r, z, v]φ
′

(b) ,

where φ (b) is the inverse bid function, and η is a vector of additional parameters in the model.
Let n be the number of participating bidders who submit a positive bid above r in an arbitrary
auction, and let b = (b2, b3, . . . , bn) be the vector of observed bids where b2 > b3 > · · · > bn.
Then, the likelihood function for an arbitrary auction is given by

fb (b2, b3, . . . , bn|β,η, r, z)

=
N̄
∑

i=n

pi(λ) ·

∫ ∞

−∞
Fx|v (x

⋆|β,η, v)i−n ·
{

1− Fx|v [φ (b2) |β,η, v]
}I(n≥1)

×

n
∏

i=2

fb (bi|β,η, r, z, v) · fv(v|β)dv,(2.5)

where I (n ≥ 1) is an indicator variable for at least one bidder in the auction, and N̄ is an
upper bound for the total number of potential bidders. For the sake of tractability, let N̄ = 30,
as in BH. If n = 1, b2 is replaced by the minimum bid r.

We use the same Bayesian methods as in WV to estimate the models, see Section 3.1.
A single evaluation of the posterior (likelihood) requires numerical integration to compute
b (x|β, r, z) in (2.1), followed by additional numerical work to invert and differentiate b (x|β, r, z).
The same applies to the computation of r (x⋆|β, z) in (2.2). This costly procedure needs to be
repeated for each of the auctions in the dataset. Instead, we make use of bid approximations
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for both models which leads to much faster and numerically stable likelihood evaluations. We
first review the linear approximation of the bid function in WV for the hierarchical Gauss-
ian model. Then, we derive the approximate bid function for the hierarchical Gamma model
below.

2.2. Gaussian model. Let vj denote the common value in auction j, and let xij denote the
signal of the ith bidder in auction j. The hierarchical Gaussian model can be defined as

vj ∼ N(µj , σ
2
j ), j = 1, ...,m,

xij |vj
iid
∼ N(vj , κσ

2
j ), i = 1, ..., Nj ,

(2.6)

where m is the total number of auctions, and Nj the number of potential bidders that bid
zero or place a positive bid in auction j. To get much faster and numerically stable likelihood
evaluations, we use the linear approximation of the bid function in WV,

(2.7) b(x, λ) ≈







c+ ωµ+ (1− ω)x, if x ≥ x⋆

0, otherwise,

where c = −
√
κσγθ(λ−2)

γ(λ−2)+1+κ
2
, ω =

κ
2

γ(λ−2)+1+κ
2
, θ = 1.96 and γ = 0.1938. In addition, WV show

that the cut-off signal level can be similarly approximated by

(2.8) x⋆(r, λ) ≈
r −

∑∞
n=2 pn(λ)(c̃+ ω̃µ)

∑∞
n=2 pn(λ)(1− ω̃)

,

where c̃ = −
√
κσγθ(n−1)

γ(n−1)+ 1
2
+κ

2

, and ω̃ =
κ
2

γ(n−1)+ 1
2
+κ

2

. Using the approximate bid function, the

distribution of the bids in (2.4) simplifies to

(2.9) b|v ∈ N [c+ µ, (1− ω)2κσ2],

which speeds up the likelihood evaluation even more.

2.3. Gamma model. A drawback of the Gaussian model in the previous section is that the
common value, the signals and the bids can be negative. It can be argued that the Gaussian
distribution serves as a good approximation when the mean is at least a couple of standard
deviations away from zero, which is a common situation in practice. This is clearly not always
the case, however, and there are situations when it would be better to use a distribution with
non-negative support. Therefore, we will extend and analyze a model in Gordy (1998) based
on the Gamma distribution.

The Gamma model is more conveniently written in terms of inverse signals, sij =
1
xij

,

vj ∼ Gamma(ξj , ψj), j = 1, ...,m, E (vj) = µj =
ξj
ψj
, V ar(vj) = σ2j =

ξj
ψ2
j

sij |vj
iid
∼ Gamma(τ, τvj), i = 1, ..., Nj , E (sij |vj ) =

1

vj
, V ar (sij |vj ) =

1

τv2j
,(2.10)

where τ is a precision parameter, m is the total number of auctions, and Nj is the number of
potential bidders that bid zero or place a positive bid in auction j. The bid function for the
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Gamma model is of the form (see Gordy (1998) for the case with a fixed number of bidders)

(2.11) b(x, λ) =











∑
∞

N=2(N−1)·pN−1(λ)·
∫
∞

0 v·(1−Fs|v(1/x|v))N−2·f2
s|v

(1/x|v)·fv(v) dv
∑

∞

N=2(N−1)·pN−1(λ)·
∫
∞

0 (1−Fs|v(1/x|v))N−2·f2
s|v

(1/x|v)·fv(v) dv , if x ≥ x⋆

0, otherwise,

and the minimum bid function for the Gamma model is given by

(2.12) r(x⋆, λ) =
∞
∑

N=1

pN (λ) ·

∫∞
0 v · (1− Fs|v(1/x

⋆|v))N−1 · fs|v(1/x
⋆|v) · fv(v) dv

∫∞
0 (1− Fs|v(1/x⋆|v))N−1 · fs|v(1/x⋆|v) · fv(v) dv

.

Gordy (1998) obtains a finite series expansion of the bid function for the Gamma model (see
B2(x) in equation 7 in Gordy’s article). Gordy’s solution for the bid function is elegant and
fast, but there are two reasons why it is of limited use in a likelihood-based approach. First,
the likelihood function depends on the inverse bid function which has to be solved numerically
for each bid in every auction. Second, the solution is restricted to the set of positive integers
for τ, which makes it hard to link τ to covariates. The equilibrium bid function for the Gamma
model can be approximated in a similar way as for the Gaussian model in WV, see Appendix.
The approximate bid function is given by

(2.13) b(x) ≈
[ξ + 2τ + (λ− 2)ξτ ] · x

ψx+ 2τ + (λ− 2)ψτ
,

where

ξτ = −0.1659− 0.0159 · τ + 0.2495 · log(1 + τ),

and

ψτ = 0.3095− 0.0708 · τ + 1.0241 · log(1 + τ),

for 0.1 ≤ τ ≤ 10. If necessary, other values of τ can be handled similarly, see the Appendix
for details.

The approximate bid function in Equation (2.13) has the following properties. First, the
more precise is the public information (larger ψ), the less weight is placed on the bidder’s
private signal. To see this, replace ξ with ψµ in Equation (2.13) to obtain

(2.14) b(x) ≈
ψµ+ 2τ + (λ− 2)ξτ

ψ + 2τ+(λ−2)ψτ

x

,

which yields

b(x) −→ µ if ψ −→ ∞ and b(x) −→
2τ + (λ− 2)ξτ
2τ + (λ− 2)ψτ

· x if ψ −→ 0.

The approximate bid function also satisfies

b(x) −→ µ if τ −→ 0,

and

b(x) ≈

[

2 + ξ
τ + (λ− 2) ξττ

]

· x

2 + ψx
τ + (λ− 2)ψτ

τ

−→ x if τ −→ ∞.

The last two results are easily proved by noting that our approximation routine described in
the Appendix implies that

(

ξτ
τ
,
ψτ
τ

)

−→ (0, 0) if τ −→ ∞,
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and

(ξτ , ψτ ) −→ (0, 0) if τ −→ 0.

The approximate minimum bid function is given by

(2.15) r(x⋆, λ) ≈
[ξ + τ + (λ− 1)ξτ ] · x

⋆

ψx⋆ + τ + (λ− 1)ψτ
.

Figure 1 compares the exact and approximate bid function graphically. The exact bid
function is computed by numerical integration as in BH. The upper left sub-graph displays the
bid function and its approximation for a representative auction in the eBay dataset analyzed
in Section 3. The representative auction is based on the median of the covariates in the eBay
data, and the posterior mean of the model parameters. Rounded to the nearest integer, this
gives τ = 3, µ = 21, σ = 8, λ = 4, and r

µ = 0.5. The other sub graphs are variations from the

representative auction. The approximation deteriorates somewhat with increasing λ, but is
still very accurate, irrespective of τ and σ.

3. Model comparison on eBay coin auction data

The performance between the Gaussian and Gamma models is here compared using the
same dataset as in WV from 1000 eBay auctions of U.S. proof coin sets; see WV for a detailed
description of the data. The unknown model parameters in each model are estimated with
the same Bayesian methods and priors as the benchmark model in WV, which are briefly
summarized below.

3.1. Prior distribution and a Metropolis-Hastings algorithm for variable selection.

The likelihood function in (2.5) is combined with a prior distribution on the unknown model
parameters to form the posterior density of each model. A generalization of the Metropolis-
Hastings algorithm (a Markov Chain Monte Carlo (MCMC) algorithm) is used to simultane-
ously do Bayesian variable selection among the auction covariates and sample the posterior of
the model parameters (WV, Section 4.2 and Appendix B). Variable selection involves adding
point masses at zero in the prior distributions; see Smith and Kohn (1996).

The prior distribution for β in the Gaussian model is given by a g-prior (Zellner, 1986) for
βµ, conditional on βσ, as (see Villani et. al. 2009 for details)

βµ|βσ ∼ N [0, c(Z ′
µDZµ)

−1],

where D1/2 = Diag[exp(−z′σ1βσ/2), ..., exp(−z
′
σnβσ/2)], and c > 0 is a scaling factor equal to

the number of auctions in the data for the benchmark model. The marginal g-prior for βσ is
given by

βσ ∼ N [0, c(Z ′
σZσ)

−1].

The Gamma model in Section 2.3 cannot be written as a heteroscedastic linear regression,
and a similar characterization of the prior for βµ and βσ is therefore not possible. We will
instead assume that βµ ∼ N [0, cµ(Z

′
µZµ)

−1] independently from βσ ∼ N [0, cσ(Z
′
σZσ)

−1] in the
Gamma model.

We use a g-prior for βλ in the Poisson entry model, given by βλ

βλ ∼ N [0, cλ(Z
′
λZλ)

−1].

We use an inverse Gamma prior for κ in the Gaussian model, κ ∼ IG(κ̄, g), where κ̄ = 0.25
is the prior mean of κ and g = 4 are the degrees of freedom. Similarly, we assume the prior
τ ∼ IG(τ̄ = 0.25, h = 4) in the Gamma model. Finally, the prior inclusion probability of a
given covariate is set to 0.2.
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3.2. Estimation results. The models are estimated using the dataset of 1000 eBay coin
auctions in WV. The dataset was carefully collected by human inspections of auction-specific
covariates and bid sequences from auctions that ended between November 7 to December 19,
2007 and December 27, 2007 to January 22, 2008. The book value of the object and the
minimum bid divided by the book value in each auction are defined by Book and MinBidShare.
Remaining covariates are dummy variables that are coded to be 1 if a certain characteristic
is present in a given auction. The largest sellers are described by Pow (PowerSellers) and ID
describes a seller whose identity is verified on eBay. MinBlem (MajBlem) describes if the object
has a minor (major) damage, and UnOpen pertains to an object which is sold in its original
sealed envelope. A large negative feedback score for a seller is described by LargeNeg.

Similarly to WV, we perform some transformations on the covariates before the analysis
to better match the functional form of the model and reduce the correlation between some of
the slope coefficients and intercepts. We use the notation, xd = x− x̄ and Lx = ln(x), where
x is a covariate. As an example, LBookd is the deviation of log book value from the mean log
book value.

Table 1 reports our posterior results for the Gaussian and Gamma models. With a few
exceptions, the results are fairly similar between the models. The covariates Bookd and LBookd
are the main drivers in the models for µ and σ2, respectively. The large negative coefficient
on MinBidShared in the Poisson entry process is due to the fact that a higher minimum bid
implies a higher threshold for potential bidders to participate in the auction. In general,
the posterior inclusion probabilities are either close to 0 or 1, which gives good indications
of which covariates that are of importance in the models. Neither of the posterior inclusion
probabilities for Book · ID, LBook · Pow, and LBook · ID are close to 1 in both models. This
suggests that eBay’s detailed seller information is not an obvious significant source for how the
expected value or the standard deviation of the object’s unknown common value is affected.

The major differences between the models are in the parameter estimates of κ, and τ, and
between the parameter estimates in the models for σ2. This is probably due to the differences
in the model setups. Parameter σ2 is used in both the distributions of v and x|v for the
Gaussian model compared to the Gamma model with σ2 only used in the distribution of v. In
addition, v is defined as the expected value in the distribution of x|v for the Gaussian model,
whereas v is used in both the expected value and the variance of the inverse signal distribution
for the Gamma model. It seems that the lower value of τ, compared to κ, compensates for
the generally higher values of the parameter estimates in σ2 for the Gamma model.

The posterior inclusion probabilities for most of the covariates are very close in magnitude
between the models, especially for the covariates in λ. The major differences in inclusion
probabilities for Book*ID, LBook*Pow, and LBook*ID are due to only minor differences of the
Bayesian t-ratio,

tBayesian =

∣

∣

∣
θ̂
∣

∣

∣

s(θ̂)
,

where θ̂ and s(θ̂) are the posterior mode and the approximate/asymptotic posterior deviation,
respectively, from the optimization of the posterior density. WV show that the inclusion
probabilities are very sensitive to changes around a certain threshold of the Bayesian t-ratios.
The inclusion probabilities increase sharply above the threshold value (slightly larger than the
1.96 threshold in classical t-tests at a 5% significance level). Hence, differences in inclusion
probabilities which are not close to either 0 or 1 should not be treated as a sign of very different
estimation results between the models.
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The performance of the MCMC algorithm is better in the Gaussian case. The mean accep-
tance probability is 56% for the Gaussian model compared to 30% for the Gamma model, and
the inefficiency factors (IF) are lower in the Gaussian case. In WV, the IF is defined as the
number of draws needed to obtain the equivalent result of a single independent draw. IFs close
to unity is therefore an indication of a very efficient algorithm. The minimum, the median,
and the maximum values of IF are 3.03, 3.80, and 11.54 for the Gaussian model, respectively,
compared to 5.08, 19.30, and 36.80 for the Gamma model.

