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Abstract

Modern data collection generates high-dimensional data and many tra-

ditional statistical methods are not applicable in those settings. The topic

of this thesis is supervised classification for high-dimensional data.

In the first paper we consider high-dimensional inverse covariance ma-

trix estimation and embed this into high-dimensional classification. We

propose a two-stage algorithm which first recovers structural zeros of the

inverse covariance matrix and then enforces block sparsity by moving non-

zeros closer to the main diagonal. The block-diagonal approximation of

the inverse covariance matrix is shown to lead to an additive classifier.

We demonstrate that accounting for the structure can yield better per-

formance accuracy and suggest variable selection at the block level. The

properties of this procedure in growing dimension asymptotics is investi-

gated and the effect of the block size on classification is explored. Lower

and upper bounds for the fraction of separative blocks are established and

constraints specified under which the reliable classification with block-wise

feature selection can be performed. We illustrate the benefits of the pro-

posed approach on both simulated and real data.

In the second paper we consider computational intensive classification

methods that do not rely on the inverse covariance matrix but are time

consuming. Through discretization of continuous variables, the compu-

tational time can be reduced although this leads to a loss of informa-

tion. How this affect the misclassification in high-dimensional framework

is investigated. We propose a discretization algorithm that optimizes the

classification performance and compare it to other discretization meth-

ods as well as results for continuous data. Our method performs well for

both simulated and real data. We empirically show for high-dimensional

data, that misclassification is of the same magnitude or even lower if the

continuous feature variables first are discretized.

Keywords: High dimensionality, supervised classification, classification

accuracy, sparse, block-diagonal covariance structure, graphical Lasso,

separation strength, discretization.
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1 Introduction

We live in the information age. Vast amounts of data are being generated in
many fields and we can say that it is the century of data. Data collection these
days is different from before, not only in trends towards more observations (n),
but also to a radically larger number of variables (p). When the number of
variables is close to the number of observations or more, we get so called high-
dimensional data. It is sometimes called the curse of dimensionality, having
many variables but few observations, as it differs from traditional data and
demands other statistical methods. For the standard statistical methods it is
also assumed that the variables are well chosen, i.e are known to be relevant for
a concrete project. Modern data collection is often automatic and not much is
specified in advance, giving us large data sets where which of the variables that
are relevant is unknown [6]. The issue of high-dimensional data appear within
wide areas of research. An example of high-dimensional data is when we want
to study banks going bankrupt. It happens very seldom so we will have very few
observations, but the reasons for going bankrupt will depend on many different
variables, giving us high-dimensional data. A less spectacular example of high-
dimensional data within finance is the prediction of whether the price of a stock
will rise or fall based on the company performance measures, or in marketing
research where the goal is to identify suitable individuals for direct marketing.
Every transaction made by a consumer can be recorded. Other areas with high-
dimensional data are e.g. data storage where every e-mail for one address should
be classified as spam or not based on addressing, words or even single characters.
In medicine where we want to predict the risk for a patient to have a second
heart attack from demographic, diet and clinical measurements for that patient.
The list of areas with high dimensional data can be made endless but in this
thesis we will focus on gene expression microarray data.

Microarrays: Basics and Experimental Set-Up

All cells in the human body contain the same genetic material, but the same
genes are not active in all of those cells. DNA Microarrays are used to study
which genes are active and inactive in different cells, this helps us to understand
more about cells function and what happens when the genes do not function
properly.

A microarray is typically a microscope slide on to which DNA molecules are
attached at fixed locations, so called spots. There may be tens of thousands of
spots on an array, each containing a huge number of identical DNA molecules.
For gene expression studies, each of these molecules ideally should identify one
gene in the genome. However, it is not always that simple due to families of
similar genes in a genome. The spots are either printed on the microarrays
by a robot, or synthesized by photolithography or by ink-jet printing. For
comparison of gene expression levels in two different samples (e.g. the same
cell type in a "normal" and tumor state) the total cDNA from the cells are
extracted and labeled with two different fluorescent labels: e.g. green dye for
"normal" cells and red dye for cancer cells, see Figure 1. Both extracts are
washed over the microarray. Labeled gene products from the extracts hybridize
to their complementary sequences in the spots due to the preferential binding.

