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Abstract

Today’s high-throughput data collection devices, e.g. spectrometers and gene chips, create
information in abundance. However, this poses serious statistical challenges, as the number
of features is usually much larger than the number of observed units. Further, in this high-
dimensional setting, only a small fraction of the features are likely to be informative for
any specific project. In this thesis, three different approaches to the two-class supervised
classification in this high-dimensional, low sample setting are considered.

There are classifiers that are known to mitigate the issues of high-dimensionality, e.g.
distance-based classifiers such as Naive Bayes. However, these classifiers are often compu-
tationally intensive and therefore less time-consuming for discrete data. Hence, continuous
features are often transformed into discrete features. In the first paper, a discretization al-
gorithm suitable for high-dimensional data is suggested and compared with other discretiza-
tion approaches. Further, the effect of discretization on misclassification probability in high-
dimensional setting is evaluated.

Linear classifiers are more stable which motivate adjusting the linear discriminant proce-
dure to high-dimensional setting. In the second paper, a two-stage estimation procedure of the
inverse covariance matrix, applying Lasso-based regularization and Cuthill-McKee ordering
is suggested. The estimation gives a block-diagonal approximation of the covariance matrix
which in turn leads to an additive classifier. In the third paper, an asymptotic framework
that represents sparse and weak block models is derived and a technique for block-wise feature
selection is proposed.

Probabilistic classifiers have the advantage of providing the probability of membership in
each class for new observations rather than simply assigning to a class. In the fourth paper,
a method is developed for constructing a Bayesian predictive classifier. Given the block-
diagonal covariance matrix, the resulting Bayesian predictive and marginal classifier provides
an efficient solution to the high-dimensional problem by splitting it into smaller tractable
problems.

The relevance and benefits of the proposed methods are illustrated using both simulated
and real data.
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1 Introduction

Background

In several modern application fields, genomics and proteomics, for example,
technical devices automatically generate measurements of thousands of features
for each given sample unit. This type of feature glut is combined with the
difficulty of obtaining good observational units; often the sample size is in the
hundreds. These kinds of data represent high-dimensionality: a small sample
setting where the number of measured features, p, can grow and exceed the total
number of samples, n. Standard estimation methods are not designed to cope
with this type of dimensionality and a number of modern statistical methods
have started to address this challenging problem; see [4, 8, 32, 39].

The area of interest in this thesis is classification, which is a supervised learn-
ing technique. It arises frequently from bioinformatics like disease classification.
For example, in gene expression microarrays, some genes demonstrate signifi-
cant differences in expression levels, which can help distinguish between tumor
and normal tissue. For a typical scenario, we have an outcome measure (e.g.
tumor/normal tissue) that we want to predict based on a set of features (e.g.
genes). The training data is then a set in which both the outcome and the fea-
tures have been observed. Using this, a classification model is built which will
enable us to predict of the outcome for new observations where only the features
are known. For a recent overview of methods for high-dimensional classification
we refer to [13, 21].

The mentioned distance-based classifiers in [13], such as Naive Bayes (NB)
and k-nearest neighbor (k-NN), are known to be less sensitive to high-dimensionality,
though the methods are usually designed for categorical features or are com-
putationally intensive. These methods have been shown to perform better and
have faster computational times for discrete features than continuous features
for traditional dimensionality; see [46, 42, 33]. Several ways exist to transform
continuous features into discrete features and many studies compare and eval-
uate different discretization methods for settings where p < n; see e.g. [20, 25].
In applications feature discretization for high-dimensional data have been used;
see e.g. [36, 18].

When theoretically analyzing performance accuracy, the distributional prop-
erties of the suggested classifiers are needed. This, in part, stimulates the exten-
sive research in adjusting linear and quadratic discriminant procedures to high-
dimensional settings. The main challenge in this direction is the estimation of
the inverse covariance matrix, Σ−1 in the case of p > n. Recently, a number of
regularization techniques have been suggested for improving the estimation of
inverse covariance in the classification framework; see, for instance, [19, 24, 45]
where a number of modified classifiers were suggested and [22, 23, 40] where
the performance characteristics of several regularized classifiers were examined.
Other types of regularization are based on exploiting sparsity patterns in Σ−1.
Sparse inverse covariance matrices are widely studied as graphical models since
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they imply a graph structure: under the Gaussian assumption, zeros in Σ−1 , i.e.
conditional independences, correspond to absent edges in the graphical model.
Hence, learning a sparse Gaussian graph corresponds precisely to recovering
the structure of Σ−1 with many zeros. A popular technique in this direction is
graphical Lasso (gLasso). It is based on applying an ℓ1 penalty to the entries of
the inverse covariance matrix; see [14]. A number of authors have proposed the
estimation of sparse graphs by ℓ1 regularization; see e.g. [30, 38, 7, 26] and the
references therein.