3.3. In-sample fit. Similar to BH and WV, we use a posterior predictive analysis to evaluate
the in-sample fit of the models, i.e. we compare the observed data to simulated data from
the estimated models (Gelman et al., 2004). Given the observed auction-specific covariates,
we simulated 100 new complete datasets for each of a 100 systematically sampled posterior
draws of the model parameters. This gives us 10, 000 full datasets, each with bids from 1000
auctions.

Following BH, we compare the observed and simulated data through two summary statistics:
within-auction bid dispersion and cross-auction heterogeneity. The within-auction dispersion
is defined as the difference between the highest observed bid and the lowest bid divided by
the book value of the auctioned item, and the cross-auction heterogeneity is investigated
by histograms of the bids divided by the corresponding book value in that auction. As we
can see in Figures 2 and 3, the observed within-auction bid dispersion and the cross-auction
heterogeneity are very well captured by both the Gaussian and the Gamma models, and the
differences between the two models are small. This is in contrast to BH where the within-
auction bid dispersion is under-estimated and the cross-auction heterogeneity is highly over-
estimated. BH suggest adding unobserved heterogeneity to the model as a way of improving
the in-sample fit of the model, but our results in Figures 2 and 3 suggest that such extensions
are not needed to capture the variation in the bids.

3.4. Out-of-sample predictions. The differences between the models are most apparent in
their out-of-sample predictions. Following WV, we use our estimated Gaussian and Gamma
models to predict a dataset of 48 additional auctions of U.S. proof sets, which were not used
in the estimation process. Given the covariates from these auctions, we simulated predictive
price distributions for each auction in a similar way as for the simulated datasets of the in-
sample fits. The predictive distributions have three components: i) a probability that the
item is not sold, ii) a point mass with probability at the minimum bid (which is the final price
when there is a single bidder in the auction), and iii) a continuous price density conditional
on there being at least two bidders in the auction.

The predictive price distributions for both models are displayed on top of each other for
each auction in Figures 4 and 5. Auction 1−37 contains at least two bids, 38−45 a single bid,
and 46 − 48 no bids. Both models perform well in predicting auction prices with the actual
price located near the center of the visible continuous price distributions. The variances of the
predictive price densities for the Gaussian model appear to be smaller than for the Gamma
model, where the price distributions are lower and skewed to the left.

To quantify the visual results in Figures 4 and 5, we compute the log predictive score (LPS)
for each auction in the 48 out-of-sample auctions. Since not all auctions end with a realized
price, we compute two versions of the LPS: LPSc evaluates the log predictive density in the 37
auctions with at least two bids, while LPSd is a multinomial type of evaluation that focuses
on three discrete events: i) no bids, ii) one bid (where price = minimum bid) and iii) more
than one bid. LPSd is evaluated on all 48 out-of-sample auctions.
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Let pij be the probability of j bids in auction i, and let

Iij =







1, if there are j actual bids in auction i

0, if there are not j actual bids in auction i,

where i = 1, . . . ,mt, j = 0, 1, and mt is the number of test auctions used to evaluate the
predictions. Let I = (I10, I11, I12, I20, . . . , Imt2) be the vector of observed indicator variables,
and let p = (p10, p11, p12, p20, . . . , pmt2) be the vector of predictive probabilities for each auc-
tion, where Ii2 = (1− Ii0 − Ii1) , and pi2 = (1− pi0 − pi1) are the indicator variable and the
predictive probability for at least two bids in auction i, respectively. Then, the discrete version
of the LPS is defined as

(3.1) LPSd =
I · p′

mt
.

Table 2 presents the LPSd for the 48 test auctions. In a majority of the auctions, the Gaussian
model attains a higher score than the Gamma model, even if the mean value of LPSd is lower
across all auctions for the Gaussian model. Generally, the scores from both models are much
lower for the 11 auctions with a maximum of one bid, where the Gaussian model attains a
substantially lower score than the Gamma model. In all, when it comes to the discrete part
of the predictive distribution, this suggests a slight edge for the Gaussian model in auctions
with at least two bids, and a slight edge for the Gamma model whenever there is a maximum
of one bid in the auction.

The continuous version of the LPS is defined by

(3.2) LPSc =

∑m⋆
t

i=1 log
(

p̃(yi)
pi,2

)

m⋆
t

,

where yi is the realized price in auction i evaluated in the predictive price distribution p̃(·),
andm⋆

t is the number of test auctions with at least two bids. The Gaussian model outperforms
the Gamma model here. As can be seen in Table 2, the Gaussian model performs best in a
large majority of the auctions, and the score for the Gaussian model is substantially higher
compared to the Gamma model. In Figures 6 and 7 the discrepancies in scores are obvious.
The Gaussian model attains, in general, higher predictive probabilities at the realized prices
than the Gamma model.

The reason for the relatively good performance of the Gaussian model is probably that the
true value distribution is close to normal, or at least symmetric, for this particular dataset.
To infer the magnitude of the skewness in the value distribution, we obtained the values of µ
and σ for the Gamma model in each of the 48 test auctions. Specifically, given the covariates
in an arbitrary auction and the posterior means for the Gamma model in Table 1, the typical
degree of skewness, Sk, can be calculated for each auction as

Sk =
2
√
ξ
= 2

σ

µ
= 2cν ,

where cν is the coefficient of variation. Figure 8 displays a boxplot for the different degrees of
skewness in the 48 test auctions. In most auctions, the degree of skewness is about 0.7− 0.8,
which suggests that the value distribution is fairly symmetric compared to the results in the
next section for the least skewed model. In that upcoming section, we simulated data with
different degrees of skewness in the value distribution to investigate the relative performance
between the Gaussian and Gamma models.
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4. Model comparisons on skewed simulated data

We conducted a simulation study to compare the performance between the Gaussian and
Gamma models using positive values and different degrees of skewness, Sk, in the data-
generating process. Specifically, three Gamma models with Sk = 2 (the exponential dis-
tribution), Sk = 1.5, and Sk = 0.5 (the least skewed model) were used to simulate 25 full
datasets of bids and auction-specific covariates in 1000 auctions for each model. Then, each
dataset for each degree of skewness was estimated by both the Gaussian and Gamma models.

4.1. In-sample fit. Since the book value does not exist as a covariate for the simulated data,
we exclude the book value from the definitions of the within-auction dispersion and the cross-
auction heterogeneity. Hence, the within-auction dispersion is here defined as the difference
between the highest observed bid and the lowest bid, while the cross-auction heterogeneity is
displayed as histograms of the bids across all auctions.

Figures 9 to 11 display the median of the within-auction dispersion and the cross-auction
heterogeneity across the 25 simulated datasets for each of the three degrees of skewness. The
Gamma model fits the data very well in all cases. As the degree of skewness increases, the fit of
both the within-auction dispersion and the cross-auction heterogeneity becomes worse for the
Gaussian model. However, in Figure 11 for the least skewed data, the Gamma model fits the
cross-auction heterogeneity (the distribution of bids) only slightly better than the Gaussian
counterpart. This is probably due to the quite symmetrical distribution of bids for the actual
data in the figure. In fact, whenever the distribution of bids is symmetric, the Gaussian model
fits the data very well, since the bid distribution of the Gaussian model in Equation (2.9) is
normal for the approximate bid function in Equation (2.7). In Figures 8− 9, the distribution
of bids is highly skewed, and the Gaussian fit of the data becomes highly skewed to the right.

4.2. Out-of-sample predictions. As the degree of skewness increases in the data-generating
process, the variance in the common value distribution becomes larger. Therefore, to compare
the LPSc in a more appropriate way for different degrees of skewness, we adjuste the LPSc in
this case to

(4.1) LPSc =

(

∑m⋆
t

i=1 log
(

p̃(yi)
pi,2

))

/m⋆
t

√

V ar(v)
=
ψSk
2

∑m⋆
t

i=1 log
(

p̃(yi)
pi,2

)

m⋆
t

.

Table 3 reports the LPS for each degree of skewness. The Gamma model outperforms the
Gaussian model in the continuous part of the predictive price distribution, except for the lowest
degree of skewness where the Gamma model is only slightly better than the Gaussian model.
On average, the mean and standard deviation of LPSc are higher and lower, respectively, for
the Gamma model. However, for roughly half of the 25 datasets, the Gaussian model has a
higher LPSc than the Gamma model in a majority of auctions, regardless of degree of skewness.
To get a closer look at possible differences, we compared the predictive price densities of the
Gamma and the Gaussian model in several datasets for each degree of skewness.

In general, the densities for the Gamma model were more concentrated and skewed to
the left than the Gaussian counterpart where the densities were more symmetrical and more
located to the right. This resulted in substantial differences between the LPSc of the models
for realized prices to the left in the predictive distribution, but only minor differences to the
right. In the left-hand part of the predictive price densities, the Gamma model was clearly
the dominating model in LPSc, while the Gaussian model only had a slightly higher LPSc
than the Gamma model in the right-hand part. As the degree of skewness increased, these
differences became larger.
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Turning to the discrete part of the predictive distribution, we can discern from Table 3 that
the Gamma and the Gaussian model alternate in attaining the lowest scores for at least two
bids and a maximum of one bid. Whenever there are at least two bids the Gamma model is, on
average, outperforming the Gaussian model with substantially higher scores, in contrast to the
opposite effect for a maximum of one bid where the Gamma model, on average, attains lower
scores. This is consistent with the result from the eBay dataset where the Gaussian model is
generally the dominating model. The mean and the precision of the scores are increasing in
the degree of skewness for at least two bids, while the opposite effect pertains to the Gamma
model for a maximum of one bid.

Moreover, the differences in scores decrease as the data becomes more symmetrical, and
for the most symmetrical case, the models are once more equally good as for the continuous
part of the predictive distribution. In fact, since the Gaussian model performs better than
the Gamma model for the eBay data, and since both models seem to perform equally well for
Sk = 0.5, there is possibly a threshold, less than Sk = 0.5, when the Gaussian model becomes
the best fitted model for lower degrees of skewness. In all, the results from the simulated data
show that the Gamma model is clearly outperforming the Gaussian model for highly skewed
data, but the differences become smaller when the degree of skewness decreases.

5. Conclusions

An inherent feature of econometric auction models is that the value of the auctioned object
is intrinsically non-negative. Nevertheless, there often exist value distributions in the literature
that allow for negative values, even if such distributions are untenable. Our paper explores
this issue by contrasting the Gaussian model in WV with an extension of the Gamma model in
Gordy (1998). A key feature in our approach is an accurate, analytical approximation of the
bid function for the Gamma model, which can be inverted and differentiated analytically. This
is extremely valuable for a fast and numerically stable evaluation of the likelihood function.

We utilized the general MCMC algorithm for Bayesian variable selection in WV to compare
the relative performance between the Gaussian and Gamma models, using WV’s eBay dataset
from 1000 auctions of U.S. proof coin sets. In general, the Gaussian model was slightly better
than the Gamma model in fitting this data, and in predicting auction prices on the 48 out-
of-sample auctions. This is probably due to an almost normal or at least symmetric value
distribution, where the density is bounded away from zero with small probabilities of negative
values. In fact, we obtained small values for the coefficient of variation and the degree of
skewness in most auctions, which support this explanation.

To explore possible limitations of the Gaussian model for other degrees of skewness in the
value distribution, we simulated 25 datasets from three Gamma models with different degrees
of skewness. Then, the relative performance between the Gaussian and Gamma models was
compared for each case. The Gamma model was clearly outperforming the Gaussian model
for the two most skewed models, but was only slightly better for the least skewed model.
This agrees with the result from the eBay dataset. As the value distribution becomes more
symmetric the relative performance of the Gaussian model increases compared to the Gamma
model. This suggests that it is of importance to make use of either model, or both, depending
on the skewness of the data.
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Appendix. Approximating the bid function in the Gamma model

The key ingredient in our approach is to approximate the survival function (1−Gs|v(1/x|v))
by a Gamma probability density function over the whole interval (0,∞). This is superior to
the approximation of the bid function for the Gaussian model in WV, where a certain interval
needs to be obtained for the approximation of the standard normal distribution function. By
substitution, the distribution function of s|v becomes

Fs|v(1/x|v) =
∫ 1/x

0

(τv)τ

Γ(τ)
lτ−1e−τv·ldl =

∫ τ · v
x

0

1

Γ(τ)
tτ−1e−t dt.

Hence, the distribution function Fs|v depends on the parameter τ through the support v
x . Let

h
(

v
x |ξτ , ψτ

)

= ψξτ+1
τ

Γ(ξτ+1)(
v
x)
ξτ · e−ψτ · vx be the approximating Gamma p.d.f. to (1− Fs|v(1/x|v)).

Then, given an arbitrary τ , the approximation constants ξτ and ψτ are obtained by minimizing
the maximum divergence between h

(

v
x |ξτ , ψτ

)

and (1− Fs|v(1/x|v)), i.e.

(ξ̂τ , ψ̂τ ) = min
ξτ ,ψτ

(

max
v
x

∣

∣

∣
h
(v

x
|ξτ , ψτ

)

−
(

1− Fs|v(1/x|v)
)

∣

∣

∣

)

.