The dyes enable the amount of sample bound to a spot to be measured by

1



Figure 1: Experimental Set-Up for Microarray technology [22]

the level of fluorescence emitted when it is excited by a laser. If the RNA from
the sample in the "normal" cells is in abundance, the spot will be green, if the
RNA from the cancer cells is in abundance, it will be red. If both are equal, the
spot will be yellow, while if neither are present it will not fluoresce and appear
black, see Figure 2. From the fluorescence intensities and colors from each spot,
the relative expression levels of the genes in both samples can be estimated [2].

Figure 2: An example of a 40,000 probe spotted oligo microarray with an en-
larged inset to show detail [32].
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The microarray technique has developed quickly and it has become an im-
portant approach in biological and medical research over the past decade. Mi-
croarray data is difficult or next to impossible to analyze with traditional statis-
tical methods, as it is very high-dimensional, which makes it one of the hottest
subjects and intense fields of applications of modern statistics.

Classification

Within high-dimensional problems the goal is often to classify the data, this
classification can either be supervised or unsupervised. The difference between
these two methods is that for the supervised a outcome measurement, i.e. class
variable, is present to guide the classification process. The goal in unsupervised
classification is assigning the data of only feature variables into clusters of ob-
servations that are statistically separable. For supervised classification there is
a learning set of data in which there are observations for the class variable and
feature variables. Using this data we build a prediction model which will enable
us to predict the response of new observations where the outcome is unknown.

In microarray analysis a common goal is to predict the outcome between two
or more classes, e.g. tumors vs. normal tissue, and we will focus on supervised
classification. Let the feature variables be a random vector, x = (x1, . . . , xp),
and for n observations this gives us

x1,x2, . . . ,xn ∈ Rn×p

Using this data equipped with the outcome as a categorical class variable yi, we
have a learning data set

L = {(x1, y1) , . . . , (xn, yn)}

with values in Rp ×{0, 1, . . . , C − 1}, where yi codes for one of the C classes. In
this supervised setting the goal is to estimate the conditional probability. Sup-
pose that the kth class has the density fk(x) and let πk be the prior probability

of class k, with
C
∑

k=1

πk=1. A simple application of Bayes theorem gives us

P(y = k|x) =
fk(x)πk

C
∑

l=1

fl(x)πl

Classification to the largest conditional probability will make the smallest ex-
pected number of misclassifications.

High dimensionality

As mentioned, it is the number of available feature variables that defines the
dimensionality and it is the relation between p and number of available obser-
vations that determines whether it is a high-dimensional problem or not. The
standard statistical methods are developed for having considerably more obser-
vations than feature variables, with the asymptotic properties where p is fixed
and n → ∞. However in a case with more feature variables than available ob-
servations, the problem is said to be "high-dimensional" if p is larger than n.

3



In the asymptotic analysis the number of feature variables is no longer fixed, so
for the situation with "large p, small n" the number of variables p = pn grows
with n, possibly very fast, so that pn ≫ n for n→ ∞[27].

The classical statistical methods are based on standard asymptotics, where
n → ∞ while p remains fixed and the ratio p

n is treated as 1
n . For growing

dimension asymptotics, the number of variables can also go towards infinity so
unlike the standard asymptotics the ratio p

n → k, where k ∈ (0,∞). To demon-
strate why standard methods are not applicable in this situation we consider
the inverse covariance matrix, Σ−1, used in many methods such as discrimi-
nant analysis and regression analysis [38]. The expected value for the inverse
of the standard maximum likelihood estimated covariance matrix, Σ̂, using the
properties of the Gaussian distribution [25]

E
[

Σ̂−1
]

= ψ (p, n) Σ−1, ψ (p, n) = n
n−p−1 = 1

1− p−1

n

This shows why the standard arguments break down for the growing dimensional

asymptotic. For the standard asymptotics, ψ (p, n) → 1 and E
[

Σ̂−1
]

→ Σ−1,

however for the growing dimension asymptotics the scenario is different depend-
ing on the ratio between p and n [29]. In order to see the effect we simulated

data with different ratios, we generated data as i.i.d. xi ∈ Np

(

~0, I
)

with

i = 1 : 1000 for p = (10, 500, 1000, 2000). We estimated the covariance matrix
for each data set and calculated the eigenvalues. The eigenvalues were ordered
and plotted against the rank, see Figure 3.