Technical devices that make it possible to survey thousands of feature mea-
surements at once seem to be attractive for applications. As an example, con-
sider the gene expression microarray again: medical research teams seek for
those genes that are highly informative for training a classifier, which, in turn,
supposedly gives a reliable automatic diagnosis. However, it turns out that in
many real problems there are simply too many useless features being produced
by the automatic measurements, so that even if there are really discriminative
features, they simply will be very difficult to be detect reliably. This type of
setting is called sparse and weak (SW), meaning that in the underlying model
the number of informative features is assumed to be small and the separation
strength of each individual feature is low. (Observe that sparsity in the con-
text of SW has different sense than in gLasso-based regularization technique
considered above.) The detection of informative features, or feature thresh-
olding, in SW settings while naturally improving classification accuracy is a
challenging problem which has attracted a lot of attention in the recent liter-
ature [1, 12, 2, 3, 27]. An especially powerful technique is related to testing a
very large number of hypotheses where the number of false-nulls is assumed to
be very low, thereby representing the model sparsity. The crucial idea is based
on analyzing the behavior of second-level significance testing for comparing the
fraction of observed significances to the expected fraction under the global null;
see Tukey’s Higher Criticism (HC) ([9, 10, 11]).

Challenging problems when learning supervised classifiers with few observa-
tions in the training data, in the setting p < n, using the maximum likelihood
approach, were noted in the early 90’s by Seymour Geisser [16]. As a solution, a
Bayesian strategy using various types of a priori classification uncertainty was
suggested; see e.g [37, 29]. In general, the Bayesian approach in this context
may be interpreted as a way of regularizing the problem through the information
introduced by the prior distribution for the model parameters. A promising ap-
proach to handle high-dimensionality is the predictive Bayesian classifier, which
explores a simultaneous prediction problem for all samples in the test data in
contrast to the standard linear or quadratic classifiers where test samples are
labeled one by one using the probabilistic model learned from the data. The
inductive nature of Bayesian predictive inference (see [15, 16]) reveals how the
uncertainty about both generating distributions of the classes (e.g. class pa-
rameter priors) and about the class memberships of all the test units can be
simultaneously combined to define a predictive measure for classifying test data
conditional on a training data set. Earlier studies in this direction include e.g.
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classification of data from multiple finite alphabets [5].

Thesis contribution

In this thesis three different types of approaches to the challenge high-dimensionality
poses to classification models are considered.

On the question of the discretization effect on classification performance
when p > n is evaluated, this thesis further suggests an effective algorithm
for discretization with respect to classification accuracy. Since discretization is
a data-transformation procedure, aspects of this step′s effect on the dependence
structure between features is investigated.

The useful gLasso regularization technique is embedded in the classification
framework and in this thesis we present a two-step approach that produces
a block-wise sparse estimate of the inverse covariance matrix. We show that
the block-diagonal approximation of the inverse covariance matrix leads to an
additive classifier. Further, we show that our estimation approach allows for
substantial improvement of the classification accuracy in high-dimensional sit-
uations.

In this thesis an asymptotic framework is derived that represents the sparse
and weak block (SWB) model and suggests a technique for block-wise feature
selection by thresholding. The procedure extends standard HC thresholding
to the case where the dependence structure underlying the data can be taken
into account and is shown to be optimally adaptive, i.e. performs well without
knowledge of the sparsity and weakness parameters. The detection boundary
for the extended HC procedure and the performance properties of some estima-
tors of sparsity parameters are empirically investigated.