The approximation constants can, in principle, be calculated for any τ, but, in practice,
it is more convenient to tabulate them over a grid T = (τ1, ..., τT ) of values for τ. Since the
approximation of the bid function needs to be solved for any τ in the estimation process,
we model {ξ̂τ , ψ̂τ}τ∈T as a multivariate regression with several functions of τ as independent
variables. The fit of the regression is improved if the grid T is not too wide, and we will
here choose a grid that covers all relevant values of τ in our datasets. The best multivariate
regression model (according to adjusted R2) is

ξ̂τ = −0.1659− 0.0159 · τ + 0.2495 · log(1 + τ),

and
ψ̂τ = 0.3095− 0.0708 · τ + 1.0241 · log(1 + τ)

for 0.1 ≤ τ ≤ 10 with R2 equal to 99.5% and 99.2%, respectively.
Now, by replacing (1− FS|V (1/x|v)) with hv(v|ξ̂τ , ψ̂τ ), the approximate bid function for a

known number of bidders becomes

b(x) ≈

∫∞
0 v · v(N−2)ξ̂τ+2τ+ξ−1 · e−( 1

x
(ψ̂τ (N−2)+2τ)+ψ)·v dv

∫∞
0 v(N−2)ξ̂τ+2τ+ξ−1 · e−( 1

x
(ψ̂τ (N−2)+2τ)+ψ)·v dv

=

∫∞
0 Gamma(v|ξ

′

τ + 1, ψ
′

τ ) dv
∫∞
0 Gamma(v|ξ′τ , ψ

′

τ ) dv
=

Γ(ξ
′

τ + 1)

ψ
′(ξ′τ+1)
τ

·
ψ

′ξ
′

τ
τ

Γ(ξ′τ )

=
ξ
′

τ

ψ′

τ

=

[

ξ + 2τ + (N − 2)ξ̂τ

]

· x

ψx+ 2τ + (N − 2)ψ̂τ
,

where ξ
′

τ = (N − 2)ξ̂τ + 2τ + ξ, ψ
′

τ = 1
x(ψ̂τ (N − 2) + 2τ) + ψ and Gamma(v|ξ

′

τ , ψ
′

τ ) denotes

the pdf of the Gamma distributed variable v with parameters ξ
′

τ , and ψ
′

τ .
Using the same approach as for the Gaussian model in WV, Appendix A, this result can

be generalized to the case with a stochastic number of bidders by substituting N for λ, giving
the approximate bid function for the Gamma model in Equation (2.13).
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Table 1. Comparing the posterior inference from the Gaussian and Gamma
models on the eBay data.

Parameter Covariate Mean St Dev Incl Prob
Gaussian Gamma Gaussian Gamma Gaussian Gamma

κ/τ - 5.499 2.997 0.772 0.111 1.000 1.000
µ Const 28.273 28.307 0.245 0.304 1.000 1.000

Bookd 0.740 0.747 0.010 0.012 1.000 1.000
Book·Power 0.033 0.046 0.015 0.018 0.064 0.107
Book·ID 0.128 0.052 0.036 0.039 0.900 0.017
Book·Sealed 0.372 0.488 0.029 0.051 1.000 1.000
Book·MinBlem −0.022 0.002 0.021 0.028 0.010 0.008
Book·MajBlem −0.252 −0.269 0.030 0.040 1.000 1.000
Book·NegScore −0.003 −0.020 0.018 0.025 0.004 0.009

log(σ2) Const 3.997 4.314 0.071 0.038 1.000 1.000
LBookd 1.262 1.276 0.038 0.026 1.000 1.000
LBook·Power 0.043 0.069 0.018 0.020 0.220 1.000
LBook·ID 0.042 0.032 0.040 0.067 0.481 0.011
LBook·Sealed 0.211 0.362 0.027 0.019 1.000 1.000
LBook·MinBlem −0.028 −0.057 0.027 0.026 0.012 0.039
LBook·MajBlem 0.036 0.063 0.040 0.049 0.007 0.017
LBook·NegScore 0.035 0.042 0.021 0.027 0.017 0.050

log(λ) Const 1.193 1.234 0.021 0.022 1.000 1.000
Power 0.009 −0.028 0.035 0.029 0.005 0.012
ID −0.177 −0.197 0.110 0.078 0.030 0.048
Sealed 0.323 0.331 0.048 0.048 1.000 1.000
MinBlem −0.049 −0.042 0.048 0.048 0.008 0.009
MajBlem −0.151 −0.115 0.085 0.097 0.019 0.015
NegScore 0.055 0.086 0.049 0.047 0.012 0.022
LBookd −0.038 −0.036 0.027 0.021 0.018 0.031
MinBidShared −1.433 −1.380 0.056 0.059 1.000 1.000

NOTE: The prior hyperparameters are set to c = n, κ̄ = τ̄ = 0.25, g = h = 4, and π = 0.2, as for the benchmark

model in WV. x1 · x2 denotes the interaction of x1 and x2.
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Table 2. Log predictive scores (LPS) for the Gaussian and Gamma models
on the eBay data.

Test auction Measure Gaussian Gamma % Gaussian wins
1− 37 LPSc -3.547 -3.684 27/37
1− 48 LPSd -0.526 -0.515 25.5/47
1− 37 LPSd -0.212 -0.238 20.5/37
38− 48 LPSd -1.687 -1.539 5/11

NOTE: Auctions 1-37 contain at least two bids, and auctions 38-48 a maximum of one bid. LPSd

for auction 43 is undefined (−∞) for the Gamma model, and is therefore excluded

from the calculations of LPSd. The Gaussian and Gamma models are equally good in

LPSd for auction 21.

Table 3. Log predictive scores (LPS) for the Gaussian and Gamma models
on simulated data with different degrees of skewness, Sk.

Score Statistics Sk = 2 Sk = 1.5 Sk = 0.5
Gaussian Gamma Gaussian Gamma Gaussian Gamma

LPSc Mean −2.430 −2.138 −2.814 −2.361 −3.173 −3.157
St Dev 0.254 0.186 0.833 0.166 0.109 0.095

LPSd Mean −0.886 −0.877 −0.764 −0.755 −0.363 −0.364
St Dev 0.069 0.081 0.070 0.084 0.092 0.093

LPSd Mean −0.584 −0.449 −0.383 −0.301 −0.111 −0.111
Bids ≥ 2 St Dev 0.057 0.042 0.035 0.031 0.011 0.011
LPSd Mean −1.372 −1.567 −1.742 −1.924 −2.612 −2.630
Bids ≤ 1 St Dev 0.120 0.126 0.103 0.127 0.244 0.264
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Figure 1. Examining the accuracy of the approximate bid function in the
Gamma model for different configurations of parameter values. The vertical
lines in the figures are the mean (thick dotted), and the 5% and 95% percentiles
(thin dotted) in the unconditional distribution of the signals, x.
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Figure 3. Posterior predictive analysis of the models’ fit of the cross-auction heterogeneity.
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Figure 4. Predictive distributions for the auction price in auctions 1− 24 in
the evaluation sample. The values of p0 and p1 in the titles are the predictive
probabilities of zero and one bid (where the price is not observed) for the
Gaussian (first number) and Gamma models (second number). The densities
are the predictive densities of the price when the auction has at least two
bidders (the integral of the density is the probability of at least two bids) for
the Gaussian (solid line) and Gamma (dotted line) models. The vertical lines
indicate the minimum bid (dotted) and the book value (dashed). The realized
price (if observed) is displayed by the star symbol.
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Figure 5. Predictive distributions for the auction price in auctions 25− 48 in
the evaluation sample. The values of p0 and p1 in the titles are the predictive
probabilities of zero and one bid (where the price is not observed) for the
Gaussian (first number) and Gamma models (second number). The densities
are the predictive densities of the price when the auction has at least two
bidders (the integral of the density is the probability of at least two bids) for
the Gaussian (solid line) and Gamma (dotted line) models. The vertical lines
indicate the minimum bid (dotted) and the book value (dashed). The realized
price (if observed) is displayed by the star symbol.
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Figure 6. Log price predictive probabilities evaluated at the actual price in
each auction, conditional on at least two bids for the Gaussian and Gamma
models. Auctions 38-45 contain a single bid, and auctions 46-48 no bids.
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Figure 7. Log predictive probabilities for the actual outcome of either no
bids, one bid, or at least two bids in each auction for the Gaussian and Gamma
models. Auctions 1-37 contain at least two bids, auctions 38-45 a single bid,
and auctions 46-48 no bids. The log predictive probability in auction 43 for
the Gamma model is not displayed since the probability equals zero.
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Figure 8. Box plot for the estimated skewness in the 48 test auctions.
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Figure 9. Posterior predictive analysis of the models’ fit of the within-auction
variation (upper) and cross-auction heterogeneity (lower). The degree of skew-
ness for the simulated data, Sk, is equal to 2.
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Figure 10. Posterior predictive analysis of the models’ fit of the within-
auction variation (upper) and cross-auction heterogeneity (lower). The degree
of skewness for the simulated data, Sk, is equal to 1.5.
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Figure 11. Posterior predictive analysis of the models’ fit of the within-
auction variation (upper) and cross-auction heterogeneity (lower). The degree
of skewness for the simulated data, Sk, is equal to 0.5.



BAYESIAN COMPARISON OF PRIVATE AND COMMON VALUES IN

STRUCTURAL SECOND-PRICE AUCTIONS

BERTIL WEGMANN

Abstract. We compare the performance of the Gaussian second-price common value (CV)
model in Wegmann and Villani (2011) to a comparable independent private value (IPV) ver-
sion of that model. The two models are contrasted on a dataset from 1050 Internet coin
auctions at eBay. The models are evaluated along several dimensions, such as parameter
inference, in-sample fit, and accuracy of out-of-sample predictive density forecasts. Both
models fit the eBay data well with a slight edge for the more robust CV model. We do not
find any evidence of a winner’s curse effect in the eBay data, which speaks in favor of the
IPV model. However, the optimal minimum bids in the CV model are clearly closer to the
actual minimum bids in the eBay data than the optimal choice of no minimum bid in the IPV
model. The IPV model predicts auction prices slightly better in most auctions, while the CV
model is much better at predicting auction prices in more unusual auctions. The robustness
of the CV model is also supported by a small simulation study, where the CV model performs
relatively better on simulated data from the IPV model than the IPV model fitted to CV data.

Keywords: Bayesian variable selection, Common values, eBay, Gaussian model, Markov
Chain Monte Carlo, Private values, The winner’s curse.

1. Introduction

The behavior of bidders in an auction hinges critically upon the theoretical settings of values.
Traditionally, researchers in auction theory have been working within either the independent
private value (henceforth IPV) or the pure common value (henceforth CV) model, and these
two models are by far the most commonly used models in empirical studies. In the IPV
setting, each bidder knows his value of the object and is not influenced by the values of the
other bidders. In the CV model, the value is unknown but the same for all bidders, and each
bidder uses his own private information (the signal) to estimate the unknown value.

Bajari and Hortacsu (2003, henceforth BH) use some empirical regularities to argue that
coin auctions at eBay possess a common value component. Armantier (2002) points out that
both paradigms are plausible in most cases. Attempts to distinguish between the paradigms
have been under considerable attention, especially within first-price auctions. In a seminal
piece of work, Paarsch (1992) uses structural econometric modeling to discriminate between
IPV and CV models in first-price auctions. As a test for common values, Paarsch (1992)
examines whether winning bids decrease with the number of bidders. However, Pinkse and
Tan (2005) show that bids can increase or decrease in both common and private value models
within first-price auctions. In second-price auctions, this obstacle does not apply (Athey and
Haile (2002)). We compare a second-price CV model to a directly comparable IPV model.
Comparisons between models in second-price auctions are rare in the literature and our use
of comparable CV and IPV models is novel.

Sareen (1999) uses the posterior odds ratio to decide between the CV and IPV paradigms in
reversed first-price auctions where the bidder with the lowest bid wins the auction. While the
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posterior odds ratio is commonly used in Bayesian model comparisons, it critically depends on
the choice of prior, especially when the prior is less informative (Kass (1993)). To overcome
this difficulty, Geweke and Keane (2007) and Villani et al. (2009) use cross-validation of the
log predictive density score (LPDS) to choose among model specifications.

We evaluate the IPV and CV models along several dimensions in an attempt to empirically
decide between the models in second-price auctions. In particular, we compare the in-sample
fit and out-of-sample log predictive score (LPS) between the models and examine whether
the winner’s curse exists in the data. Following BH, we model eBay auctions as independent
second-price auctions with stochastic entry. The data is taken from Wegmann and Villani
(2011, henceforth WV) and consists of bids and auction specific covariates from 1050 eBay
coin auctions. The mean and variance of the value distribution and the expected number of
bidders are modeled as functions of covariates. To quantify the importance of the covariates,
we use the generalized Metropolis-Hastings algorithm with variable selection in WV.

The CV model in BH and WV is contrasted to a comparable IPV model with a similar
structure. The equilibrium bid function for common values is complicated as compared to
the bidding strategy in second-price IPV auctions where the dominant strategy is to bid one’s
value (Vickrey, 1961). However, we assume the approximate bid function in WV which is
linear in the signal. The evaluation of the likelihood function for observed bids is then fast
and numerically stable for both the IPV and CV models, and can therefore be routinely used
for analyzing auction data. WV show that the approximate bid function for the CV model is
very accurate.

The parameter estimates are especially different for some coefficients of the covariates in
the regression models for the mean and variance of the value. The deviations in the mean are
partly attributed to the winner’s curse effect, while the differences in the variance are mainly
explained by intrinsically different valuation structures between the models.

Both models fit the eBay data very well, but the CV model performs slightly better in fitting
the within-auction bid dispersion and cross-auction heterogeneity in bids. The winner’s curse
effect does not seem to be present in the eBay auctions, which speaks in favor of the IPV
model. However, the actual minimum bids set by the seller in the eBay data are much closer
to the optimal minimum bids in the CV model, compared to no minimum bid as the optimal
choice in the IPV model. We propose a model and estimate the correlation between observed
bids in the eBay data to be 0.5. Simulated data from the estimated IPV and CV models
capture this correlation fairly well. When it comes to predictive ability, the IPV model is
slightly better in most auctions. However, the CV model is much better in predicting more
unusual auctions. Overall, there is a slight edge for common values in the eBay data.

We also conducted a small simulation study to examine how well the models fit simulated
IPV and CV data. In general, it seems that the CV model is more robust than the IPV model,
in the sense that the CV model fits IPV data much better than the IPV model fits CV data.

2. Private and Common Value Models in Second-Price Auctions

Motivated by the theoretical arguments in BH, we model eBay auctions as independent
second-price auctions with stochastic entry. In this model, risk-neutral bidders compete for a
single object using the same bidding strategy, the seller sets a publicly announced minimum
bid (reservation price), r ≥ 0, and the winner of the auction pays the second highest bid. We
evaluate the performances between the private and common value paradigms by assuming two
models for values. The hierarchical Gaussian CV model in WV is used for common values,
and by straightforward modifications of this model we define a comparable Gaussian IPV
model. Any other distribution can be used to model the values. However, Wegmann (2011)
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documents that the Gaussian CV model fits the eBay data well, and does better out-of-sample
predictions than a comparable Gamma model for common values.

2.1. The IPV model. Within the IPV paradigm, each bidder knows the value, x, to himself
and is not affected by the values of the other bidders. It is a weakly dominant strategy for a
bidder to bid his value (Vickrey, 1961), which gives the bid function

(2.1) b(x) =

{

x, if x ≥ r
0, otherwise.