For the special case when k ∈ (0, 1) and Σ = Ip×p the empirical distribution

of the eigenvalues of Σ̂ follows the Marchenko-Pastur law

[

(

1 −
√
k
)2

;
(

1 +
√
k
)2

]

[24]. If we consider the situation where p is the same order of magnitude as n
and k < 1 but not negligible, then the covariance matrix is still invertible but
inverting it amplifies estimation error dramatically. It can clearly be seen that
when the ratio between p and n is close to one, the estimation for the standard
methods will be biased and when p > n these methods are not applicable at
all. A real data example can be seen in Figure 4, it shows the estimated mis-
classification error with linear discriminant analysis when we let the number of
variables grow. The data is breast cancer microarray, the data set from [39]
has 62 observations and the data set from [30] has 159 observations. For the
covariance matrix to be invertible the number of available observations is the
limit for the number of variables to be included. Both data sets contain several
thousands of variables but only a tiny fraction can be used, we ordered the
variables according to the absolute t-value and selected the most informative.
The estimated misclassification error increases rapidly with a growing number
of variables.

Classification in high-dimensional setting

In supervised classification the most widely used methods are linear or quadratic
discriminant analysis. The main challenge in constructing these classifiers in
a high-dimensional setting is the estimation of the inverse covariance matrix.
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Figure 3: Sample and true eigenvalues. the solid line represents the distribution
of λ̂1, . . . , λ̂p of Σ̂, which are sorted from the largest to the smallest and plotted
against their rank. For Σ = I, λ1 = . . . = λp = λ = 1 and the distribution λith
is plotted as a horizontal line at one [29].

Modified linear discriminant methods through regularization techniques have
been suggested to handle this, see for instance [11, 18, 40] and the performance
characteristics of a number of modified classifiers can be seen in [16, 17, 36].
These methods are mainly focused on solving some numerical problems and do
not exploit the structural properties of the covariance matrix and its inverse.

Other types of regularization are based on exploiting sparsity patterns in
the covariance matrix for estimating the inverse. Here, sparsity means that
most of the feature variables are irrelevant for the classification. A popular
technique used for learning the sparsity patterns is graphical Lasso (gLasso),
it is based on applying an ℓ1 penalty to the entries of the inverse covariance
matrix; see [8]. A number of authors have proposed the estimation of sparse
graphs by ℓ1 regularization; see e.g. [26, 35, 4, 20] and references therein. Since
the classical graphical models approach usually focuses on learning zeros of
the estimated inverse of the covariance matrix it is, strictly speaking, different
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Figure 4: Estimated misclassification with linear discrimant analysis as a func-
tion of the number of variables, for two real breast cancer microarray data sets

from the covariance estimation as it selects structures rather than estimates
parameters.

There are supervised classification methods that do not depend on the es-
timate of the inverse covariance matrix, e.g. k-nearest neighbor and Bayesian
networks. These methods are usually designed for categorical feature variables
or are computational intensive and therefore benefit from using categorical in-
stead of continuous variables [41, 37, 28]. There are several ways to transform
continuous variables into categorical and many studies compare and evaluate
different discretization methods, e.g. [12, 19]. However this is mainly done by
classification on real data sets with the standard relation between p and n and
where the true misclassification probability is unknown. There are some studies
of high-dimensional data, such as microarrays, where it is common with dis-
cretization but in general only one discretization method is used e.g. [33, 10].

This thesis treats supervised classification in a high-dimensional setting. Af-
ter a summary of the subject matters that are relevant for the thesis, two pa-
pers are appended; paper I with title "Covariance Structure Approximation
via gLasso in High-Dimensional Supervised Classification" and paper II "Ef-
fect of data discretization on the classification accuracy in a high-dimensional
framework". In common for the two papers is that both of them deal with
classification in high-dimension but with different approaches. In paper I we
propose an algorithm for estimation of Ξ = Σ−1 for sparse covariance ma-
trix in high-dimensional settings. It is a two-step approach that produces a
block-wise sparse inverse covariance matrix estimation. We further show that
our estimation approach allows for substantial improvement of the classification
accuracy in high-dimensions. In paper II we propose an algorithm for discretiza-
tion with respect to classification accuracy and empirically evaluate the effect
of this procedure on the performance of high-dimensional classification. Since
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discretization is a data transformation procedure, an aspect of this step is to
investigate how the dependence structure between feature variables is affected.
Accounting for such structures can improve accuracy and lead to models that
are more interpretable according [5]. To the best of our knowledge this have
not been done for discretization methods before. The rest of the summary is
outlined as follows. In section 2 we introduce some concepts used in paper I.
Section 3 is a short introduction to discretization. Summaries of the two papers
are given in the next section. Conclusions together with some suggestions for
future research appear in the last section.