Due to the block-diagonal-structured covariance matrix and classes repre-
sented by Gaussian distribution, a closed form expression for the posterior pre-
dictive distribution of the data is established in this thesis. Given the factoriza-
tion of the distribution, the resulting Bayesian predictive and marginal classifier
provides an efficient solution to the high-dimensionality problem by splitting it
into smaller tractable problems. Further, we show for synthetic data that our
proposed method outperforms several alternative algorithms.

The remaining part of the thesis consists of a summary of the subject matter
that is of relevance for the thesis followed by four appended papers (I-IV).
In Section 2, a brief introduction to classification and high-dimensionality is
presented. Section 3 explains some basics of the discretization procedure. In
Section 4, some concepts used in Paper II are introduced. In Section 5, a short
presentation of the SW model is given.
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2 Classification in a high-dimensional framework

Classification

High-dimensional data collection devices such as microarrays produce enormous
amount of information which cannot be overviewed without rearranging and
summarizing it in sensible ways. This is where classification can assist. We give
here a quick introduction to the elements of classification [13].

Let X be some input space and Y be some output space. We have a training

data set (Xj, Yj) ∈ X ×Y , j = 1, . . . , n where Xj is the feature vector of the jth
observation and Yj is an associated outcome variable . Further, we assume that
we have C categorical classes and Y = {1, 2, . . . , C}. Given a new observation X,
classification aims to find a function g : X → Y which can predict the unknown
class label Y for the new observation using the training data as accurately as
possible. One way to measure the accuracy of the classifier is to introduce a
loss function. Often used for classification is the zero-one loss:

L (y, g (x)) =

{

0 if g (x) = y
1 if g (x) 6= y

. (2.1)

Then the expected misclassification for a new observation, i.e. the risk of the
classification function g, takes the following form

ε = E [L(Y, g(X))] = E

[

C
∑

c=1

L(Y, g(X))P (Y = c|X = x)

]

= P (Y 6= g(x)|X = x),

(2.2)
where Y is the class label of X. Hence, the optimal classifier in terms of mini-
mizing the misclassification rate is

g∗(x) = arg max
c∈Y

P (Y = c|X = x). (2.3)

This is known as the Bayes classifier, which is a classifier that assigns a new
observation to the most plausible class using the posterior probability of the
response. Suppose that the observation x has the conditional density fc(x),

being in class c, and let πc be the prior probability of class c, with
C
∑

i=1

πi=1. A

simple application of Bayes′ theorem gives us

P(Y = c|X = x) =
fc(x)πc

C
∑

i=1

fi(x)πi

. (2.4)

Then the Bayes classifier becomes

g∗(x) = arg max
c∈Y

fc(x)πc. (2.5)

In this thesis we focus on discriminating between two classes, i.e. C ∈ {1, 2},
and assume that each class is modeled by the Gaussian distribution:

xc ∼ N(µc,Σ), (2.6)
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where µc is the class mean vector and Σ is the common covariance matrix.
Next, we consider the well-known Fisher linear discriminant analysis. If an
observation x belongs to class c, then its density is

fc(x) =
1

(2π)p/2
√

det Σ
e{− 1

2
(x−µc)′Σ−1(x−µc)}. (2.7)

Given this assumption, the classifier assigns x to class 1 if

π1f1(x) ≥ π2f2(x), (2.8)

which is equivalent to

log
π1

π2

+

(

x − 1

2
(µ1 + µ2)

)′

Σ−1(µ1 − µ2) ≥ 0. (2.9)

This is the same as the Bayes classifier which can be seen in (2.5) and the
classification rule defined in (2.8). The Fisher discriminant function, DF (x) =
(

x − 1
2
(µ1 + µ2)

)′
Σ−1(µ1−µ2), assigns x to class 1 if DF (x) ≥ log π2

π1

otherwise

to class 2. Let ε(D,µ,Σ), where µ = µ1 −µ2 is a shift vector, be the misclassi-
fication rate of a classifier with discriminant function D. Then the discriminant
function DB of the Bayes classifier minimizes the misclassification. Further,
when π1 = π2 = 1

2
the misclassification rate for the Fisher discriminant function

can be calculated as

ε(DF ,µ,Σ) = Φ

(

−1

2

√

δ2(µ,Σ)