Let xij denote the value of the ith bidder in auction j, and let λj be the expected number of
potential bidders in auction j. The Gaussian IPV model is given by

xij
iid
∼ N(µj , σ

2
j ), j = 1, . . . ,m, , i = 1, ..., Nj

µj = z′µjβµ

σ2
j = exp

(

z′σjβσ
)

λj = exp
(

z′λjβλ
)

,(2.2)

where m is the total number of auctions, Nj is the number of potential bidders in the jth
auction, and zj = (z′µj , z

′
σj , z

′
λj)

′ are auction-specific covariates in the regression models for

(µj , σ
2
j , λj) in auction j.

Some bids in the eBay auctions are unobserved, which complicates the likelihood function.
Potential bidders with values below the minimum bid r will not place a bid, and the highest
bid is typically not observed because of eBay’s proxy bidding system (see BH for a detailed
description). Since bidders bid their value, the distribution of potential bids, fb(b|µ, σ

2), equals
the distribution of values. Let fx(·|µ, σ

2) and Fx(·|µ, σ
2) be the probability density function

and the cumulative distribution function of x, respectively, let n be the number of participating
bidders who submit a positive bid above r in an arbitrary auction, and let b = (b2, b3, . . . , bn)
be the vector of observed bids where b2 > b3 > · · · > bn. Then, the likelihood function for an
arbitrary auction of observed bids becomes

fb
(

b2, b3, . . . , bn|µ, σ
2, λ, r

)

=
N̄
∑

i=n

pi(λ) · Fx

(

r|µ, σ2
)i−n

·
{

1− Fx

(

b2|µ, σ
2
)}I(n≥1)

·

n
∏

j=2

fx
(

bj |µ, σ
2
)

,(2.3)

where pi(λ) is the Poisson probability of i potential bidders in the auction with λ as the
expected value, I (n ≥ 1) is an indicator variable for at least one participating bidder in the
auction, and N̄ is an upper bound for the total number of potential bidders. As in BH, let
N̄ = 30 for tractability. If n = 1, b2 is replaced by r.

2.2. The CV model. Within the CV paradigm the value of the object, v, is unknown and
the same for each bidder, but a prior distribution for v is shared by the bidders. To estimate
v, each bidder uses his own private information of the object to receive a private signal x from
the same distribution, x|v. Let fv(v) denote the probability density function of v, fx|v(x|v)
the conditional probability density function of x|v, and Fx|v(x|v) the conditional cumulative
distribution function of x|v. The bid function can then be written as (see BH for an implicit
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solution)

(2.4) b(x, λ) =















∑
∞

n=2(n−1)·pn−1(λ)·
∫
v
v·Fn−2

x|v
(x|v)·f2

x|v
(x|v)·fv(v) dv

∑
∞

n=2(n−1)·pn−1(λ)·
∫
v
Fn−2
x|v

(x|v)·f2
x|v

(x|v)·fv(v) dv
, if x ≥ x⋆

0, otherwise.

Bidders participate with a positive bid if their signal, x, is above the cut-off signal level, x⋆.
Given an arbitrary bidder with signal x, let y be the maximum signal of the other (n − 1)
participating bidders. The cut-off signal level is then given in implicit form as (Milgrom and
Weber, 1982)

x⋆(r, λ) = inf
x
(EnE[v|X = x, Y < x, n] ≥ r) ,

which gives

(2.5) r(x⋆|λ) =
∞
∑

n=1

pn(λ) ·

∫

v v · F
n−1
x|v (x⋆|v) · fx|v(x

⋆|v) · fv(v) dv
∫

v F
n−1
x|v (x⋆|v) · fx|v(x⋆|v) · fv(v) dv

.

Note that the seller’s exogenously given minimum bid, r, is only written as a function of the
cut-off signal level for tractability.

Let vj denote the common value in auction j, and let xij denote the signal of the ith bidder
in auction j. Our CV model is then of the form:

vj ∼ N(µj , σ
2
j ), j = 1, ...,m,

xij |vj
iid
∼ N(vj , κσ

2
j ), i = 1, ..., Nj ,

µj = z′µjβµ

σ2
j = exp

(

z′σjβσ
)

λj = exp
(

z′λjβλ
)

,(2.6)

using the same notation as for the IPV model. The censoring of missing bids also applies in
the likelihood function for the common values, i.e. the highest bid is typically not observed
and bidders with signals x below x⋆ do not place a bid. The bid distribution for an arbitrary
auction is of the form:

(2.7) fb (b|β, z, v) = fx|v [φ (b|β, z) |v, κ, σ]φ
′

(b|β, z) ,

where fb (b|β, z, v) is the probability density function of the bids conditional on (β, z, v) , and
φ (b|β, z) is the inverse bid function given (β, z) . The likelihood function for an arbitrary
auction is given by

fb
(

b2, b3, . . . , bn|µ, σ
2, λ, κ, r

)

=

N̄
∑

i=n

pi(λ) ·

∫ ∞

−∞
Fx|v (x

⋆|v, κ, σ)i−n ·
{

1− Fx|v [φ (b2|β, r, z) |v, κ, σ]
}I(n≥1)

×

n
∏

i=2

fb (bi|β, r, z, v) · fv(v|µ, σ)dv.(2.8)

A single evaluation of the likelihood function in (2.8) requires numerical integration to compute
b (x, λ|β, z) in (2.4) and r (x⋆, λ|β, z) in (2.5), followed by additional numerical work to invert
and differentiate b (x, λ|β, z) and r (x⋆, λ|β, z). This is very time-consuming and needs to
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be repeated for each of the auctions in the eBay dataset. Instead, to get much faster and
numerically stable likelihood evaluations, we use the accurate approximation in WV, given by

(2.9) b(x, λ) ≈







c+ ωµ+ (1− ω)x, if x ≥ x⋆

0, otherwise,

where c = −
√
κσγθ(λ−2)

γ(λ−2)+1+κ
2
, ω =

κ
2

γ(λ−2)+1+κ
2
, θ = 1.96 and γ = 0.1938, and

x⋆(r, λ) ≈
r −

∑∞
n=2 pn(λ)(c̃+ ω̃µ)

∑∞
n=2 pn(λ)(1− ω̃)

,

where c̃ = −
√
κσγθ(n−1)

γ(n−1)+ 1
2
+κ

2

, and ω̃ =
κ
2

γ(n−1)+ 1
2
+κ

2

. Using this approximation of the bid function,

the distribution of the bids conditional on v in (2.7) simplifies to

(2.10) b(x, λ|v)
iid
∼ N [c+ µ, (1− ω)2κσ2],

which speeds up the likelihood evaluation further.

3. Comparisons between the competing paradigms on eBay coin auction data

We use the dataset in WV with 1050 eBay auctions of U.S. proof coin sets to compare the
performance of the IPV and CV models. A detailed description of the data is given in WV.
The unknown model parameters in each model are estimated with the same Bayesian methods
and priors as the benchmark model in WV, which are briefly summarized below.

3.1. Prior distribution and a Metropolis-Hastings algorithm for variable selection.

The likelihood function in either (2.3) or (2.8) is combined with a prior distribution on the
unknown model parameters to form the posterior distribution of each model. Then, a gen-
eralization of the Metropolis-Hastings algorithm (a Markov Chain Monte Carlo (MCMC)
algorithm) is used to simultaneously do Bayesian variable selection among the auction covari-
ates and sample the posterior of the model parameters (WV, Section 4.2 and Appendix B).
Variable selection involves adding point masses at zero in the prior distributions; see Smith
and Kohn (1996).

The prior distribution for β is given by a g-prior (Zellner, 1986) for βµ, conditional on βσ,
as

βµ|βσ ∼ N [0, c(z′µDzµ)
−1],

where D1/2 = Diag[exp(−z′σ1
βσ/2), ..., exp(−z′σn

βσ/2)], and c > 0 is a scaling factor equal to
the number of auctions in the data for the benchmark model. Marginal g-priors for βσ and
βλ are given by

βσ ∼ N [0, c(z′σzσ)
−1],

and

βλ ∼ N [0, c(z′λzλ)
−1].

We use an inverse Gamma prior for κ, κ ∼ IG(κ̄, g)in the CV model where κ̄ = 0.25 and
g = 4. Finally, the prior inclusion probability of a given covariate is set to 0.2.
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3.2. Estimation results. The models are estimated using the whole dataset of 1050 eBay
coin auctions in WV. The dataset was carefully collected by human inspections of auction-
specific covariates and bid sequences from auctions that ended between November 7 to Decem-
ber 19, 2007 and December 27, 2007 to January 29, 2008. The book value of the object and the
minimum bid divided by the book value in each auction are defined by Book and MinBidShare.
The remaining covariates are dummy variables that are coded to be 1 if a certain characteristic
is present in a given auction. The largest sellers are described by Pow (PowerSellers) and ID
describes a seller whose identity is verified on eBay. MinBlem (MajBlem) describes if the object
has a minor (major) damage, and UnOpen pertains to an object which is sold in its original
sealed envelope. A large negative feedback score for a seller is described by LargeNeg.

Table 1 reports the posterior results for both the IPV and CV models. The posterior in-
clusion probability is the posterior probability of including a given covariate in the model.
The inefficiency factor (IF) is a measure of the numerical efficiency of the MCMC algorithm,
defined as the number of posterior draws needed to obtain the equivalent of a single inde-
pendent draw. As can be discerned from the posterior inclusion probabilities, µ is mainly
determined by the constant, the book value of the object and the covariates Book·UnOpen,
and Book·MajBlem in both models. The major differences in µ between the models are in the
posterior mean estimates of the constant and the coefficient of Bookd. Using the posterior
mean estimates, it can be verified that µ is higher in all auctions in the CV model. Moreover,
when Bookd becomes larger µ increases more rapidly in the CV than in the IPV model.

This is in contrast to the differences between the models in posterior mean estimates of the
regression coefficients in σ2, where the main drivers are log(Book)d and log(Book)·UnOpen.
Here, σ2 increases more rapidly with the book value in the IPV model. Hence, it seems that
the mean-variance ratio, µ

σ2 , in the IPV model is more sensitive to different book values than
the common value counterpart. In Figure 1 we can see that in general this is true. The
mean-variance ratio decreases more rapidly in the IPV model as the book value of the object
increases. The differences in mean-variance ratios can partly be explained by the different
bidding strategies in the two models.

First, the larger estimate in the CV model for the coefficient of Bookd in µ is partly at-
tributed to the presence of the winner’s curse phenomenon in the CV model. When the book
value of the object increases, the expected value, µ, and the variance of the values, σ2, in-
crease in both models. Within the CV model a higher variance brings more uncertainty and
thereby a higher risk of overestimating the value of the object upon winning. To avoid this
(the winner’s curse phenomenon), a bidder in a CV auction needs to lower his bid when the
variance increases. This is in contrast to the IPV model where the bid is equal to the value
regardless of an increment in σ2 and µ. Hence, µ needs to change more in the CV model when
the book value of the object changes to accomodate the bid shading effect in the CV model.

Second, the variance of bids, var(b), also depends on κ and λ in the CV model. This
suggests that σ in the CV model does not need to be that sensitive to changes in the main
driver log(Book)d as compared to σ in the IPV model, where the variance of bids is solely
determined by σ. The estimated coefficient of log(Book)d is larger and thereby more sensitive
in the IPV model, which is consistent with the suggestion.

The expected number of bidders, λ, is mainly determined by the covariates UnOpen and
MinBidShare. The major differences in posterior mean estimates between the models are in
the constant and the coefficient of MinBidShare, where a higher minimum bid more strongly
discourages entry in the CV model.

3.3. In-sample fit. We evaluate the in-sample fit of the models using both graphical and
analytical methods. The observed dataset is compared to simulated data from each model.



PAPER III 7

We simulated 10, 000 full datasets with bids in 1050 auctions, using the observed covariates
and the parameters systematically sampled from the posterior sample in Section 3.2. Figure
2 presents the within-auction bid dispersion as the difference between the highest observed
bid and the lowest bid divided by the book value of the object in each auction. In Figure 3,
cross-auction heterogeneity is presented as histograms of the bids divided by the corresponding
book value in each auction.

As we can see in both figures, the observed within-auction bid dispersion and cross-auction
heterogeneity are very well captured by both models. However, it is not easy to judge which
of the models that fits the data best. One way of accomplishing such a comparison is to
compute the Hellinger distance between the actual and simulated distribution in the figures.
The Hellinger distance for distributions f1 and f2 can be written as (Nikulin (2001))

H(f1, f2) =

(

1

2

∫ ∞

−∞

(

√

f1(x)−
√

f2(x)
)2

dx

)1/2

,

where 0 ≤ H(f1, f2) ≤ 1.
The probability density functions f1 and f2 are estimated by a normal kernel density estima-

tion with automatic bandwidth selection, see Silverman (1986). Table 2 presents the Hellinger
distance between the simulated distribution and the actual data distribution for each model.
The distances are very small for both models, but the CV model is slightly better at fitting
the within-auction bid dispersion and cross-auction heterogeneity.

3.4. Out-of-sample predictions. The predictive ability of the models is compared by a
Bayesian version of cross-validation. We partition the eBay dataset into five equally large
subsets. The first 4/5 of the data are used to estimate the model (the training set) and the
observations in the excluded fifth partition (the testing set) are subsequently predicted. This
is repeated five times with a new fifth as the evaluation data each time. To quantify the
predictive ability, we compute the log predictive score (LPS) for each auction in the test sets.
As in Wegmann (2011), the predictive distribution is partitioned into discrete and continuous
components.

The discrete part of the distribution is computed by the multinomial predictive probability
of no bids, one bid, and at least two bids. Following Wegmann (2011), let pi,j be the probability
of j bids in auction i, and let

Ii,j =







1, if there are j actual bids in auction i

0, if there are not j actual bids in auction i,

where i = 1, . . . ,mt, j = 0, 1, and mt is the number of test auctions used to evaluate the
predictions. Let I = (I1,0, I1,1, I2,0, . . . , Imt,1) be the vector of observed indicator variables,
and let p = (p1,0, p1,1, p2,0, . . . , pmt,1) be the predictive probabilities for each auction. Then,
the discrete LPS is defined as

(3.1) LPSd =

∑mt

i=1

∑2
j=0 Ii,j · log pi,j

mt
,

where Ii,2 = (1− Ii,0 − Ii,1) , and pi,2 = (1− pi,0 − pi,1) are the indicator variable and the
predictive probability for at least two bids in auction i, respectively.