2 Sparse estimator of the inverse covariance ma-

trix

For the estimation of the inverse covariance matrix we use gLasso as a launching
point and then apply the Cuthill-McKee ordering algorithm to form a block-
diagonal structure approximation of Ξ. The gLasso is used for learning the
sparsity patterns of the covariance matrix, where the algorithm apply an ℓ1
penalty to the entries of the inverse covariance matrix [8]. The gLassso uses
the fact that we can learn about the dependence structure through multiple
linear regression. With this algorithm we create the skeleton (S), which is
described in more detail below, since when gLasso finds two variables to be
conditional dependent the matrix entry (i, j) is non-zero. The Cuthill-McKee
ordering algorithm aims at reducing the bandwidth, where the bandwidth of
a matrix is the maximum value of |i− j| for non-zero elements in the matrix.
The bandwidth is reduced through moving the non-zero elements of the matrix
closer to the main diagonal. How the non-zero elements should be moved are
decided by relabeling in consecutive order the vertices in the graph associated
with the matrix [3]. Both gLasso and Cuthill-McKee ordering are based on
graph theory, so the next section is a short introduction to graph terminology.

Graph terminology applied to skeletons

Let S denote a skeleton which is a symmetric positive definite boolean matrix
with i rows and j columns where i, j ∈ {1, . . . , p} and an element sij = 0 indicate
that variable i and j are conditional independent given all other variables. The
undirected graph of S is denoted G(S) = (V,E), where V is a finite set of
vertices together with a set of edges, E. In our context, we use V = {1, . . . , p}
corresponding to some random variables X1, . . . ,Xp and {Xi,Xj} ∈ E iff sij =
sji 6= 0, i 6= j. Two vertices i and j are adjacent if there is an edge between
them. The adjacent set of vertex i, denoted adj(i, G(S)), is the set of all vertices
that are adjacent to i in G(S). Deg(i) = |adj(i, G(S))| is the degree of i which
is the number of vertices in adj(i, G(S)). When the relabeling is done in the
Cuthill-McKee ordering the vertices should be labeled in increasing order of
degree. A path is a sequence of vertices {1, . . . , k} such that i is adjacent to
i + 1 for each i = 1, . . . , k − 1. The distance, d(i, j) between two vertices i
and j in the graph G(S) is the length of the shortest path joining the two
vertices. The eccentricity of vertex i is e(i) = max {d(i, j)|j ∈ V } and the
diameter of G(S) is given by δ(G(S)) = max {d(i, j)|i, j ∈ V }. A vertex is
said to be peripheral if its eccentricity is equal to the diameter of the graph.
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This is an important concept for the Cuthill-McKee ordering algorithm since a
peripheral vertex should be chosen as the starting point. The algorithm we use
for finding a pseudo peripheral node can be seen in [9].

Block diagonal structure

A graph is connected if every pair of distinct vertices is joined by at least one
path, otherwise G(S) is disconnected and consists of two or more connected
components. It is clear that if G(S) is disconnected and consists of r connected
components and each component is labeled consecutively, the corresponding
matrix will be block diagonal. Each connected component in the graph will
correspond to a diagonal block in the matrix, see Figure 5.

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1a) b)

S
C

=

1 2

3

4 5

6

7

8

9

10

11

12 13

14 15

Figure 5: a) A disconnected graph with four connected components that have
been labeled in consecutive order. b) A block diagonal matrix corresponding to
the graph in a.

3 Discretization

The discretization procedure is the mapping of the continuous feature variable
into discrete space, grouping together multiple values of the feature variable and
partitioning the continuous domain into non-overlapping intervals. We have n
observation and assume that we have n different values for the feature variable
and partition into q number of intervals so that q < n. This of course leads to
information loss but enables faster calculation times.