)

, (2.10)

where Φ(·) is the Gaussian cumulative distribution function and δ2(µ,Σ) =
µ

′Σ−1
µ is the Mahalanobis distance measuring the distance between the two

classes. Under the normality assumption the Fisher discriminant analysis is the
Bayes classifier and the misclassification rate in (2.10) is the Bayes risk. This is
used throughout the thesis to have a controlled misclassification rate. Further,
we focus on δ2 to use it as measure of separation power for features, as ε is a
function of δ2. Since Φ is a monotone strictly decreasing function of δ2, we can
say that the separation power of features can be a measure of their contribution
towards the distance between the classes.

High-dimensionality

As mentioned, it is the number of available features that defines dimensional-
ity and it is the relation between p and the number of available observations
that determines whether it is a high-dimensional problem or not. Standard sta-
tistical methods have been developed for situations having considerably more
observations than features. However, in a case with more features than available
observations the problem is said to be "high-dimensional". In the asymptotic
analysis the number of features is no longer fixed, so for the situation with "large
p, small n" the number of features p = pn can grow with n, possibly very fast,
so that pn ≫ n when n→ ∞[31].
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Classical statistical methods are based on standard asymptotic behavior,
where n → ∞ while p remains fixed and the ratio p

n
is treated as 1

n
. For

growing-dimension asymptotic, the number of variables can also go towards
infinity, unlike the standard asymptotic ratio p

n
→ k, where k ∈ (0,∞). To

demonstrate a well-known reason why standard methods are not applicable we
consider the inverse covariance matrix, Σ−1, used in many methods such as
discriminant analysis and regression analysis [43]. The expected value for the

inverse of the standard maximum likelihood estimated covariance matrix, Σ̂,
using the properties of the Gaussian distribution [29] is

E
[

Σ̂−1
]

= ψ (p, n) Σ−1

ψ (p, n) =
n

n− p− 1
=

1

1 − p−1
n

(2.11)

This shows why the standard asymptotical arguments break down for the high-

dimensionality. For the standard asymptotic, ψ (p, n) → 1 and E
[

Σ̂−1
]

→ Σ−1;

however, for the growing-dimension asymptotic the scenario is different depend-
ing on the ratio between p and n [34]. In order to see the effect, we simulated
data with different ratios. We generated data as i.i.d. {xj ∈ N (0, I) with
j = 1 : 1000 for p = (10, 500, 1000, 2000). We estimated the covariance matrix
for each data set and calculated the eigenvalues. The eigenvalues were ordered
and plotted against the rank; see Figure 1.

For the special case when k ∈ (0, 1) and Σ = Ip×p the empirical distribution of

the eigenvalues of Σ̂ follow the Marchenko-Pastur law

[

(

1 −
√
k
)2

;
(

1 +
√
k
)2

]

[28]. If we consider the situation where p is the same order of magnitude as n
and k < 1 but not negligible, then the covariance matrix is still invertible but
inverting it amplifies estimation error dramatically. It can clearly be seen in
Figure 1 that when the ratio between p and n is close to one, the estimation
for the standard methods will be biased and when p > n these methods are not
applicable at all. A real data example can be seen in Figure 2, which shows
the estimated misclassification of linear discriminant analysis when we let the
number of features grow. The data in question is breast cancer microarray data;
the set from [44] has 62 observations and the set from [35] has 159 observations.
For the covariance matrix to be invertible the number of available observations
is the limit for the number of features to be included. Both data sets contain
several thousands of features but only a tiny fraction can be used; we ordered
the features according to the absolute t-value and selected the most informative
features. The estimated misclassification increases rapidly with the growing
number of features.
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Figure 1: Sample and true eigenvalues. The solid line represents the distribution of λ̂1, . . . , λ̂p

of Σ̂, which are sorted from the largest to the smallest and plotted against their rank. For
Σ = I, λ1 = . . . = λp = λ = 1 and the distribution λith is plotted as a horizontal line at one
[34].
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Figure 2: Estimated misclassification with linear discriminant analysis as a function of the
number of features, for two real breast cancer microarray data sets
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3 Discretization

The underlying distribution of the data is seldom known and classification meth-
ods that do not require distribution assumptions are important tools. The kinds
of classifiers that require very mild assumptions and work even when p ≫ n,
e.g. k-NN, are often computationally intensive and therefore more effective for
discrete data. The discretization procedure is the mapping of the continuous
feature into discrete space, grouping together multiple values of the feature and
partitioning the continuous domain into non-overlapping intervals. We have n
observations and assume that we have n different values for the feature and
partition into q number of intervals so that q < n. This of course leads to
information loss but enables faster calculation times.