The LPS for the continuous part of the predictive price distribution is defined as

(3.2) LPSc =

∑m⋆
t

i=1 log
(

p̃(yi)
pi,2

)

m⋆
t

,
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where yi is the realized price in auction i evaluated in the predictive price distribution p̃(·),
and m⋆

t is the number of test auctions with at least two bids. Note that the predictive price
distribution is evaluated conditional on the presence of at least two bidders. Hence, the
continuous part of LPS does not depend on the predictive probabilities of the number of bids
in the discrete part of LPS.

Table 3 presents the LPS from each model and the proportion of auctions (% wins) with a
lower LPS for each model as compared to the other model. In a large majority of the auctions
the LPS are higher for the IPV model. However, in auctions where the CV model attains
a lower LPS, the differences in LPS are often large. This is especially true for the discrete
part of the LPS, which can also be seen from Table 3. The mean value of LPSd for the CV
model is considerably larger, even if the LPSd are larger in most of the auctions within the
IPV model. Therefore, it seems that the simpler IPV model has a slightly better predictive
ability in most auctions, but at the cost of being less robust in some auctions as compared to
the more complex common value counterpart.

3.5. Existence of the winner’s curse. Upon winning in a CV auction, the risk of overes-
timating the value of the object increases with the number of bidders, which induces bidders
to lower their bids. At the same time, the bidders need to bid more aggressively and place
larger bids due to more competition. In equilibrium, the effect of overestimating the value of
the object is larger than the effect of competition, and bidders react to this winner’s curse
effect by lowering their bids. This is in contrast to the second-price IPV auction where it is a
dominant strategy to bid one’s valuation, no matter how many bidders that are present. The
empirical implication of the winner’s curse phenomenon is that the average bid in an N -person
auction should be lower than an otherwise equivalent (N − 1)-person auction.

In the light of these differences between the models, we regressed the observed bids divided
by the book value on the number of observed bids and other covariates in a similar way as in
BH. Table 4 presents the estimated regressions on the eBay data. The results were obtained
using the MH-algorithm for variable selection, described in Section 3.1. The bids do not seem
to depend on the number of bidders. The estimates and the posterior inclusion probabilities
for both NBids and NBids·MinBidShared are very small and close to zero, which speaks in favor
of the IPV model. To control for omitted factors in the estimated regression model, we also
used other transformations of the number of bidders. However, the estimated results from
these models were very similar to the specified model in Table 4.

3.6. Correlation between observed bids. WV show that the correlation between bids in
the CV model is approximately 1

κ+1 if we ignore missing bids because of eBay’s proxy bidding
system; see BH for a detailed description, and the truncation of bids that comes from x⋆. If
all bids had been observed, the correlation between bids would have been a clear discriminant
between the two models, since all bids in the IPV model are uncorrelated. However, missing
bids introduce correlation between the observed bids in the IPV model. Consequently, if we
want to estimate the actual correlation between the observed bids, we need other tools.

Let bj = (bj1, . . . , bjnj
), j = 1, . . . ,m, i = 1, . . . , nj be the vector of nj observed bids in

the jth auction. Assume,

bj
iid
∼ N(θj1nj

,Σj)

θj = z
′

θjβθ,

where zθj are auction-specific covariates in the regression model for θj , and Σj is an equi-
variance equi-correlation covariance matrix
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Σj = σ2
j











1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . . ρ

ρ ρ · · · 1











.

The distribution of the mean bid is then given by

b̄j
iid
∼ N

(

θj , σ
2
j

1 + ρ(nj − 1)

nj

)

,

and it can be shown that
nj
∑

i=1

(

bij − b̄j
)2 iid

∼ σ2
j (1− ρ)2χ2(nj − 1).

The MLE of σ2
j |ρ is given by σ̂2

j |ρ = (1 − ρ)−2
∑nj

i=1(bij−b̄j)
2

nj−1
. Now, by substituting σ2

j in the

distribution of b̄j with its estimate, the concentrated log-likelihood function for an arbitrary
auction with respect to βθ and ρ is given by

p(b1, . . . ,bm⋆ |σ̂, ρ)
βθ,ρ
∝ m⋆ log(1− ρ)−

1

2

m⋆
∑

j=1

log(1 + ρ(nj − 1))

−
(1− ρ)2

2

m⋆
∑

j=1

nj(nj − 1)
(

b̄j − θj
)2

(1 + ρ(nj − 1))
∑nj

i=1(bij − b̄j)2
,(3.3)

where m⋆ is the number of auctions with at least two observed bids.
Using a standard optimization algorithm, we maximize the above log-likelihood with respect

to βθ and ρ, using all bids and auction-specific covariates from all auctions with at least two
bidders in the eBay dataset. Since we are only interested in the estimate of ρ, we found that
it was sufficient to control for the covariates in µ and MinBidShare in the regression model for
θ. This resulted in ρ̂ = 0.5023.

We evaluate the posterior predictive distribution (see e.g. Gelman et. al. (2004)) of the
correlation between observed bids in the IPV and CV models. Given the observed auction-
specific covariates and the posterior modes from the estimation of each model, we simulated
100 full datasets with observed bids from each of the 1050 eBay auctions. Figure 4 presents
histograms of the 100 estimated correlations between observed bids that were obtained from
the simulated datasets. It seems that the estimated correlations are slightly biased within both
models. While the bias is somewhat smaller in the IPV model, the variance of the estimated
correlations is slightly smaller in the CV model. Therefore, the models seem to be more or
less equally good at capturing the estimated correlation between bids in the eBay data.

3.7. Optimal minimum bids. Sellers at eBay frequently set a minimum bid. A low mini-
mum bid attracts more bidders, but also endangers a low sale price. A risk-neutral seller will
choose the minimum bid that maximizes the expected revenue,

E[Revenue] = Pr(Sale|r) · E (Price|r) + [1− Pr(Sale|r)] · ResidualValue,

where ResidualValue is the value of the object to the seller if the object is not sold. Using the
median of the covariates in the eBay dataset as a representative auction, we simulate data in
a similar way as in Section 3.3 and compute the posterior distribution of the expected seller
revenue.
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The upper parts of Figure 5 show the expected seller revenue as a function of the minimum
bid divided by the book value (MinBidShare) for each model. The optimal minimum bid in
the IPV model is zero irrespective of the seller’s residual value. This is contrary to the CV
model where the optimal minimum bid is a large fraction of the object’s book value for each
residual value. The optimal minimum bid is as high as 95% of the object’s book value when
the residual value is µ, 70% when the residual value is 70% of µ, and zero when the residual
value is below or equal to 0.6µ (not shown).

In the lower parts of Figure 5, the probability intervals of the number of bidders shrink
as MinBidShare increases in each model. The probability intervals are very similar between
the models, but in the IPV model the number of bidders is slightly larger for each value of
MinBidShare. When MinBidShare is below 0.6 (0.4) in the private (common) value model, the
sale probability is close to unity and the seller’s expected revenue is therefore essentially the
same irrespective of the residual value.

When MinBidShare decreases from 0.6 in the IPV model, the seller’s expected revenue
increases montonically. The absence of bid shading and almost a guarantee for sale in the IPV
model will automatically lead to higher expected selling prices when the number of bidders
increases. In the CV model, bidders shade their bids to account for the winner’s curse when
the number of bidders increases. When MinBidShare decreases from 0.4, it seems that the
seller’s expected revenue is about the same. Hence, the increased revenue from having more
competing bidders is offset by the bidders’ shading of bids.

The mean of MinBidShare is 0.58, which is close to the optimal minimum bids in Figure 5 for
both 0.8µ and 0.7µ as residual values in the CV model. In Figure 6, the optimal MinBidShare
is compared to the actual MinBidShare outcome in each auction for the CV model. Except
for some auctions with zero as the optimal MinBidShare, we can see that it is optimal for the
seller to choose MinBidShare around his residual value. On average, the optimal MinBidShare
is rather close to the actual MinBidShare when the residual value is either 0.9µ or 0.8µ. These
facts together with zero or close to zero as the optimal minimum bid for each auction in the
IPV model clearly speak in favor of the CV model.

4. Model robustness on simulated private and common value data

If the data originate from the CV model, we would certainly expect the CV model to fit
the data better than the IPV model. It is more difficult to say how much worse the IPV
model would do. Motivated by this, we try to infer by simulation how robust the models are
on either IPV or CV data. Although the CV model is more complex, the IPV model is not
nested in the CV model. Using the covariates and posterior mode estimates from the eBay
dataset, we simulated 10 datasets of bids from each model. For each dataset, the posterior
distribution of the parameters is computed under both models.

4.1. Estimation results. Table 5 presents the mean values of the posterior means over the
10 datasets of IPV and CV data. Most of the mean estimates in the IPV and CV models
differ only slightly for the different types of data. The major differences in both models are for
the estimated constants and the estimated coefficients of MinBidShare in λ. In the CV model,
there are also substantial differences in the posterior means for κ and the estimated constant
in σ.

Interestingly, the differences in κ can be explained by the zero-expected correlation between
potential bids in each auction for the IPV data (since private signals are independently dis-
tributed). The correlation between any pair of potential bids equals 1

κ+1 in the CV model, see
WV. Using the mean estimates of κ from Table 5, the estimated correlation for the CV data
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becomes 0.14 as compared to 0.07 for the IPV case. As expected, the correlation between
potential bids is smaller and close to zero in the IPV data.

It is straightforward to show from equation (2.10) that the unconditional variance of bids,
Var(b), is equal to (1−ω(κ, λ))2(κ+1)σ2 in the CV model. Hence, the variance of bids in the
CV model also depends on κ and λ in addition to the variance, σ2, in the IPV model. Table
6 presents the mean of the variance of bids in the IPV and CV data for each model, using
the mean of the covariates in Table 5. Within each model, Var(b) seems to be very similar
between the IPV and CV data, while Var(b) seems to be very different between the models for
each type of data. The differences in bid variances between the models are probably explained
by the inability of the IPV model to adjust the bid variances for different values of λ.

Table 7 presents Var(b) for different values of λ within the CV model. Overall, the bid
variances are rather similar across λ for the different types of data. Using the median covariates
in the eBay data and the mean estimates for the CV model in Table 1 gives λ = 3.7 and
Var(b) = 37.33. This is very close to the mean values of Var(b) in Table 6 for the IPV model,
which suggests that the IPV model estimates the bid variances around the median value of
the expected number of bidders λ.

4.2. In-sample fit. The in-sample fit of the models is evaluated by comparing the distribution
of the actual data to simulated data from the estimated models. Using the same settings as in
Section 3.3, 10,000 full datasets with bids were simulated from each estimated dataset within
each model. This gives 10 different Hellinger distances for both the IPV and the CV datasets
within each model. Table 8 presents the mean of 10 Hellinger distances of the within-auction
bid dispersion and cross-auction heterogeneity for the different types of data and model.

The CV model seems to be more robust than the IPV model, although the IPV model
is not nested in the CV model. Regardless of which model that generates the data, the
Hellinger distance of the cross-auction heterogeneity is lower for the CV model. This might be
explained by the more complex CV model, where the correlation between any pair of potential
bids is determined by κ. Therefore, the possible clustering between correlated bids can be more
easily captured within the CV model as compared to the simpler IPV model. The IPV model
cannot account for correlated bids. Even if the data come from the IPV model, the bids in
some auctions can be unevenly distributed and perhaps also spuriously correlated by random.
This is especially a risk in auctions with very few bids, which is often the case in eBay auctions.

Another reason for the differences in the Hellinger distances can simply be that each model
needs to balance the fit of both the cross-auction heterogeneity and the within-auction bid
dispersion simultaneously in the data. In Table 8, we can see that the fit of the within-auction
bid dispersion is traded off for a better fit of the cross-auction heterogeneity, as we move from
CV to IPV data. The opposite occurs for the CV model.

In general, it seems easier for the IPV model to fit within-auction bid dispersion and much
easier for the CV model to fit cross-auction heterogeneity. The IPV model can only control
the variation in bids through σ, while the CV model has a richer set of parameters to balance
the fit between within and cross-auction heterogeneities in a better way.

5. Conclusions

In this paper, we evaluate the empirical performance of the IPV and CV paradigms in
second-price auctions. We apply the general MCMC algorithm for Bayesian variable selection
in WV. By straightforward modifications of the CV model in BH and WV, we propose a
comparable IPV model. The relative performance of the models is evaluated on the eBay coin
auction dataset in WV, and model robustness is examined on simulated IPV and CV data.
Both models fit the eBay dataset well with a slight edge for the CV model. The IPV model is
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slightly better at predicting auction prices in most auctions, but the CV model does a much
better job in predicting more unusual auctions.

We discern several interesting empirical regularities between the estimated models. In
particular, the differences in the expected value of the object are explained by the winner’s
curse effect in common value auctions. According to our reduced form analysis with bids
regressed on functions of the number of bidders, it seems that the winner’s curse phenomenon
is not apparent in the eBay data. The bids do not depend on the number of bidders, which is
evidence against a common value framework. However, the optimal reservation prices in the
CV model are very close to the actual reservation prices in the eBay data compared to the
zero reservation price which is shown to be optimal in the IPV model.

We propose a model to estimate the correlation between observed bids. In the eBay data,
the estimated correlation is roughly 0.5. This is captured fairly well by both models for one
hundred replicated eBay datasets within each model. The CV model is much better at fitting
CV data than the IPV model, while the IPV model is only slightly better at fitting IPV data.
Hence, the CV model seems to be more robust to different types of data.

To conclude, we find evidence for both private and common values in different ways. The
value of the object probably includes both a private and a common value component. Un-
fortunately, the game-theoretic models with a combination of private and common values are
not yet ready for an empirical analysis of auction data. Certainly, creating such models is a
well warranted area of future research. Meanwhile, we need to choose between the private or
the common value paradigm, or use Bayesian model averaging between IPV and CV models.
Model averaging can result in a better predictive ability of auction prices, but at the cost of
a more complex interpretation of the valuation structure.
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Table 1. Comparing the estimation results between the IPV and CV models
on the eBay dataset.