In this thesis we consider discretization methods that start with sorting the
n values of each feature variable (xj) separately in increasing order

xj1, xj2, . . . , xjn → xj(1), xj(2), . . . , xj(n)

where j goes from 1 to p, xj(1) = min{xj} and xj(n) = max{xj}. The next
step is splitting or merging by sequence of thresholds, each denoted τk. Where
splitting is a top-down method that considers an interval containing all known n
values of a feature variable, and then splits this interval into smaller and smaller
subintervals until some predefined criteria for stopping is fulfilled. Merging is a
bottom-up method that starts with a certain number of intervals, and then these
are merged during execution until the predefined stop criteria is fulfilled. For

8



the splitting procedure τk is considered as a cut point where an interval of sorted
values is split into two adjacent intervals. Whereas for the merging process τk is
considered as a merging point where two adjacent intervals join. Therefore, to
receive q intervals, q−1 thresholds are needed for splitting and n− q thresholds
are needed for merging. The choice of thresholds are based on discretization
method and the intervals created are labeled by integers, zj ∈ {z1, . . . , zqj

}.
Each possible value of the feature variable is assigned to one and only one
interval. The assignments can be characterized by many-to-one mapping, or
encoder zj = C(xj()), that assigns the jth value to the mth interval, where i
goes from 1 to n and m goes from 1 to qj .

4 Summary of papers

Paper I: Covariance Structure Approximation via gLasso

in High-Dimensional Supervised Classification

In this paper we deal with the challenge of constructing a sparse estimator of
the inverse covariance matrix Σ−1 = Ξ, for supervised classification in high-
dimensional settings. We propose a two-stage procedure for estimating an in-
verse covariance matrix.In the first step we identify the structural zeros of the
inverse covariance through gLasso [8] in addition with bootstrap to stabilize the
non-zero elements. In the next step the non-zero elements are moved towards
the main diagonal with Cuthill-McKee ordering [3]. These two steps enforces
block sparsity and enables a block diagonal approximation of the inverse covari-
ance matrix. Why we adopted this two stage procedure and the advantages can
be seen below.

In a supervised classification problem with C classes, each observation from
the learning sample, x represented by a set of features, (x1, . . . , xp), is known
to belong to some class, c, c ∈ {1, . . . , C}. Let y : R

p → {1, . . . , C} be a
decision rule with decision regions Ωc ∈ R

p, Ωc = y−1(c) corresponding to class
c. We further assume that classes are modeled by Gaussian distributions, i.e
xi ∈ Np(µc,Σc), and assign a test observation x to class c′, i.e. y(x) = c′ if
c′ = argmaxc=1,...,CDc(x), where

Dc(x) = x′Σ−1
c µc −

1

2
µ′

cΣ
−1
c µc + log πc. (1)

Here µc, is the class mean, Σc is the class-wise covariance matrix and πc is the
a priori probability of the class c and

∑C

c=1 πc = 1.
The Gaussian assumption implies that zero patterns in the inverse covariance

matrix can be equated with conditional independence of the feature variables;
zero (i, j) entry in Ξ means that xi and xj are independent, conditioned on the
rest of the features. Informally this means that given all other features, xi does
not carry information regarding xj and vice verse. In this study, we extend
the property of pairwise interactions to grouping of the entries in the inverse
covariance matrix into disjoint subsets, so that the structure of Ξ is block-
diagonal, Ξ = diag[Ξ[1], . . . ,Ξ[b]]. For Gaussian class-conditional distributions,
such segmentation of Ξ can represent (in)dependencies between various groups of
feature variables which in turn is directly related to the partition of the observed
vector x into b disjoint, non-empty subsets x[j] = (xj1 , . . . , xjpj

), (x[j] ∈ R
pj ),
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j = 1, . . . , b, such that for any j 6= k, x[j] and x[k] are conditionally independent
given the class variable y. Then for the classifier (1) we get the representation

Dc(x) =

b
∑

i=1

[

x′

[i]Ξc,[i]µc,[i] −
1

2
µ′

c,[i]Ξc,[i]µc,[i]

]

+ log πc (2)

To investigate the misclassification probability we turn the special case with
two Gaussian classes having the same prior probabilities and equal covariance
matrices. For estimation, by the partitioning of x and µ and by the conditional
independence of x[i]s given y, the resulting classifier is

D(x; µ̂, Ξ̂) =

b
∑

j=1

(

x[j] −
1

2
(µ̂1,[j] + µ̂2,[j])

)′

Ξ̂[j]

(

µ̂1,[j] − µ̂2,[j]

)

, (3)

where Ξ̂[j] = Σ̂−1
[j] is the standard maximum likelihood estimate of the covariance

of ith block assuming that pj < n− 2.
The main advantage of the block-diagonal structure of Ξ is that it leads

to a classifier that is a special case of generalized additive model; see e.g [13].
This in turn makes it possible to prove that the classifier (2) asymptotically
follows a Gaussian distribution and to obtain closed form expressions for the
misclassification probabilities. Further, the additive form of the classifier allows
for block-wise variable selection.