In this thesis we consider discretization methods that start by sorting the n
values of each feature (xi) separately in increasing order

xi1, xi2, . . . , xin → xi(1), xi(2), . . . , xi(n),

where i goes from 1 to p, xi(1) = min{xj} and xi(n) = max{xi}. The next step
is splitting or merging by sequence of thresholds, each denoted τk. Splitting
is a top-down method that considers an interval containing all known n values
of a feature, and then splits this interval into smaller and smaller subintervals
until some predefined criterion for stopping is fulfilled. Merging is a bottom-up
method that starts with a certain number of intervals, and these are merged
during execution until the predefined stop criteria is fulfilled. For the splitting
procedure τk is considered as a cut point where an interval of sorted values is split
into two adjacent intervals, whereas for the merging process, τk is considered
as a merging point where two adjacent intervals join. Therefore, to receive q
intervals, q − 1 thresholds are needed for splitting and n − q thresholds are
needed for merging. The choices of thresholds are based on the discretization
method and the intervals created are labeled by integers, ki ∈ {k1, . . . , kqi

}.
Each possible value of the feature is assigned to one and only one interval.
The assignments can be characterized by many-to-one mapping, or encoder
ki = C(xi()), that assigns the ith value to the mth interval, where j goes from
1 to n and m goes from 1 to qi.

4 Estimating the inverse of a sparse covariance matrix

In a situation when we have some knowledge about the distribution and the
higher demands of assumptions can be fulfilled it is preferable to turn to the
linear models due to their stability. Then we need to focus on the handling of
the covariance matrix in p > n. For the estimation of the inverse covariance
matrix we use gLasso [14] as a launching point and then apply the Cuthill-
McKee ordering algorithm [6] to form a block-diagonal structure approximation
of Σ−1. gLasso is used to learn the sparsity patterns of the covariance matrix,
where the algorithm applies a ℓ1 penalty to the entries of the inverse covariance
matrix [14]. gLassso uses the fact that we can learn about the dependence
structure through multiple linear regression. With this algorithm we create the
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skeleton (S), which is described in more detail below, since when gLasso finds
two variables to be conditionally dependent, the matrix entry (i, j) is non-zero.
The Cuthill-McKee ordering algorithm aims at reducing the bandwidth, where
the bandwidth of a matrix is the maximum value of |i− j| for non-zero elements
in the matrix. The bandwidth is reduced by moving the non-zero elements of
the matrix closer to the main diagonal. How the non-zero elements should be
moved is decided by relabeling the vertices in the graph associated with the
matrix in consecutive order [6]. Both gLasso and Cuthill-McKee ordering are
based on graph models, so the next section is a short introduction to graph
terminology.

Graph terminology applied to skeletons

Let S denote a skeleton which is a symmetric positive definite Boolean matrix
with i rows and j columns where i, j ∈ {1, . . . , p} and an element sij = 0
indicates that variables i and j are conditionally independent given all other
variables. The undirected graph of S is denoted G(S) = (V,E), where V is
a finite set of vertices together with a set of edges, E. In our context, we
use V = {1, . . . , p} corresponding to some random variables X1, . . . , Xp and
{Xi, Xj} ∈ E iff sij = sji 6= 0, i 6= j. Two vertices i and j are adjacent if there
is an edge between them. The adjacent set of vertices i, denoted adj(i, G(S)),
is the set of all vertices that are adjacent to i in G(S). Deg(i) = |adj(i, G(S))|
is the degree of i, which is the number of vertices in adj(i, G(S)). When the
relabeling is done in the Cuthill-McKee ordering the vertices should be labeled
in increasing order of degree. A path is a sequence of vertices {1, . . . , k} such
that i is adjacent to i+1 for each i = 1, . . . , k−1. The distance, d(i, j) between
two vertices i and j in the graph G(S) is the length of the shortest path joining
the two vertices. The eccentricity of vertex i is e(i) = max {d(i, j)|j ∈ V } and
the diameter of G(S) is given by δ(G(S)) = max {d(i, j)|i, j ∈ V }. A vertex is
said to be peripheral if its eccentricity is equal to the diameter of the graph.
This is an important concept for the Cuthill-McKee ordering algorithm since a
peripheral vertex should be chosen as the starting point. The algorithm we use
for finding a pseudo-peripheral node can be seen in [17].