Par Covariate Mean Std Incl prob IF
IPV CV IPV CV IPV CV IPV CV

κ − − 5.551 − 0.725 − 1.000 − 5.833
µ Const 22.781 28.310 0.225 0.243 1.000 1.000 8.707 8.360

Bookd 0.566 0.741 0.008 0.011 1.000 1.000 3.129 5.372
Book·Pow 0.030 0.033 0.010 0.014 0.404 0.073 1.810 −

Book·ID −0.004 0.123 0.031 0.034 0.005 0.917 − 4.928
Book·Unopen 0.259 0.375 0.020 0.027 1.000 1.000 3.680 4.203
Book·MinBlem −0.006 −0.015 0.016 0.017 0.007 0.005 − −

Book·MajBlem −0.240 −0.248 0.024 0.029 1.000 1.000 2.710 4.350
Book·LargNeg −0.007 −0.005 0.014 0.017 0.004 0.006 − −

log(σ2) Const 3.871 3.995 0.035 0.068 1.000 1.000 5.297 8.079
log(Book)d 1.406 1.276 0.035 0.038 1.000 1.000 2.595 6.652
log(Book)·Pow 0.037 0.042 0.017 0.018 0.121 0.228 − −

log(Book)·ID 0.111 0.103 0.037 0.038 0.577 0.460 2.281 5.535
log(Book)·Unopen 0.239 0.193 0.023 0.026 1.000 1.000 3.317 6.478
log(Book)·MinBlem −0.014 −0.001 0.026 0.024 0.012 0.005 − −

log(Book)·MajBlem 0.008 0.036 0.035 0.038 0.010 0.010 − −

log(Book)·LargNeg 0.021 0.037 0.024 0.021 0.010 0.033 − −

log(λ) Const 1.287 1.202 0.022 0.020 1.000 1.000 2.265 3.859
Pow −0.033 0.003 0.033 0.034 0.008 0.004 − −

ID −0.173 −0.142 0.085 0.084 0.035 0.022 − −

Unopen 0.326 0.360 0.046 0.045 1.000 1.000 2.439 4.563
MinBlem −0.049 −0.022 0.062 0.044 0.008 0.004 − −

MajBlem −0.159 −0.165 0.089 0.095 0.024 0.021 − −

LargNeg 0.101 0.074 0.056 0.041 0.032 0.018 − −

log(Book)d 0.024 −0.038 0.025 0.028 0.006 0.016 − −

MinBidShared −1.141 −1.417 0.060 0.053 1.000 1.000 2.566 4.468

Note: x1 · x2 denotes the interaction of x1 and x2, and xd = x− x̄.

Table 2. The Hellinger distance of the within-auction bid dispersion and the
cross-auction heterogeneity for each model on the eBay coin auction data.

Model Within Cross-auction
IPV 0.0774 0.0894
CV 0.0763 0.0632
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Table 3. Log predictive scores (LPS) on the eBay coin auction data for the
IPV and CV models.

Model LPSc LPSd

Mean % wins Mean % wins
Pri −3.640 75.7 −0.926 73.3
Com −3.781 24.3 −0.575 26.7

Table 4. Observed bids divided by their book values are regressed on the
number of bidders (NBids) and other covariates.

Covariate Mean Std Incl prob IF
NBids 0.000 0.001 0.067 −

NBids·MinBidShared −0.005 0.008 0.339 1.456
MinBidShared 0.657 0.047 1.000 36.946
Const 0.856 0.009 1.000 14.460
Pow 0.001 0.005 0.055 −

ID 0.000 0.002 0.004 −

UnOpen 0.162 0.013 1.000 2.887
MinBlem 0.000 0.002 0.009 −

MajBlem −0.193 0.025 1.000 2.326
LargNeg 0.000 0.001 0.006 −

σǫ 0.245 0.003 − 2.034

Note: x1 · x2 denotes the interaction of x1 and x2, and xd = x− x̄.
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Table 5. Comparing the mean values of the estimated posterior means from
10 datasets of IPV and CV data.

Par Covariate IPV model CV model

IPV Data CV Data IPV Data CV Data
κ − − − 12.705 6.061
µ Const 23.569 23.493 28.523 28.352

Bookd 0.565 0.565 0.749 0.743
Book·Pow 0.021 0.004 0.008 0.002
Book·ID 0.000 0.011 0.085 0.073
Book·Unopen 0.286 0.267 0.377 0.373
Book·MinBlem 0.000 0.000 −0.001 0.000
Book·MajBlem −0.194 −0.189 −0.202 −0.238
Book·LargNeg 0.000 −0.010 0.000 −0.001

log(σ2) Const 3.646 3.761 4.314 3.935
log(Book)d 1.568 1.536 1.386 1.322
log(Book)·Pow 0.000 −0.001 0.002 0.000
log(Book)·ID 0.043 0.016 0.020 0.004
log(Book)·Unopen 0.225 0.237 0.165 0.163
log(Book)·MinBlem −0.002 0.001 0.001 0.000
log(Book)·MajBlem −0.009 −0.075 −0.003 −0.020
log(Book)·LargNeg −0.001 −0.001 0.001 0.000

log(λ) Const 1.073 0.926 1.047 0.905
Pow 0.001 0.007 0.005 0.001
ID −0.056 −0.003 −0.002 0.001
Unopen 0.359 0.456 0.334 0.431
MinBlem −0.003 0.003 0.000 0.001
MajBlem −0.038 −0.183 −0.033 −0.195
LargNeg 0.005 0.000 0.001 0.000
log(Book)d −0.023 −0.011 0.000 −0.007
MinBidShared −1.642 −2.047 −1.607 −2.091

Note 1: The posterior means are calculated from all of the draws in the posterior sampling.

This is contrary to the results in Table 1, where the posterior means were obtained given

that the covariate was included in the model.

Note 2: x1 · x2 denotes the interaction of x1 and x2, and xd = x− x̄.

Table 6. The mean estimates of the variance of bids, var(b), in the IPV and
CV data using the mean of the covariates for each model in Table 5.

Model IPV Data CV Data
IPV 38.3 43.0
CV 24.6 25.3
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Table 7. The unconditional variance of bids, var(b), in the CV model is pre-
sented for IPV and CV data and the eBay dataset. The posterior mean esti-
mates from Table 1 and 5, and the mean of the covariates in σ are used in the
calculations.

λ = 2 λ = 3 λ = 3.7 λ = 4 λ = 5 λ = 7 λ = 9
IPV Data 18.95 25.63 30.68 32.91 40.68 57.33 74.97
CV Data 22.24 28.85 33.59 35.63 42.46 56.02 69.11
eBay Data 24.97 32.19 37.33 39.53 46.87 61.28 75.02

Table 8. The mean of the 10 Hellinger distances for the within-auction bid
dispersion and the cross-auction heterogeneity of each model on the simulated
IPV and CV datasets.

Hellinger Within Hellinger Cross-auction
Model PriData ComData PriData Comdata
IPV 0.0711 0.0679 0.0814 0.1356
CV 0.1037 0.0615 0.0571 0.0666
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Figure 1. The mean-variance ratio, µ
σ2 , based on the auction-specific covari-

ates and the posterior mean estimates from the IPV and CV models. The size
of the bubbles is proportional to the book value of the auctioned object.
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Figure 2. Posterior predictive comparison of the within-auction dispersion
for the IPV and CV models. The within-auction dispersion is defined as the
difference between the highest observed bid and the lowest bid divided by the
auctioned item’s book value.
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Figure 3. Posterior predictive comparison of the cross-auction heterogeneity
for the IPV and CV models. Cross-auction heterogeneity is defined as the bids
divided by the book value of each auction.
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for each simulated dataset in each model. The vertical lines indicate the mean
of the estimates, and the star marks out the estimated correlation in the actual
eBay dataset.
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Figure 5. Comparing the optimal minimum bids between the models. The
figure shows the posterior distribution of the sellers’ expected revenue (upper
graphs) and the number of bidders with signals x ≥ x⋆ (lower graphs) as a
function of the minimum bid divided by the book value. The circles in the
upper right figure mark out the optimal MinBidShare value for each residual
value in the CV model. The optimal minimum bid in the IPV model is zero,
irrespective of the residual value.
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Figure 6. The actual and optimal MinBidShare value is compared in each auc-
tion to a 45−degree reference line in the CV model. The optimal MinBidShare
value in the IPV model is zero in most auctions and a maximum of 0.02 across
all residual values.



BAYESIAN INFERENCE IN STRUCTURAL SECOND-PRICE AUCTIONS

WITH BOTH PRIVATE-VALUE AND COMMON-VALUE BIDDERS

BERTIL WEGMANN

Abstract. Auctions with asymmetric bidders have been actively studied in recent years.
Tan and Xing (2011) show the existence of monotone pure-strategy equilibrium in auctions
with both private-value and common-value bidders. The equilibrium bid function is given
as the solution to an ordinary differential equation (ODE). We approximate the ODE and
obtain a very accurate, approximate inverse bid as an explicit function of a given bid. This
results in fast and numerically stable likelihood evaluations, which is an extremely valuable
property for inference. We propose a model where the valuations of both common-value
and private-value bidders are functions of covariates. The probability of being a common-
value bidder is modeled by a logistic regression model with Bayesian variable selection. The
model is estimated on a dataset of eBay coin auctions. We analyze the model using Bayesian
methods implemented via a Metropolis-within-Gibbs algorithm. The posterior inference of
the common-value part of the model is similar to the ones obtained from a model with only
common-value bidders, whereas the private-value part of the model is more affected by the
introduction of common-value bidders. There is on average a slightly larger probability for a
bidder to be a common-value bidder, but this probability depends very little on the auction-
specific covariates.

Keywords: Asymmetry, Bid function approximation, Common-value bidders, Gaussian
model, Internet auctions, Markov Chain Monte Carlo, Ordinary differential equation, Private-
value bidders.

1. Introduction

In empirical studies of auctions, researchers have typically been working within either the
independent private-value or the pure common-value paradigms, see e.g. Bajari and Hortacsu
(2003, henceforth BH), Sareen (1999), and Paarsch (1992) for good examples. Within the
private-value paradigm the value of the object is known to the private-value bidder, whereas
the common-value bidder needs to estimate the value that is common to all bidders. In
recent years, auctions with asymmetric private-value and/or common-value bidders have been
an actively studied research area. Campo, Perrigne, and Vuong (2003) propose a method
to estimate asymmetric first-price auctions with affiliated private-value bidders, Maskin and
Riley (2000) distinguish between weak and strong private-value bidders in their study of
asymmetric auctions, and Chang and Tan (2010) studied two common-value bidders in which
their private information are asymmetrically distributed. While these studies have focused
on asymmetry in either the private-value or common-value paradigm, Goeree and Offerman
(2002,2003) and Jackson (2009) studied auctions with values involving both private-value and
common-value components, and Reny and Zamir (2004) prove the existence of equilibria in
general asymmetric first-price auctions with interdependent values.

Tan and Xing (2011, henceforth TX) show the existence of a monotone pure-strategy equi-
librium in auctions with both private-value and common-value bidders. In the solution of
their model the private-value bidders bid their values, while the equilibrium bid for symmetric

Department of Statistics, Stockholm University, SE-106 91 Stockholm. E-mail: bertil.wegmann@stat.su.se.
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common-value bidders is the solution to an ordinary differential equation (ODE) that depends
on the parameters in the private-value distribution. To solve the ODE one needs to resort to
numerical methods like the Runge-Kutta methods. This is very time-consuming and can not
be used for likelihood-based inference, where the bid function needs to be evaluated over and
over again for each bid in each auction.

We solve the ODE by approximating the bid function to obtain the inverse bid as an explicit
function of a given bid. This is extremely valuable for a fast and numerically stable likelihood
evaluation. We document that the accuracy of the approximation is very good by comparing
it graphically to the exact bid function in TX. Following BH and Wegmann and Villani (2011,
henceforth WV), we define similar Gaussian valuation distributions for both private-value and
common-value bidders.

Evaluating the likelihood is substantially simpler if we condition on the valuation type of
each bidder. We therefore augment the model with valuation indicators that record if each
bid belongs to a private-value or a common-value bidder. This information is of course not
observed, but a Bayesian approach allows us to treat these missing observations as unknown
parameters to be estimated. We use a Metropolis-within-Gibbs algorithm to simulate from
the joint posterior of the model parameters and the valuation indicators.

We contrast our model on the eBay coin auction dataset in WV with bids and auction-
specific covariates. Contrary to BH and WV, our model does not explicitly take into account
the seller’s reservation price. We therefore restrict the empirical analysis to the 464 auctions
with a negligible reservation price. Our empirical results show that the inference for the
common-value part of the model is essentially unchanged by the presence of private-value
bidders, whereas the estimates of the private-value part of the model is strongly affected
by the introduction of common-value bidders. We find the results for the common-value
distribution to be reasonable, where the book value and the condition of the auctioned object
are the main determinants for the valuations. This is also true for the book value in the
private-value distribution, but the results for the condition of the object is probably biased.
Finally, it seems that the probability of being a common-value bidder depends very little on
auction-specific covariates, but, on average, there is a slightly larger probability of being a
common-value bidder for a given bid.

2. A model with both private-value and common-value bidders

2.1. Model setup and equilibrium bidding strategies. Assume that m common-value
and n private-value risk-neutral bidders compete for a single object in a second-price auction.
The number of private-value and common-value bidders in each auction is common knowledge
to the bidders. Each private-value bidder knows his or her valuation, q, which is drawn
independently from the same distribution. The value of the object, v, for common-value
bidders is unknown and the same at the time of bidding, but a prior distribution for v is
shared by the bidders. To estimate v, each bidder relies on his or her own information of the
object modeled as a signal x, which is drawn independently from the same distribution, x|v.
Further, the common value and the signals, v, x1, . . . , xm, are independent of all private values
q1, q2, . . . , qn, but have the same support [q, q].