To select a subset of blocks we need to know whether blocks are of impor-
tance for classification or not and for this we use block separation strength. In
classification with real high-dimensional data, many of the blocks are likely to
be "non-informative", i.e. only a small fraction of blocks actually contribute to
the classification. Our goal is to select these blocks to include them into the
classifier. We define the ith block separation strength by δi

2 = ||Ξi
1/2 µi||2,

where ‖ · ‖ denotes ℓ2 norm.
The condition for selection of ith block can be expressed as δ̂2i > ψ for some

number ψ. We investigate under what conditions there exists a suitable ψ such
that a subset of blocks can be used in the classifier (3) with summation taken
over the selected blocks only and suggest lower and upper bounds for fraction
of informative blocks.

We simulate data with the given condition of the lower and upper bound
to test classification accuracy for our classifier. We also compare our classi-
fication method to classification based on only gLasso. This is also done for
real microarray data sets, a Breast cancer data [30] and Colon cancer data [1].
The relevance and benefits of our proposed approach are illustrated both on the
simulated and real data.

Paper II: Effect of data discretization on the classification

accuracy in a high-dimensional framework

The underlying distribution of the data is seldom known and supervised classi-
fication methods that does not require distribution assumptions are important
tools. These methods are often computationally intensive and therefore more
time efficient for categorical, i.e. discrete, data. A disadvantage is that dis-
cretization of continuous data results in a loss of information which can effect
the classification accuracy.
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In this paper we empirically evaluate discretization of the continuous vari-
ables and explore the effect of this procedure on the performance of high-
dimensional classification. We suggest a discretization algorithm that optimizes
the discretization procedure using the misclassification probability as a measure
of the classification accuracy. All the feature variables are considered together in
the algorithm and are discretized simultaneously instead of one at a time. This
enables a fast discretization process which is suitable for high-dimensional data
with many feature variables. Since the discretization is a data transformation
procedure, we also investigate how the structure of dependence between feature
variables is affected.

To examine the effect of discretization on classification accuracy we choose
classification methods that can handle both continuous and categorical data
in a comparable way and are suitable for supervised classification of high-
dimensional data. Another reason for our choice of classifiers are that they
are methods common in papers dealing with discretization. We use classifica-
tion as the interpretation of a method to assign each observation in the test
data to one of the prespecified classes, y ∈ {0, 1}. The three methods we use;

The k-nearest neighbor (k-nn), a supervised classification method that
allocates a new observation to one of the C classes. This is based on the most
frequent class within the neighborhood of the learning data (L) [13].

The Naive Bayes (NB) calculates the probability that a given observation
belongs to one of the C classes under the assumption that the features consti-
tuting the observation are conditionally independent given class. This allows us
to express the conditional probability as a product of simpler probabilities [13].

The C4.5 algorithm through J48, which is an implementation of Quinlans
algorithm [15]. The C4.5 generates a pruned or unpruned decision tree which
can be used for classification, where the decision trees are built using an entropy
based technique [34].

Several discretization methods have been developed along different lines due
to different needs and there is a hierarchical framework over the methods to
get an overview of their differences and similarities [23, 31]. We compared
the performance of our discretization methods with continuous data as well as
one method from each branch from the hierarchical framework. This gave the
following discretization methods; ChiMerge [21], Equal-width, Equal-frequency,
Entropy minimum description length (MDL) [7] and 1R [14].

We compared classification accuracy and change in dependence structure
for both simulated and real data sets. In classification accuracy our method
performed close to or better than classification for continuous. In performance
compared to classification based on the other discretization methods ours was
always close to the best and never the worst. The best discretization method for
retaining the dependence structure in the data was ChiMerge and the worst was
Entropy MDL. Our method caused major change of the dependence structure
but the change was not significant compared to baseline given by permutation.