Block diagonal structure

A graph is connected if every pair of distinct vertices is joined by at least one
path; otherwise G(S) is disconnected and consists of two or more connected
components. It is clear that if G(S) is disconnected and consists of r connected
components and each component is labeled consecutively, the corresponding
matrix will be block diagonal. Each connected component in the graph will
correspond to a diagonal block in the matrix; see Figure 3.
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Figure 3: a) A disconnected graph with four connected components that have been labeled
in consecutive order. b) A block diagonal matrix corresponding to the graph in a.

5 Feature thresholding for the sparse and weak model

As mentioned in the introduction, it is common for high-dimensional data that
very few out of the thousands of measured features are informative for classi-
fication, i.e. the data is sparse. Further, those features that are informative
often have low separation strength, i.e. the data is weak. This is known as the
sparse and weak model and identifying the informative features is a challeng-
ing statistical problem. As an illustrative example, the distribution of observed
separation scores from two different mixtures can be seen in Figure 4. The
problem of identifying informative features is formulated as follows: Given p
independent observations of separation strength Z = (Z1, Z2, . . . , Zp). For each
1 ≤ i ≤ p, we suppose that Zi has the probability β of being informative and
1−β of being non-informative. Here we consider the separation score for single
features. Hence we model the non-informative features as samples from N(0, 1)
and informative features as samples from N(θ, 1). Then, β can be viewed as
the proportion of informative features and θ 6= 0 is the shift parameter. Then
the goal is to test whether any informative features are present, i.e. we wish to
test the hypothesis β = 0 or equivalently

H0 : Zi ∼ N(0, 1) i.i.d 1 ≤ i ≤ p

H1 : Zi ∼ (1 − β)N(0, 1) + βN(θ, 1) i.i.d 1 ≤ i ≤ p.
(5.1)

We adopt an asymptotic framework where β and θ are parameterized as func-
tions of the driving variable p. For a fixed parameter 1

2
< γ < 1 we let

β = βp = p−γ.

In this sparse regime, βp ≪ 1/
√
p, the challenging situation is when the weakness

parameter grows at a rate of
√

log(p) because outside this range it is either too
easy to separate the two hypotheses or it is impossible. Hence we let

θ = θp(r; γ) =
√

2r log(p),

where 0 < r < 1.
Many of the commonly employed feature selection strategies are based on

significance levels ("p-values"); see e.g. [1, 12, 2, 9]. Hence we obtain the
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Figure 4: Observed separation strength from two different Gaussian mixtures.

"p-value" for the absolute value of the separation score with

πi = PH0
{|Zi| ≥ |zi|} = 2(1 − Φ(|zi|)),

where Φ(·) is the Gaussian cumulative distribution function. As a next step the
"p-values" are ranked in increasing order: π(1) ≤ π(2) ≤ . . . ≤ π(b). Then the
aim in this multiple-testing situation is identifying the false null. The feature
thresholding procedure finds a cutoff which generates a subset with as many
true informative features as possible while keeping the non-informative to a
minimum, as illustrated in Figure 5.

1

"significant"

0 1

"informative"

"not significant"

"non-informative"

TI

FNI TNI

FI

 
1H 0H

1 

2 

t
R

Figure 5: A two-component mixture model where the curve represents "p-values" and Rt is a cutoff
point. Below this curve the null hypothesis is rejected. This implies a decision rule for type I (α1)
and type II (α2) errors. The sum of the fractions false informative(FI), true informative (TI), false
non-informative (FNI) and true non-informative (TNI), equals 1 [41].
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6 Summary of papers

Paper I: Effect of data discretization on the classification accuracy in

a high-dimensional framework

In Paper I classification methods that are less sensitive to high-dimensionality
are considered. One of the disadvantages of these methods are that they are
often computationally intensive. For continuous features and high-dimensional
data the computation time becomes too demanding, hence the interest in dis-
cretization, i.e. transforming the continuous features into discrete features, with
as few outcome categories as possible. For the standard setting p < n it has
been shown that discretization can improve classification.