Because the auction involves symmetric private-value and common-value bidders, we con-
sider a symmetric bid equilibrium for an arbitrary private-value and common-value bidder
without loss of generality. Let fq(q) denote the probability density function of q, and let Fq(q)
denote the cumulative distribution function of q for the private-value bidders. It is a domi-
nant equilibrium strategy for private-value bidders to bid their values in second-price auctions
(Vickrey, 1961). This implies that a private-value bidder’s equilibrium bid is not affected by
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the presence of common-value bidders, which gives the bid function for a private-value bidder
as

(2.1) b(q) = q.

Let gv(v) denote the probability density function of v, let gx|v(x|v) denote the conditional
probability density function of x|v, and let Gx|v(x|v) denote the conditional cumulative distri-
bution function of x|v (x|x) for the common-value bidders. The equilibrium bidding strategy
for a common-value bidder is characterized by different expected common values conditional
on two possible events A and B: the highest bid of all other bidders is placed by a private-
value bidder (A) or a common-value bidder (B) (TX). If A occurs the expected common value,
E[v|A], is given by

(2.2) L(x) =

∫

v v ·G
m−1
x|v (x|v) · gx|v(x|v) · gv(v) dv

∫

v G
m−1
x|v (x|v) · gx|v(x|v) · gv(v) dv

,

and if B occurs the expected common value, E[v|B], equals

(2.3) H(x) =

∫

v v ·G
m−2
x|v (x|v) · g2x|v(x|v) · gv(v) dv

∫

v G
m−2
x|v (x|v) · gx|v(x|v) · gv(v) dv

.

Let gx|xi
(x|x) be the probability density function of the signal x for any other bidder than i

conditional on bidder is signal x, and let Gx|xi
(x|x) be the corresponding conditional cumula-

tive distribution function. The equilibrium bid function for an arbitrary bidder i with signal
x, satisfies the solution to the following ordinary differential equation (ODE) (TX):

(2.4)
db

dx
=

(m− 1)g(x|x)F (b)(H(x)− b)

nG(x|x)f(b)(b− L(x))
,

with the boundary condition i) b(x) = H(x) = L(x) and ii) b′(x) = αL′(x) + (1 − α)H ′(x),
where α = n

n+m−1 .

TX show that there exists an increasing solution, b(x), such that L(x) < b(x) < H(x) for
all x ∈ (x, x]. The bid function can be evaluated by the Runge-Kutta method, which is a
reasonably simple and robust algorithm for numerical solutions of ODEs. In the next section
we briefly describe how this method can be implemented into our model, and compare the
exact bid function to a useful approximate solution of the bid function.

Let θj be the probability of the event that the ith bidder is a common-value bidder in
auction j. Further, let qj denote the private value in auction j, let vj denote the common
value in auction j, and let xij denote the signal of the ith bidder in auction j. Similar to
Wegmann (2011), we specify Gaussian models for both private and common values as

qj
iid
∼ N(µpj , σ

2
pj), i = 1, ..., nj ,

vj ∼ N(µcj , σ
2
cj), j = 1, ..., D,

xij |vj
iid
∼ N(vj , κσ

2
cj), i = 1, ...,mj ,

µpj = z′µpjβµp,

µcj = z′µcjβµc

lnσ2
pj = z′σpjβσp,

lnσ2
cj = z′σcjβσc,

ln
θj

1− θj
= z′θjβθ,(2.5)
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where zj = (z′µpj , z
′
σpj , z

′
µcj , z

′
σcj , z

′
θj)

′ are auction-specific covariates in the regression models

for (µpj , σ
2
pj , µcj , σ

2
cj , θj) in auction j. Note that we model θ as a function of auction-specific

covariates. Bidder-specific covariates can equally well be used, but we do not have such
information in our eBay dataset. Note also that we model θ using a logit link and the variances
using a log-link, but any link functions can be used in our inferential methodology.

The Gaussian model for common values implies that

(2.6) x |xi
iid
∼ N

(

µcj ,
(κ+ 1)(κ+ 2)

κ
σ2
cj

)

for any common-value bidder other than the ith bidder in an arbitrary auction.

2.2. The approximate bid function for a common-value bidder. A single evaluation of
the posterior density (likelihood function) requires advanced numerical solutions of the ODE
in (2.4) to obtain b

(

x|µp, σ
2
p, µc, σ

2
c , κ,m, n

)

. This is a very costly procedure that needs to
be repeated for each bid in each auction in the dataset. Therefore, the likelihood evaluation
is not fast enough to use for routine inference. Instead, we approximate the bid function to
obtain the inverse bid function φ(b) as an explicit function of b, which implies that numerical
integration is not necessary. This leads to much faster and numerically more stable likelihood
evaluations. We first derive the approximate bid function and examine the accuracy of the
approximation. Then, we state under which conditions our approximation approach holds to
account for other valuation structures and auction setups.

In our approximation of the bid function, we use the accurate linear approximations of L(x)
and H(x) in WV, given by

(2.7) Ĥ(x) = c+ ωµ+ (1− ω)x,

where c = −
√
κσγθ(m−2)

γ(m−2)+1+κ
2
, ω =

κ
2

γ(m−2)+1+κ
2
, θ = 1.96 and γ = 0.1938, and

(2.8) L̂(x) = c̃+ ω̃µ+ (1− ω̃)x,

where c̃ = −
√
κσγθ(m−1)

γ(m−1)+ 1
2
+κ

2

, and ω̃ =
κ
2

γ(m−1)+ 1
2
+κ

2

. Then, L̂′(x) = (1− ω̃) and Ĥ ′(x) = (1− ω).

Following the intuition in TX, we propose an approximation of the bid function in (2.4) as a

weighted average between L̂(x) and Ĥ(x),

(2.9) b̂(x) =
δL̂(x) + Ĥ(x)

δ + 1
,

where δ > 0 is constrained to be independent of the signal x. Note that, by requiring δ to
be positive the approximate bid function fulfills the crucial inequality L(x) < b(x) < H(x) in

TX. Taking the first derivative of b̂(x) and replacing b, L(x), and H(x) in
(

H(x)−b
b−L(x)

)

of (2.4)

by b̂(x), L̂(x), and Ĥ(x), respectively, the following equality holds:

(2.10)
db

dx
=

(m− 1)g(x|x)F (b)

nG(x|x)f(b)
· δ =

δL̂′(x) + Ĥ ′(x)
δ + 1

.

Now, in order to solve for δ we approximate x in (2.10) by using the boundary conditions
i) and ii) in (2.4). First, let x0 be the lower bound of the signals given by the solution to

b̂(x0) = Ĥ(x0) = L̂(x0) in i). Second, the solution to ii) gives the slope b̂′0(x0) of a linear bid

function b̂0(x0) through x0. Hence, the approximated value of x for each bid b can be obtained
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by

(2.11) x̃ = x0 +
1

b̂′0(x0)

(

b− b̂0(x0)
)

= x0 +
b− b̂0(x0)

α(1− ω̃) + (1− α)(1− ω)
.

Replacing x by x̃ in (2.10), we solve the ODE by solving the quadratic equation for δ > 0,
which gives

(2.12) δ =
1− ω̃ − u(b) +

√

(1− ω̃ − u(b))2 + 4(1− ω)u(b)

2 · u(b)
,

where u(b) = (M−1)g(x̃|x̃)F (b)
NG(x̃|x̃)f(b) > 0 is a function of a bid b. Note that 4(1 − ω)u(b) > 0 implies

that the solution in (2.12) is unique for δ > 0 that satisfies L̂(x) < b̂(x) < Ĥ(x). Solving for
x in (2.9), gives the approximate inverse bid function

(2.13) φ(b) =
δ(b− c̃− ω̃µ) + (b− c− ωµ)

δ(1− ω̃) + (1− ω)
.

We compare the approximate inverse bid function in (2.13) to the exact solution obtained
with the Runge-Kutta methods, see Dormand and Prince (1980). In our model, the lower
bound of the signals is −∞, which is untenable for the implementation of the Runge-Kutta
methods. However, we find that sufficiently low values for x in (2.4, i)) only distort the
solution of the exact inverse bid function very little. We typically use an initial value, x0,

where Ĥ(x) − L̂(x) = 0.1 and b̂0(x0) = L̂(x)+Ĥ(x)
2 , together with a maximum step length of

0.01 in the Runge-Kutta algorithm.
Figures 1, 2 and 3 compare the exact bid function to the approximate case graphically.

The upper left subgraph of Figure 1 illustrates the comparison for a representative auction,
based on the mean of the covariates in the eBay dataset and the posterior mean of the model
parameters in Table 1. This gives µp = 23, σp = 16, µc = 31, σc = 6.5, κ = 1.4, n = 2, and
m = 3. The approximation of the bid function is very good in all figures. Figure 1 shows that
the accuracy of the approximation is about the same no matter how many private-value and
common-value bidders that are present in an auction. In Figure 2 the approximation is notably
better when the fairly large coefficient of variation (CV) of the private-value model decreases
in the representative auction. The accuracy of the approximation seems to be most sensitive
to changes in the parameters of the common-value model. The approximation deteriorates
slightly for larger values of κ and σc in Figure 3.

Our approximation approach can be used for other auction setups and valuation structures.
The conditions under which it can be used hinges upon the approximations of L(x) and
H(x), and that g(x|xi) is a probability density function given the density functions g(v) and
g(x|v). The conditions for the approximations of L(x) and H(x) are given in WV, and hold
for the Gaussian common-value model in our model setup. In addition, WV verified that the
approximations of L(x) and H(x) hold for a lognormal model. It can be verified that g(x|xi)
is also lognormal in this case.

3. Bayesian Inference

We use Bayesian methods to estimate the model. The next three subsections describe
the likelihood function, the prior distribution and the Markov Chain Monte Carlo (MCMC)
algorithm that we use to sample from the joint posterior distribution of the model parameters
and the private/common-value indicators of the bids.
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3.1. The likelihood function. BH made the assumption that bids in parallel auctions are
independent, and showed that last-minute bidding is a symmetric Nash equilibrium on eBay.
This allows us to model eBay auctions as independent second-price auctions, which clearly
simplifies the analysis. The probability distribution of each bid in the jth auction is a two-
component mixture distribution with probability θj that the bid comes from a common-value
bidder and with probability (1−θj) that the bid comes from a private-value bidder. It is usually
straightforward to estimate a two-component mixture, at least with simulation methods. Our
auction model poses a special challenge, since the common-value bid function depends on the
number of private-value and common-value bidders, n and m, in the same auction, see Section
2. The only way of writing up the likelihood function is therefore to condition on m and
subsequently to sum over m. Alternatively, we can augment the model with indicators, one
for each bid, that determine whether a given bid comes from a common-value or a private-
value bidder. Let Iij = 1 if the ith bidder in the jth auction is a common-value bidder, and
let Ij be a vector containing all valuation indicators for bids in the jth auction. Finally, let
{I = I1, I2, . . . , ID} denote the collection of all indicators. We use an MCMC algorithm to
simulate from the joint posterior of the model parameters and the valuation indicators, see
Section 3.3 below.

The likelihood function of bids is complicated by the fact that the highest bid is usually
not observed because of eBay’s proxy bidding system (see BH and WV for details). The bid
distribution for a common-value bidder in a single auction is derived from the distribution of
the signal as

(3.1) gb (b|βµp, βσp, βµc, βσc, z, κ, v,m) = gx|v [φ(b)|v, κ, βσc, z]φ
′(b),

where φ(b) = x is the inverse bid function. Let b = (b⋆1, bp2, bp3, . . . , bpn, bc2, bc3, . . . , bcm) be
the vector of observed bids in an arbitrary auction, where b⋆1 is the highest bid from either
a private-value or common-value bidder that is lower than the highest bid in the auction,
bp2 > bp3 > · · · > bpn, and bc2 > bc3 > · · · > bcn. Then the likelihood function for that auction
is given by

fb
(

b⋆1, bp2, bp3, . . . , bpn, bc2, bc3, . . . , bcm|µp, σ
2
p, µc, σ

2
c , κ, I, θ, z, v

)

=(3.2)

{

1− Fq

(

bp2|µp, σ
2
p

)}I(bp1>bc1) ·
{

fq
(

b⋆1|µp, σ
2
p

)}I(bp1<bc1) ·
∏n

i=2 fq
(

bpi|µp, σ
2
p

)

×

{

1−Gx|v
[

φ (bc2) |v, κ, σ
2
c

]}I(bp1<bc1) · gb
(

b⋆1|v, κ, σ
2
c

)I(bp1>bc1) ·
∏m

i=2 gb
(

bci|µp, σ
2
p, v, κ, σ

2
c ,m

)

,

3.2. The prior distribution. We need to assign a prior distribution to all unknown quan-
tities: Ij , vj , κ, βθ, βµp, βσp, βµc, and βσc. The prior distribution of the indicators in a given
auction are iid Bernoulli distributed with probability θj . The indicator vectors are assumed
to be a priori independent between auctions. The prior distribution of the common values,
v1, ...vD, are independent N(µj , σj) variables according to the model. Following WV, we use
an inverse Gamma prior for κ, κ ∼ IG (κ̄, g) , where κ̄ = 0.25 and g = 4. The five regression
coefficient vectors are assumed to follow g-priors (Zellner, 1986) a priori. Specifically, the prior
for βµ, conditional on βσ, is given by

βµ·|βσ· ∼ N [0, c(z′µ·Dzµ·)
−1],

where D1/2 = Diag[exp(−z′σ1
βσ/2), ..., exp(−z′σn

βσ/2)], and c > 0 is a scaling factor that we
set equal to the number of auctions in the data, making the information in the prior equivalent
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to a sample of one observation. Marginal g-prior for βσ is given by

βσ ∼ N [0, c(z′σzσ)
−1].

The same equivalence of information in the prior for βθ does not apply if the g-prior is used
for these parameters. Instead, we use the following prior for βθ:

βθ ∼ N [0, cθI],

where I is the identity matrix and cθ = 100. Finally, the prior inclusion probability, π, of a
given covariate, in the logistic regression model for θj , is set to 0.5.