5 Conclusions and Future research

In paper I we show the benefits of sparse block diagonal approximation for
the estimation of the inverse covariance matrix in high-dimensional settings.
This approximation allows for block variable selection which is very sensible for
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microarray data since it is far-fetched to select single genes from a data set of
thousands. This way we also consider the dependence patterns between genes
but still allow for sparsity enabling estimation of the inverse.

Due to the bootstrap step in our algorithm we have the possibility to esti-
mate the inverse for covariance matrices with up to four times as many variables
as observations. This is twice as many as would be possible without this stabi-
lization step.

In paper II we show that what has been true for data with p < n is also true
for high-dimensional data, that discretization of continuous data can retain or
even improve classification accuracy.

Our suggested discretization algorithm is very effective for high-dimensional
data since all the feature variables are considered together, which allows for
fast discretization. In addition, the discretization method is one of the methods
performing the best classification accuracy.

• The plans for following up paper I is to compare our method to classifica-
tion based on bandable methods. And also to study the effect of violation
of the Gaussian assumption, e.g. elliptical distribution.

• The plans for following up paper II is to study more complex classifiers
e.g. Bayesian networks and more advanced discretization methods such
as vector quantization.

12



References

[1] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and
A. J. Levine. Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide arrays.
PNAS, 96(12):6745–6750, June 1999.

[2] D.E. Bassett, Eisen M.B., and M.S. Boguski. A quick introduction to ele-
ments of biology - cells molecules, genes, functional genomics, microarrays.
EMBL - European Bioinformatics Institute (EBI), 2001.

[3] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric
matrices. In Proceedings of the 1969 24th national conference, ACM ’69,
pages 157–172, New York, NY, USA, 1969. ACM.

[4] A. d’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for
sparse covariance selection. SIAM. J. Matrix Anal. & Appl., 30(56), 2008.

[5] X. Deng and M. Yuan. Large gaussian covariance matrix estimation
with markov structures. Journal of Computional and Graphical Statistics,
18(3):640–657, 2009.

[6] D. Donoho. High-dimensional data analysis: The curses and blessings of
dimensionality. Lecture delivered at the conference "Math Challenges of
the 21st Century" held by the American Math. Society organised in Los
Angeles, August 6-11, August 2000.

[7] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continouos-
valued attributes for classification learning. In 13th International Joint
Conference on Artificial Intelligence, pages 1022–1027, 1993.

[8] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance esti-
mation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[9] A. George and JW. Liu. Prentice Hall Professional Technical Reference,
1981.

[10] E. Georgii, L. Richter, U. Ruckert, and S. Kramer. Analyzing microar-
ray data using quantitative association rules. Bioinformatics, 21 Suppl 2,
September 2005.

[11] Y. Guo, T. Hastie, and R. Tibshirani. Regularized linear discriminant
analysis and its application in microarrays. Biostatistics, 8:86–100, 2007.

[12] A. Gupta, K.G. Mehrotra, and C. Mohan. A clustering-based discretization
for supervised learning. Statistics and Probability Letters, 80:816–824, 2010.

[13] T. Hastie, R. Tibshirani, and J. H. Friedman. Springer, second edition,
July 2009.

[14] R.C. Holte. Very simple classification rules perform well. In Machine
Learning, pages 63–91, 1993.

[15] K. Hornik, C. Buchta, T. Hothorn, A. Karatzoglou, D. Meyer, and
A. Zeileis. R/Weka interface, December 2010. Manual to the R-package
RWeka.

13



[16] M. Hyodo, N. Shutoh, T Seo, and T. Pavlenko. Comparison of two high
dimensional linear discrimination methods. June preprint (2011).

[17] M. Hyodo, N. Shutoh, T Seo, and T. Pavlenko. Modified estimator of the
covariance matrix for high-dimensional data with monotone missing values.
June preprint (2011).

[18] M. Hyodo and T. Yamada. Asymptotic properties of the epmc for modified
linear discriminant analysis when sample size and dimension are both large.
Journal of Statistical Planning and Inference, 140(9):2739 – 2748, 2010.

[19] D. Janssens, T. Brijs, K. Vanhoof, and G. Wets. Evaluating the per-
formance of cost-based discretization versus entropy- and error-based dis-
cretization. Computers and Operations Research, 33(33):3107–3123, 2006.