The aim of this paper is to evaluate discretization and explore the effect of
this procedure on the performance of high-dimensional classification. A second
objective is, as discretization is a data-transformation procedure, to investigate
how the structure of dependence between features is affected.

In the paper, a discretization algorithm is suggested that optimizes the dis-
cretization procedure using misclassification probability as a measure of clas-
sification accuracy. All the features are considered together in the algorithm
and are discretized simultaneously instead of one at a time. This enables a fast
discretization process which is suitable for high-dimensional data.

To examine the effect of discretization, classifiers that can handle both con-
tinuous and categorical data equivalently and are suitable for high-dimensional
data are chosen. Further, for comparison several different discretization meth-
ods are applied. Then the classification accuracy and change in dependence
structure are compared for both simulated and real data sets.

In classification accuracy the suggested method performs close to or better
than classification for continuous features. In performance compared to classifi-
cation based on other discretization methods the suggested method was always
close to the best and never the worst. The imposed changes on the depen-
dence structure varied greatly between different discretization methods. The
suggested method caused major change in the dependence structure but the
change was not significant compared to a baseline given by permutation.

In conclusion, the suggested method offers a highly effective discretization
method.

Paper II: Covariance Structure Approximation via gLasso in High-

Dimensional Supervised Classification

In Paper II we deal with constructing a sparse estimator of the inverse covariance
matrix Σ−1 for supervised linear classification in high-dimensional settings. We
propose a two-stage procedure for estimating an inverse covariance matrix. In
the first step we identify the structural zeros of the inverse covariance through
gLasso [14] in addition with bootstrapping to stabilize the non-zero elements.
In the next step the non-zero elements are moved towards the main diagonal
with Cuthill-McKee ordering [6]. These two steps enforce block sparsity and
enable a block-diagonal approximation of the inverse covariance matrix.
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The main advantage of the block-diagonal structure of Σ−1 is that it leads
to a classifier that is a special case of the generalized additive model; see e.g.
[21]. Further, the additive form of the classifier allows for block-wise feature
selection.

To select a subset of blocks we need to know whether blocks are of impor-
tance for classification or not and for this we use block separation strength. In
classification of real high-dimensional data, many of the blocks are likely to be
"non-informative", i.e. only a small fraction of blocks actually contribute to
the classification. Our goal is to select these blocks to include them into the
classifier.

We simulate data with the given conditions in the lower and upper bounds
to test classification accuracy for our classifier. We also compare our classifi-
cation method to classification based on only gLasso. We can conclude that
our proposed approach is relevant and beneficial in a high-dimensional setting,
which we illustrate on both simulated and real data.

Paper III: Empirical evaluation of sparse classification boundaries and

HC-feature thresholding on high-dimensional data

In Paper III the challenge of selecting a small subset of features that are likely to
be informative for a specific project is further considered. This issue is crucial
for success of supervised classification in very high-dimensional settings with
sparsity patterns.

Here an asymptotic framework that represents the Sparse and Weak Block
(SWB) model is derived and a technique for block-wise feature selection by
thresholding is suggested, block Higher Criticism (bHC). The suggested proce-
dure extends standard Higher Criticism (HC) thresholding [9] to the case where
the dependence structure underlying the data can be taken into account.

The detection boundary of the bHC procedure and performance properties
of some estimators of sparsity parameters are empirically investigated. Fur-
ther, the bHC is shown to be optimally adaptive, i.e. it performs well without
knowledge of the sparsity and weakness parameters. This property is of great
importance, as the difficulties of obtaining reliable estimates of sparsity param-
eter are illustrated.