3.3. Metropolis-within-Gibbs sampling. We use a Gibbs algorithm with the following
eight parameter updating steps:

1. {Ii}
D
i=1 2. βθ 3. {vi}

D
i=1 4. κ 5. βµp 6. βσp 7. βµc 8. βσc

We use a Metropolis-Hastings update for the valuation indicators in Step 1. The propos-
als for the Ij-vector is obtained by changing the current value of each element Ij with a
certain pre-determined probability. This probability of changing a given element of Ij is here

set to min
(

1, 1.5
nj+mj

)

. Note that we propose all elements of Ij jointly. Since the indicator

vectors in different auctions are independent conditional on the model parameters, we can
generate the indicator vectors I1, ..., ID simultaneously in a single updating step.

The regression coefficients in the logistic regression in Step 2 are simulated using the efficient
finite step Newton algorithm in Villani, Kohn and Giordani (2009). This allows us to do
Bayesian variable selection among the covariates in the logistic regression model for θ with
the indicators Iij as the response variables. Variable selection introduces point masses at zero
in the prior distribution to allow for the possibility that a subset of the covariates is absent
in θ, see Smith and Kohn (1996). The gradient and Hessian are given in closed form. In
the algorithm, Newton’s method is used to iterate a small number of steps from the current
point towards the posterior mode. The proposal is subsequently drawn from the multivariate
t-distribution with mean equal to the terminal Newton point and covariance matrix equal to
the negative inverse Hessian at this point. The degrees of freedom is set to 10. We find that
it is sufficient to iterate only one Newton step towards the posterior mode. The algorithm is
very efficient. We get very good convergence in the MCMC chain with a mean acceptance
rate of 85%.

The common values, v1, ..., vD, in Step 3 are simulated by a Random Walk Metropolis
(RWM) step, and the same applies to κ in Step 4. The scaling factors in the RWM are all
chosen to roughly match the optimal Metropolis acceptance probabilities in Gelman et. al.
(2004). Note also here that the common values are independent, conditional on the model
parameters, so we can generate them all at once. We experimented with two different ways of
simulating the regression coefficient vectors in Steps 5-8. First, we considered the same finite
Newton step algorithm with variable selection as in Step 2, but our implementation of this
method resulted in an MCMC chain that got stuck for long spells. Instead, we use simple
RWM updates in Steps 5-8. RWM is a much less efficient algorithm, however, and we hope
to shed more light on why we were not successful with the finite Newton algorithm.

4. Posterior results on eBay coin auction data

4.1. Estimation results. The model is estimated using the data from eBay coin auctions in
WV. Their dataset involves minimum bids (reservation prices) that are set by the seller in
each auction. Since we do not model auctions with minimum bids, we use the subset of the
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data with auctions where the minimum bid is less than half of the book value of the auctioned
object. Therefore, the minimum bids can be assumed to have a negligble effect on the bidding
process. This gives us data from 464 auctions, which includes auction-specific covariates and
bid sequences from auctions that ended between November 7 and December 19, 2007 and
December 27, 2007 to January 29, 2008. The book value of the object is defined by Book.
The other covariates are dummy variables that are coded to be 1 if a certain characteristic
is present in a given auction: sellers with large selling volumes, so called PowerSellers (Pow),
whether or not the object has a major damage (MajBlem), and if the object is sold in its
original sealed envelope (UnOpen).

Table 1 reports the posterior results of the estimated model, whereas Table 2 and 3 show
the results for the estimated model with only private-value and only common-value bidders,
respectively. The uncertainty of the parameter estimates is illustrated with 2.5 and 97.5 per-
centiles of the posterior for each parameter. The numerical efficiency of the MCMC algorithm
is described by the inefficiency factor (IF), defined as the number of posterior draws needed
to obtain the equivalent of one independent draw.

In general, the empirical results for the common-value distribution are essentially the same
as the ones obtained from a model with only common-value bidders. It is interesting to
note, however, that the variability in the signals of the common-value bidders decreases across
auctions by the presence of private-value bidders, since the posterior mean estimate of κ
is notably lower in this case. The estimates of the private-value distribution are strongly
affected by the introduction of common-value bidders. The uncertainty of the parameters in
the common-value distribution is substantially smaller than for the corresponding parameters
in the private-value distribution. We find the signs and magnitudes of the estimated coefficients
to be reasonable in the common-value distribution, where the book value and the condition of
the auctioned object are the main determinants of the mean valuations. In the private-value
distribution, µp is less affected by the book value and the condition of the object, but the
coins in sealed envelopes (UnOpen = 1) are still higher valued.

Figure 4 illustrates substantially more auctions with larger values of µc than µp. The
valuations for the private-value bidders are more concentrated to low-value auctions. This
might be explained by different bidding characteristics between private-value and common-
value bidders. It is interesting to observe that the valuations of common-value bidders seem
to be much more responsive to imperfections of the objects or missing coins in a package,
compared to the private-value bidders (MajBlem has a strong negative effect in µc, but is
not significant in mup). One interpretation of this finding is that private-value bidders have
stronger attachment to the particular auctioned coin than the common-value bidders who may
be more focused on subsequent resale of the object. This line of reasoning can also explain
why common-value bidders react stronger than private-value bidders to changes in the book
value of the object.

The major differences in σ between the distributions are substantially larger magnitudes in
the posterior mean estimates of the constant and the coefficient of Bookd in σp. This suggest
that the more heterogenous private-value bidders search the eBay marketplace for coins that
match their collection, while the unknown market value for the common-value bidders is more
precise.

The last but one column in Table 1 displays the posterior probability of including a given
covariate in the model for θ. The posterior inclusion probabilities are all very small. Hence,
the probability θ of being a common-value bidder in a given auction depends very little on
certain auction-specific covariates. The probability of being a common-value bidder is equal
to 0.58 in a representative auction with a covariate vector equal to the mean of the sample
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covariates, and the model parameters fixed at their posterior mean estimates. By taking the
mean of each valuation indicator I in all auctions, we determine the probability of being a
common-value bidder for each bid. Figure 5 presents a histogram of the probabilities of being
a common-value bidder. In many cases the probability is either high, typically 0.6 − 0.8, or
low, where the probabilities are relatively uniformly distributed between 0−0.5. Note that we
only include covariates on the auction level. It would clearly be interesting to also model θ
using information on the bidders as covariates. While such information is available on eBay,
for example whether or not the bidder is a power seller or the bidder’s feedback score, our
current dataset does not include this information.

Finally, Table 4 presents posterior results for a Poisson regression with the total number of
private-value and common-value bidders as response variable in each auction. This entry model
is needed when predicting e.g. the price in future auctions, see WV. The main determinant
of the entry process is log(Book)d. A larger book value attracts more bidders to the auction.
The expected number of bidders is equal to 5.6 in the representative auction.

5. Conclusions

We model second-price auctions with both private-value and common-value bidders. The
mean and variance of the valuation distributions for both types of bidders are modeled as
functions of covariates. The probability that a given bidder is a common-value bidder is
modeled by a logistic regression model with auction-specific covariates, and we use an MCMC
algorithm that allows for Bayesian variable selection among the covariates.

In equilibrium, the private-value bidders bid their values and the symmetric common-value
bidders bid according to the bid function in TX, which is the solution to an ODE. To solve
the ODE one needs to resort to numerical algorithms like the Runge-Kutta methods. This
is very time-consuming and is a major impediment to widespread use in practical likelihood-
based work, since a single likelihood evaluation requires evaluation of the inverse bid function
for every bid in every auction. We approximate the highly complicated bid function and
document that the accuracy of the approximation is very good. The approximation is given
as an explicit inverse bid function of a bid b and takes virtually no time to evaluate and is
very stable numerically.

We estimate the model using Bayesian methods implemented via a Metropolis-within-Gibbs
algorithm. The model is illustrated on a subset of the eBay coin auction dataset in WV. We
find the posterior results for the common-value distribution to be reasonable, where the book
value and the condition of the auctioned object are the main determinants for valuations. This
is also true for the book value in the private-value distribution, but the condition of the object
does not affect the valuations significantly. Finally, we find that the probability of being a
common-value bidder depends very little on auction-specific covariates, but, on average, there
is a slightly larger probability for a given bid to be placed by a common-value bidder.
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Table 1. Posterior inference for the structural model with both private-value
and common-value bidders

Parameter Covariate Mean Std 2.5 97.5 Incl
Prob

IF

κ − 1.427 0.241 1.023 1.996 − 106.887
µp Const 23.246 1.749 19.687 26.552 − 148.112

Bookd 0.338 0.061 0.217 0.451 − 138.304
Book*Pow -0.037 0.047 -0.134 0.057 − 179.345
Book*Unopen 0.319 0.109 0.091 0.524 − 123.107
Book*MajBlem 0.063 0.125 -0.159 0.314 − 156.576

log(σ2
p) Const 5.603 0.084 5.445 5.767 − 108.826

log(Book)d 1.677 0.094 1.505 1.876 − 100.063
log(Book)*Pow 0.021 0.027 -0.028 0.077 − 189.796
log(Book)*Unopen 0.245 0.051 0.148 0.340 − 184.672
log(Book)*MajBlem 0.127 0.050 0.028 0.205 − 198.927

µc Const 30.687 0.626 29.400 31.879 − 135.916
Bookd 0.718 0.021 0.679 0.759 − 102.890
Book*Pow 0.050 0.026 0.008 0.088 − 198.639
Book*Unopen 0.228 0.051 0.138 0.342 − 167.643
Book*MajBlem -0.260 0.043 -0.347 -0.177 − 174.663

log(σ2
c ) Const 3.736 0.088 3.585 3.896 − 141.139

log(Book)d 1.518 0.095 1.335 1.705 − 148.827
log(Book)*Pow 0.076 0.049 -0.012 0.158 − 200.298
log(Book)*Unopen 0.310 0.047 0.204 0.386 − 190.877
log(Book)*MajBlem 0.050 0.041 -0.012 0.122 − 199.356

log θ
1−θ Const 0.335 0.057 0.224 0.448 − 18.257

log(Book)d -0.019 0.128 -0.270 0.236 0.133 −

log(Book)*Pow -0.078 0.186 -0.446 0.300 0.137 −

log(Book)*Unopen 0.103 0.367 -0.669 0.796 0.122 −

log(Book)*MajBlem -0.041 0.088 -0.209 0.133 0.153 −

Note: c = n, κ̄ = 0.25, g = 4, π = 0.5, and xd = x− x̄. The last column displays the inefficiency factors for

covariates with at least 0.3 in inclusion probability.
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Table 2. Posterior inference for the structural model with only private-value bidders

Parameter Covariate Mean Std 2.5 97.5 IF

µp Const 27.626 0.250 27.130 28.117 50.662
Bookd 0.593 0.009 0.575 0.611 16.288
Book*Pow 0.024 0.010 0.008 0.050 194.598
Book*Unopen 0.208 0.026 0.158 0.261 126.183
Book*MajBlem -0.218 0.030 -0.278 -0.165 151.667

log(σ2
p) Const 4.208 0.035 4.143 4.277 53.452

log(Book)d 1.520 0.043 1.436 1.601 29.450
log(Book)*Pow 0.033 0.013 0.009 0.059 196.666
log(Book)*Unopen 0.307 0.030 0.252 0.365 165.406
log(Book)*MajBlem 0.032 0.029 -0.031 0.087 194.107

Note: c = n and xd = x− x̄. The last column displays the inefficiency factors.

Table 3. Posterior inference for the structural model with only common-value bidders

Parameter Covariate Mean Std 2.5 97.5 IF

κ − 3.840 0.405 3.113 4.692 18.702
µc Const 34.731 0.373 33.987 35.445 46.147

Bookd 0.758 0.014 0.731 0.787 24.194
Book*Pow 0.036 0.013 0.012 0.061 197.874
Book*Unopen 0.398 0.039 0.330 0.479 135.561
Book*MajBlem -0.209 0.043 -0.293 -0.122 173.153

log(σ2
c ) Const 4.122 0.038 4.047 4.197 58.419

log(Book)d 1.490 0.042 1.407 1.573 60.226
log(Book)*Pow 0.040 0.013 0.011 0.068 198.256
log(Book)*Unopen 0.306 0.026 0.258 0.359 176.147
log(Book)*MajBlem 0.080 0.064 -0.016 0.179 201.706

Note: c = n, κ̄ = 0.25, g = 4, and xd = x− x̄. The last column displays the inefficiency factors.
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Table 4. Poisson regression with the total number of private-value and
common-value bidders in each auction as response variable

Response Covariate Mean Std 2.5 97.5 Incl
Prob

IF

n+m Const 1.724 0.023 1.679 1.769 1.000 2.095
log(Book)d 0.131 0.029 0.075 0.188 0.999 1.296
Pow -0.006 0.022 -0.123 0.047 0.150 -
Unopen 0.074 0.078 0.003 0.248 0.587 1.359
MajBlem -0.120 0.137 -0.449 0.027 0.580 1.263

Note: c = n, π = 0.5, and xd = x− x̄. The last column displays the inefficiency factors for covariates with

at least 0.3 in inclusion probability.
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Figure 1. Examining the accuracy of the approximate bid function for differ-
ent number of private-value and common-value bidders. The parameter values
in the private-value and common-value models are µp = 23, σp = 16, µc =
31, σc = 6.5, and κ = 1.4. The vertical lines represent the mean ± 1 standard
deviation in the unconditional distribution of the signals, x. The bid function
is shown for signals that range between ± 2 standard deviations from the mean.
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Figure 2. Examining the accuracy of the approximate bid function for dif-
ferent parameter configurations of the private-value model. The parameter
values in the common-value model and the number of different bidders are
µc = 31, σc = 6.5, κ = 1.4, n = 4, and m = 3. The vertical lines represent the
mean ± 1 standard deviation in the unconditional distribution of the signals,
x. The bid function is shown for signals that range between ± 2 standard
deviations from the mean.
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Figure 3. Examining the accuracy of the approximate bid function for dif-
ferent parameter configurations of the common-value model. The parame-
ter values in the private-value model and the number of different bidders are
µp = 23, σp = 16,m = 4, and n = 2. The vertical lines represent the mean ± 1
standard deviation in the unconditional distribution of the signals, x. The bid
function is shown for signals that range between ± 2 standard deviations from
the mean.
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Figure 4. Histograms of µ across auctions.
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Figure 5. Histogram of the probabilities of being a common-value bidder for
each bid across auctions.
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