[20] M. Kalisch and P. Bühlmann. Robustification of the pc-algorithm for di-
rected acyclic graphs. Journal Of Computational And Graphical Statistics,
17(4):773–789, 2008.

[21] R. Kerber. Chimerge: Discretization of numeric attributes. In Ninth Na-
tional Conference Artificial Intellegence, pages 123–128. AAAI Press, 1992.

[22] D. Leja. Microarray technology. National Human Genome Research Insti-
tute, 2011.

[23] H. Liu, F. Hussain, C.L. Tan, and M. Dash. Discretization: An enabling
technique. Data Mining and Knowledge Discovery, 6:393–423, 2002.

[24] V.A. Marchenko and L.A. Pastur. The distribution of eigenvalues in certain
sets of random matrices. Math. USSR-Sbornik, 1:457–483, 1967.

[25] G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recogni-
tion. Wiley-Interscience, 2004.

[26] N. Meinshausen and P. Buhlmann. High-dimensional graphs and variable
selection with the lasso. Annals Of Statistics, 34:1436–1462, 2006.

[27] N.F. Meinshausen. Analysis of High-Dimensional Data with Sparse Struc-
ture. PhD thesis, ETH Zurich, 2005.

[28] T. Oates and D. Jensen. Large datasets lead to overly complex models:
An explanation and a solution. In The fourth Internationel Conference on
Knowledge Discovery and Data Mining, 1998.

[29] T. Pavlenko. Supervised classifications models in a high-dimensional frame-
work. Department of Statistics, Stockholm University, November 2008.

[30] Y. Pawitan, J. Bjöhle, L. Amler, A.L. Borg, S. Egyhazi, P. Hall, X. Han,
L. Holmberg, F. Huang, S. Klaar, E.T. Liu, L. Miller, H. Nordgren,
A. Ploner, K. Sandelin, P.M. Shaw, J. Smeds, L. Skoog, S. Wedren, and
J. Bergh. Gene expression profiling spares early breast cancer patients from
adjuvant therapy: derived and validated in two population-based cohorts.
Breast Cancer Research, 7(6):953–964, 2005.

14



[31] L. Peng, W. Qing, and G. Yuija. Study on comparison of discretization
methods. In 4:th International Conference on Artificial Intelligence and
Computional Intelligence, 2009.

[32] Microarray Pictures. Molecular biology images. Molecular station, 2011.

[33] G. Potamias, L. Koumakis, and V. Moustakis. Gene selection via
discretized gene-expression profiles and greedy feature-elimination. In
George A. Vouros and Themistoklis Panayiotopoulos, editors, Methods
and Applications of Artificial Intelligence, volume 3025 of Lecture Notes
in Computer Science, pages 256–266. Springer Berlin / Heidelberg, 2004.

[34] J.R. Quinlan. Improved use of continuous attributes in c4.5. Journal of
Artificial Intelligence Research, 4:77–90, 1996.

[35] P. Rütimann and P. Bühlmann. High dimensional sparse covariance es-
timation via directed acyclic graphs. Electron. J. Statist., 3:1133–1160,
2009.

[36] M. Srivastava and T. Kubokawa. Comparison of discrimination methods for
high dimensional data. Journal of the Japan Statistical Society, 37:123Ű–
134, 2007.

[37] P. Utogoff. Incremental induction of decision trees. Machine Learning,
4:161–186, 1989.

[38] A.S. Wagaman and E. Levina. Discovering sparse covariance structures
with the isomap. Journal of Computational and Graphical Statistics,
18(3):551–572, September 2009.

[39] M. West, C. Blanchette, H. Dressman, E. E Huang, S. Ishida, R. , Spang,
H. Zuzan, J.A. Olson, J.R. Marks, and J.R. Nevins. Predicting the clinical
status of human breast cancer by using gene expression profiles. PNAS,
98(20):11462–11467, September 2001.

[40] P. Xu, G.N. Brock, and R.S. Parrish. Modified linear discriminant analysis
approaches for classification of high-dimensional microarray data. Compu-
tational Statistics & Data Analysis, 53(5):1674–1687, March 2009.

[41] Y. Yang and G.I. Webb. Discretization for naive-bayes learning: managing
discretization bias and variance. Machine Learning, 74:39–74, 2009.

15