The relevance and benefits of the bHC approach are demonstrated in high-
dimensional classification using both simulation and real data. As a conclusion,
it can be stated that bHC outperforms other commonly employed selection
methods. Taking the underlying dependence structure into account seems to
improve classification accuracy for most of the real data sets. Though there
are great differences in misclassification between set block-sizes, for further im-
provement in classification accuracy different block-sizes should be allowed, and
the method can easily be extended to that.
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Paper IV: Bayesian Block-Diagonal Predictive Classifier for Gaussian

Data

In Paper IV we present a method for constructing a Bayesian predictive classifier
in a high-dimensional setting. The predictive classifier provides an estimate of
the probability of membership in each class for new observation, compared to
many other classifiers that simply assign an observation to a class.

Also in this paper, we consider the block-structured covariance matrix, and
then, given that classes are represented by Gaussian distributions, a closed form
expression for the posterior predictive distribution of the data is established.
Due to factorization of this distribution, the resulting Bayesian predictive and
marginal classifier provides an efficient solution to the high-dimensional problem
by splitting it into smaller tractable problems.

Further, in a simulation study we show that the suggested classifier outper-
forms several alternative algorithms such as linear discriminant analysis based
on block-wise inverse covariance estimators and shrunken centroids regularize
discriminant analysis.
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7 Sammanfattning

Med dagens teknik, till exempel spektrometer och genchips, alstras data i stora
mängder. Detta överflöd av data är inte bara till fördel utan orsakar även vissa
problem, vanligtvis är antalet variabler (p) betydligt fler än antalet observa-
tion (n). Detta ger så kallat högdimensionella data vilket kräver nya statistiska
metoder, då de traditionella metoderna är utvecklade för den omvända situatio-
nen (p < n). Dessutom är det vanligtvis väldigt få av alla dessa variabler som
är relevanta för något givet projekt och styrkan på informationen hos de rele-
vanta variablerna är ofta svag. Därav brukar denna typ av data benämnas som
gles och svag (sparse and weak). Vanligtvis brukar identifiering av de relevanta
variablerna liknas vid att hitta en nål i en höstack.

Denna avhandling tar upp tre olika sätt att klassificera i denna typ av högdi-
mensionella data. Där klassificera innebär, att genom ha tillgång till ett dataset
med både förklaringsvariabler och en utfallsvariabel, lära en funktion eller al-
goritm hur den skall kunna förutspå utfallsvariabeln baserat på endast förk-
laringsvariablerna. Den typ av riktiga data som används i avhandlingen är
microarrays, det är cellprov som visar aktivitet hos generna i cellen. Målet med
klassificeringen är att med hjälp av variationen i aktivitet hos de tusentals gener
(förklaringsvariablerna) avgöra huruvida cellprovet kommer från cancervävnad
eller normalvävnad (utfallsvariabeln).

Det finns klassificeringsmetoder som kan hantera högdimensionella data men
dessa är ofta beräkningsintensiva, därav fungera de ofta bättre för diskreta data.
Genom att transformera kontinuerliga variabler till diskreta (diskretisera) kan
beräkningstiden reduceras och göra klassificeringen mer effektiv. I avhandlingen
studeras huruvida av diskretisering påverkar klassificeringens prediceringsnog-
grannhet och en mycket effektiv diskretiseringsmetod för högdimensionella data
föreslås.

Linjära klassificeringsmetoder har fördelen att vara stabila. Nackdelen är att
de kräver en inverterbar kovariansmatris och vilket kovariansmatrisen inte är för
högdimensionella data. I avhandlingen föreslås ett sätt att skatta inversen för
glesa kovariansmatriser med blockdiagonalmatris. Denna matris har dessutom
fördelen att det leder till additiv klassificering vilket möjliggör att välja hela
block av relevanta variabler. I avhandlingen presenteras även en metod för att
identifiera och välja ut blocken.

Det finns också probabilistiska klassificeringsmetoder som har fördelen att
ge sannolikheten att tillhöra vardera av de möjliga utfallen för en observation,
inte som de flesta andra klassificeringsmetoder som bara predicerar utfallet.
I avhandlingen förslås en sådan Bayesiansk metod, givet den blockdiagonala
matrisen och normalfördelade utfallsklasser.

De i avhandlingen förslagna metodernas relevans och fördelar är visade genom
att tillämpa dem på simulerade och riktiga högdimensionella data.
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